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Abstract: This work provides a novel approach to monitor the aflatoxin B1 (AFB1) content in maize
by near-infrared (NIR) spectra-based deep learning models that integrates Markov transition field
(MTF) image coding and a convolutional neural network (CNN) strategy. According to the data
structure characteristics of near-infrared spectra, new structures of one-dimensional CNN (1D-CNN)
and two-dimensional MTF-CNN (2D-MTF-CNN) were designed to construct a deep learning model
for the monitoring of AFB1 in maize. The results obtained showed that compared with the 1D-CNN
model, the performance of the 2D-MTF-CNN model had been significantly improved, and its root
mean square error of prediction, coefficient of predictive determination, and relative percent deviation
were 1.3591 µg·kg−1, 0.9955, and 14.9386, respectively. The results indicate that the MTF is an effective
data encoding technique for converting one-dimensional spectra into two-dimensional images. It
more intuitively reflects the intrinsic characteristics of the NIR spectra from a new perspective
and provides richer spectral information for the construction of deep learning models, which can
ensure the detection accuracy and generalization performance of deep learning quantitative detection
models. This study provides a new analytical perspective for the chemometrics analysis of the
NIR spectroscopy.

Keywords: maize; aflatoxin B1; near-infrared spectroscopy; Markov transition field; convolutional
neural network

1. Introduction

During growth, fungi generate secondary metabolites such as mycotoxins, which are
widely found in food crops such as maize, barley, oats, wheat, rice, and sorghum [1]. The
fungal toxins with greater impact on human life and health include aflatoxin B1 (AFB1),
zearalenone (ZEN), deoxynivalenol (DON), T-2toxin (T-2), fumonisin (FB), and ochratoxin
A (OTA), etc. [2]. Among them, the AFB1 is often produced by fungi when food products
are stored, and has strong carcinogenicity [3]. According to the FAO, 25% of the world’s
agricultural products are contaminated with mycotoxins every year, causing hundreds of
billions of dollars in economic losses [4]. China is also one of the countries with serious
AFB1 pollution, especially in maize, wheat, and their cereal products. In order to protect
the health of consumers, China has limited the content of the AFB1 in grain and their
processed products at 5 µg·kg−1. Therefore, it is of great importunacy to achieve the trace
and efficient monitoring of the AFB1 in grains and their products.

At present, a lot of research reports on the detection of the AFB1 in agricultural products
and food have been reported, mainly including high-performance liquid chromatography–mass
spectrometry [5], high-performance liquid chromatography [6], gas chromatography [7],
etc. Although chromatography and its combined techniques can detect high sensitivity
and repeatability and can achieve accurate analysis of mycotoxins in agricultural products
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and foods, instrumental analysis requires the training of professional technicians, complex
sample pretreatment steps, and expensive equipment. It cannot meet the needs of rapid
on-site detection. The basic principle of an immunoassay is the specific binding reaction
of antigen and antibody. Currently, the most widely used immunoassays are the enzyme-
linked immunosorbent assay (ELISA) [8] and the gold immunochromatography assay
(GICA) [9]. However, these methods all require the use of chemical reagents and depend
on the specificity of antigens and antibodies. The operation steps are cumbersome and
time-consuming, which limits their application in on-site rapid detection. Therefore, it
is urgent to develop a green, fast, and effective on-site analytical tool to realize the trace
determination of the AFB1 in grains and their products with high precision.

Near-infrared (NIR) spectroscopy is an efficient and fast modern analysis technology,
which combines computer technology, spectroscopy technology, chemometrics, and other
disciplines, and has been widely used in many fields with its unique advantages [10–12]. In
terms of food safety detection, Jiang et al. used the NIR spectroscopy to quantitatively detect
the AFB1 in mildewed wheat [13]; Gaspardo et al. used Fourier-transform near-infrared
spectroscopy to rapidly detect FB1 and FB2 in maize flour [14]; and De Girolamo et al. used
infrared spectroscopy to rapidly screen OTA in wheat [15]. Although the technique has
been successfully applied in the monitoring of mycotoxins in grains and their products,
there are still shortcomings: (1) The acquisition of high-quality spectral data. The NIR
spectroscopy has the characteristics that the sample data contain noise and the dimension
of the spectral data itself is too high, which brings inconvenience to the establishment of
subsequent quantitative models. (2) The selection of a suitable quantitative calibration
model. Therefore, the pretreatment of spectral data, the selection of effective wavelengths,
and a reasonable calibration model are the keys to the successful application of the NIR
spectroscopy in trace and even trace target attribute detection.

Generally speaking, the purpose of spectral pretreatment is to eliminate the inter-
ference information and noise data information in the data. At present, the commonly
used data pretreatment algorithms mainly include a smoothing algorithm, a derivative
algorithm, and multiple scatting correction, etc. [16]. The selection of the characteristic
wavelengths can simplify the complexity of the calibration model and reduce the computa-
tional cost. The selection algorithms for spectral data features mainly include competitive
adaptive reweighted sampling, random frog leaping, and a projection algorithm, etc. [17].
On the whole, the above methods can achieve the requirements of eliminating redundant
information and improving the accuracy of the calibration model. However, at present,
there is no uniform rule to choose the pretreatment method of the spectra, and it can only
rely on repeated attempts. In addition, the selection algorithm for spectral data features
often depends on the algorithm design, which is also a drawback of the existing feature
wavelength selection algorithm. Therefore, if a reliable mathematical model with high
noise tolerance and autonomous processing of high-dimensional data can be found, it will
largely make up for the shortcomings of the current development of spectral chemometrics.

Deep learning is a discipline that studies the inherent laws and representation levels of
sample data, and has been widely used in many fields, especially in image processing [18],
natural language processing [19], and data mining [20]. In fact, deep learning has been used
for spectral noise suppression, feature extraction, and model calibration [21]. Xu et al. used
deep learning algorithms for the accurate spectral classification of six different items [22];
Cheng et al. used the NIR spectroscopy combined with deep learning algorithms to rapidly
detect cumin and fennel [23]; Yang et al. used the combination of a convolutional neural
network and a recursive neural network to predict soil properties of the NIR spectra [24].
Zhu et al. proposed a new method for aflatoxin B1 (AFB1) detection inspired by quantitative
remote sensing [25]. Yang et al. used hyperspectral imaging (HSI) combined with the
deep stacked sparse auto-encoders (SSAE) algorithm to recognize the early mildewed
degree of kernels [26]. Han et al. realized pixel-level aflatoxin detection based on deep
learning and hyperspectral imaging [27]. Although deep learning algorithms have been
incorporated into the field of spectral analysis, most of the existing research uses deep
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learning for qualitative analysis [28], such as variety identification, origin identification,
and adulteration identification, and relatively few in quantitative analysis. However, there
are few reports in the literature on the spectral detection of mycotoxins in grains and their
products. In addition, the current spectral analysis research based on deep learning mainly
focuses on the one-dimensional data level [29,30], and the deep learning processing based
on spectral image-level has not been reported yet.

Thus, the main work arrangements of this study are as follows: (1) Use the team’s
self-made portable near-infrared spectroscopy system to collect spectral data on maize with
different degrees of mildew; (2) Simulate data augmentation methods, adding different
degrees of noise to the original spectral data to expand the sample library; (3) Use the
Markov transition field method to transform the spectral data into two-dimensional images
to build a deep learning model to achieve efficient monitoring of the AFB1 content in maize,
and compare the capabilities of this model with that of the deep learning model based on
one-dimensional spectral data.

2. Materials and Methods
2.1. Sample Preparation

The maize utilized in this work were 10 kg of fresh bulk maize pellets purchased from
a supermarket in Zhenjiang, Jiangsu Province. In order to simulate the growth environment
of mold during the mildew process of maize, some of the purchased maize samples were
placed in a constant temperature and humidity incubator (HWS-250B, Hongnuo Instrument
Co., Ltd., Tianjin, China). The temperature and humidity of the constant temperature and
humidity incubator were set at 30 ± 3 ◦C and 80–90%, respectively, to accelerate the
mildew process of maize. In addition, to ensure that this environment remained consistent
throughout the experiment, water mist was sprayed into it periodically. Finally, during the
experiment phase, 120 samples were obtained by six random sampling sessions, with an
interval of 3–5 days between each sampling session, each sampling being 20 samples, each
weighing 20 g.

2.2. Detection of Aflatoxin B1 Content

The method studied for the determination of AFB1 content in maize flour samples was
a competitive colloidal gold technique, which has made great achievements in the rapid
detection of toxins. The specific experimental steps were as follows: First, 70% methanol
was poured into maize samples to extract the AFB1 from the sample. Then, 100 µL of the
supernatant from the extract after shaking and centrifugation was extracted, and 400 µL of
dilution was added and mixed. Finally, 90 µL of the mixture was taken to drop it to the test
card, and the result was recorded.

2.3. Spectral Acquisition

For the acquisition of NIR spectra of all samples, the work was conducted using
a handheld NIR spectrometer constructed by our group. The wavelength range of the
instrument is 901.78-1661.24 nm with the optical resolution of 10 nm.

Before spectral collection, the sample was ground into powder using a multifunctional
grinder (BJ-150, Baijie Electrical Co., Ltd., Deqing, China). In addition, for each sample, the
mean of three sampling spectra was taken as the original spectrum of the sample. Figure 1A
presents the raw spectra of all samples.
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Figure 1. NIR spectra (A) and the NIR spectra by data augmentation (B) of all samples.

2.4. Data Analyses Methods
2.4.1. Spectral Augmentation

Deep learning is essentially a process of autonomous learning of the features and rules
in data sets. The parameters that need to be learned will increase with the number of neural
network layers, which will make it more prone to overfitting. It is of concern that when the
data set involved in training is small, too many parameters will fit all the characteristics of
the data set instead of the common characteristics among the data, which is a problem that
should be avoided in chemical analysis. Therefore, taking appropriate measures to expand
the data set before network training is one of the ways to avoid overfitting. In this case,
data augmentation techniques are a good choice [31].
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In this study, we augment the original spectral data by adding noise with different
degrees of signal-to-noise ratios to the original spectral data. In fact, this method is feasible.
This is mainly because it not only simulates experimental samples to obtain noisy data
under different factors, but also further verifies the feasibility of the network we built for
spectral analysis. Here, we used the built-in function “awgn” in MATLAB to augment
the original NIR spectra obtained by adding white noise to the data. Figure 1B shows the
spectral image after adding noise and all spectral data after data augmentation (120 × 5).
During data enhancement in this study, the signal-to-noise ratios were set to 80 dB, 70 dB,
60 dB, and 50 dB, respectively.

2.4.2. Markov Transition Field

Deep learning has made great progress and development in the area of computer
vision. In order to make full use of the advantages of deep learning in the area of image
processing, it is necessary to study the method of converting a one-dimensional spectral
sequence into a two-dimensional image, and then use a convolutional neural network for
subsequent quantitative analysis. Taking advantage of the similarity between spectral data
and time series, that is, the NIR spectral sequence based on wavelength points, the correla-
tion between wavelengths cannot be ignored. Based on this, this study uses the Markov
transition field (MTF) image coding algorithm to map one-dimensional spectral data into
two-dimensional image data [32]. The specific implementation steps are as follows: The
first step is to obtain the original near-infrared spectral data of the sample and perform nor-
malization processing. Let the spectral sequence of each sample be X = {x1, x2, x3, . . . , xn},
n is the total number of wavelength points. The second step is to define quantiles for the
spectral series. Given a spectral sequence X, define its Q (quantile), and assign xi in each
spectral sequence to the corresponding quantile qj (j ∈ [1, Q]). The third step is to generate
a Q × Q Markov transition matrix based on the Q quantile. By calculating the transition
probability between the first-order Markov chains, the following matrix is finally obtained.

M =


wij|x1∈qi ,x1∈qj

· · · wij|x1∈qi ,xn∈qj

wij|x2∈qi ,x1∈qj
· · · wij|x2∈qi ,xn∈qj

. . .
. . . . . .

wij|xn∈qi ,x1∈qj
· · · wij|xn∈qi ,xn∈qj

 (1)

where, qi and qj are the quantiles corresponding to xi and xj, respectively.

2.4.3. Convolution Neural Network

A convolutional neural network, as one of the important algorithms in the field of
deep learning, has the advantages of sharing the receptive domain and weights, reducing
the number of neural network parameters to be trained, and simplifying the complexity
of the model compared with the traditional artificial neural network [33]. It has unique
advantages in image processing, target detection, target tracking, and so on. In recent years,
CNN learning algorithms have been successfully applied in many fields, especially in the
field of analytical chemistry [34].

A complete CNN usually consists of four main components: a convolutional layer, an
activation layer, a pooling layer, and a fully connected layer [35]. The convolutional layer is
composed of a series of convolution kernels, and the convolutional layer undertakes the
heavy task of extracting the features of the input image in the whole network. Starting
from the basic features such as edges and shapes of the initial layer, as the depth of the
network deepens, the later convolution layers will get more complex and specific features.
The activation layer is generally located after the convolution layer and the full connection
layer, and the results are mapped nonlinearly. A pooling layer is used to reduce the
dimensionality of the feature vector and a fully connected layer is used to achieve the
final prediction or classification. Figure 2 shows the one-dimensional and two-dimensional
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convolution neural network structures designed to achieve efficient monitoring of the AFB1
in maize.

Figure 2. The designed structure of convolutional neural network models. (A) 1D-CNN; (B) 2D-
MTF-CNN.

2.5. Figures of Merit

In this study, the root mean square error of cross-validation (RMSECV) and the coef-
ficient of correction determination (R2

C) were used to evaluate the detection accuracy of
different PLS models, and the root mean square error of prediction (RMSEP) and coefficient
of predictive determination (R2

P) to evaluate the generalization performance of different
PLS models.

3. Results
3.1. Division of Calibration Set and Prediction Set

In this study, a total of 600 sample data were obtained through data augmentation. To
ensure a reasonable data allocation, both datasets must contain measurements of the AFB1
content for all gradients as well as sample data with varying degrees of noise. Therefore, the
sample set is divided based on the following. First, the sample data without added noise
are sorted according to the AFB1 measurements from smallest to largest. Here, we set the
expected output of the newly generated spectra to be the same as the AFB1 concentrations
of the corresponding original spectra. Then, one of every four samples was randomly
selected to be put into the prediction set and the other three samples into the calibration set.
Thus, the calibration set had 450 sample data, of which 75% (405 sample data) were used
to train the network, and the remaining 45 sample data were used to verify the trained
network. In the prediction set, there were 150 samples (25%), which were used to test the
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generalization performance and stability of the training network. The statistical result of
the AFB1 content of all samples in the two sample sets is shown in Table 1.

Table 1. Statistical results of the AFB1 value of peanut oil samples in calibration set and the predic-
tion set.

Sample Sets Sample Number Maximum/µg·kg−1 Minimum/µg·kg−1 Mean/µg·kg−1 Standard Deviation/µg·kg−1

Calibration set 450 63.0195 2.6214 24.4588 20.4806
Prediction set 150 61.9111 2.7252 24.4746 20.3720

3.2. The Training Results of CNN Models

In this work, firstly, an attempt was made to establish a detection model for the
prediction of AFB1 content in maize samples applying a one-dimensional convolutional
neural network (1D-CNN). In order to reflect the advantages of the deep learning algorithm
in spectral analysis, a unique normalized pretreatment was carried out on the data after data
augmentation. Secondly, in order to make use of the advantages of convolutional neural
networks in the field of image processing, the MTF was used to map one-dimensional
spectral data into two-dimensional images for processing. The Markov transform domain
image encoding process neither loses any features of the original one-dimensional spectrum,
but also realizes the bidirectional mapping from one-dimensional spectral signals to two-
dimensional images. Using this method, the spectral data of the calibration set and the
prediction set were encoded in two-dimensional images, and finally compressed in the
specified format for the training of the network model. Figure 3 shows a Markov transform
domain image containing spectra with five different levels of noise.

Figure 3. The images of Markov transition field with different noise levels. (A) No noise added;
(B) Add a noise level of 80 dB; (C) Add a noise level of 70 dB; (D) Add a noise level of 60 dB; (E) Add
a noise level of 50 dB.

The purpose of establishing the CNN model is to enable the spectral feature points
(215 feature points in total) to fully reflect the AFB1 content. The designs of two different
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dimensional CNN models differ in different types of layers. Table 2 shows the specific
structure and parameter settings of each layer. Both models are determined through
repeated debugging under the condition of comprehensive consideration of overfitting
and underfitting. Part of the training parameters was set as follows: the root mean square
error (RMSE) was taken as the loss function, the determination coefficient was taken as the
performance evaluation index of the model, and Adam with an initial learning rate of 0.001
was taken as the optimization algorithm. In addition, for the one-dimensional convolutional
data network, the number of training batch samples was set to batch_size = 150, and the
training round epoch = 3000. The number of two-dimensional convolutional neural training
batches was set to batch_size = 50, and the training round epoch = 300.

Table 2. The structures and parameters of the 1D-CNN and 2D-MTF-CNN models.

Models Layers Size Number Activation Output Shape Parameters

1D-CNN

Input (215,1) - - - -
Conv1 3×1 32 Relu (213,32) 128
Max pooling 3×1 - - (71,32) 0
Conv2 3×1 64 Relu (69,64) 6208
Max pooling 3×1 - - (23,64) 0
Conv3 3×1 64 Relu (21,64) 12,352
Max pooling 3×1 - - (7,64) 0
Conv4 3×1 64 Relu (5,64) 12,352
Max pooling 2×1 - - (2,64) 0
Flatten - - - 128 0
Dense 1 - Linear 1 129

2D-MTF-CNN

Input (215,215,1)
Conv1 11×11 6 Relu (206,206,6) 732
Max pooling 2×2 - - (103,103,6) 0
Conv2 11×11 32 Relu (93,93,32) 23,264
Max pooling 3×3 - - (31,31,32) 0
Flatten - - - 30,752 0
Dense1 10 - Relu 10 307,530
Dense2 10 - Relu 10 110
Dense3 1 - Relu 1 11

Figure 4 shows the training process of two convolutional neural networks. It is not
difficult to find from Figure 4 that the loss function of the two models decreases with the
increase in training times, while the accuracy increases with the increase in training times.
This shows that both networks are actively learning the features of spectral data during
network training. Further analysis of Figure 4A,B shows that in the training process of the
1D-CNN, when the number of training times is 1500, the variation of loss function and
accuracy tends to be flat, and the accuracy of the calibration set and the validation set shows
a big difference, indicating that the model is slightly underfitting due to overlearning in
the training process. The analysis of Figure 4C,D shows that the most stable point during
the training of the 2D-MTF-CNN appears around the 100th time, which is consistent with
the optimal loss value. The analysis of Figure 4D shows that with the increase in iteration
times, the training accuracy converges rapidly and approaches one. Regardless of the loss
function or the accuracy, in the subsequent iterations, the curves of two sample sets are
basically the same, which indicates that the 2D-MTF-CNN training model is more stable
than the 1D-CNN model and has a better detection performance.
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Figure 4. The training results of the convolutional neural network. (A) Loss of 1D-CNN; (B) Accuracy
of 1D-CNN; (C) Loss of 2D-MTF-CNN; (D) Accuracy of 2D-MTF-CNN.

4. Discussion

The statistics of the prediction results of the 1D-CNN model and the 2D-MTF-CNN
model for 150 independent samples in the prediction set are shown in Table 3. From
Table 3, the R2 of the 1D-CNN and the 2D-MTF-CNN model are both above 0.90, and both
have a good prediction accuracy and generalization performance. In addition, the overall
performance of the 2D-MTF-CNN model are significantly improved compared to the 1D-
CNN model, the R2

P value is increased from 0.9227 to 0.9955, the RPD value is increased
from 3.8101 to 14.9386, and the RMSEP value is reduced from 5.5360 to 1.3591 µg·kg−1.
The above results verify that when using deep learning to process NIR spectral data, it is
not necessary to perform preprocessing and feature optimization on the original spectra,
but directly perform multivariate calibration on the spectra to build a quantitative analysis
model and obtain better results. In fact, in this study, we are not surprised by the results
achieved. First, for the whole spectral data set, there are similarities and differences
between the spectra of different toxin concentrations, which are reflected in the positions
and intensities of the characteristic peaks of the spectra. For some of the samples, which
have similar toxin concentrations, the characteristic peaks and intensities of the spectra
are difficult to distinguish. This can lead to errors in the prediction of unknown samples,
resulting in a lower prediction accuracy. After the spectrum is encoded by the MTF image,
the characteristic information of the original spectrum is retained and its characteristic
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information is enhanced, which is easier for the network to learn. This phenomenon can be
seen from the structure of the MTF-CNN network; that is, fewer convolutional layers are
used for feature extraction of images to achieve better results.

Table 3. Raman characteristic peak attribution.

Models Input Shape RMSEC/µg·kg−1 R2
C RMSEP/µg·kg−1 R2

P RPD

1D-CNN (215,1) 3.7397 0.9637 5.5360 0.9227 3.8101
2D-MTF-CNN (215,215,1) 0.6799 0.9989 1.3591 0.9955 14.9386

Therefore, we can draw the following conclusion that the 2D-MTF-CNN model pro-
posed in the research can be viewed as a high-precision model to monitor the AFB1 content
in maize. The scatter diagram between the predictive results of the 2D-MTF-CNN model in
the prediction set and the measured reference value is shown in Figure 5.

Figure 5. Comparison of measured and the 2D-MTF-CNN model predicted values.

5. Conclusions

This investigation verifies the feasibility of using the NIR spectra to build a deep
learning model to achieve efficient monitoring of the AFB1 content in maize. According to
the structural characteristics of the NIR spectral data, the models were created by designing
deep learning networks with 1D-CNN and two-dimensional 2D-MTF-CNN structures,
respectively. The results revealed that the coefficients of determination for the calibration
and the prediction of the AFB1 content in maize were both above 0.90 by 1D-CNN and 2D-
MTF-CNN models. Furthermore, the detection performance of the 2D-MTF-CNN model
is significantly improved compared to the 1D-CNN model. Therefore, we can infer that
MTF is an effective near-infrared spectral data encoding technology, which can successfully
convert one-dimensional NIR spectral data into two-dimensional image data, providing
a reliable data basis for the construction of high-precision deep learning models. This
study provides a technical reference for the mature application of deep learning theory in
chemometric analysis of the NIR spectroscopy.
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