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ABSTRACT

Pan-genome ortholog clustering tool (PanOCT) is a
tool for pan-genomic analysis of closely related pro-
karyotic species or strains. PanOCT uses conserved
gene neighborhood information to separate recently
diverged paralogs into orthologous clusters
where homology-only clustering methods cannot.
The results from PanOCT and three commonly
used graph-based ortholog-finding programs were
compared using a set of four publicly available
strains of the same bacterial species. All four
methods agreed on ~70% of the clusters and
~86% of the proteins. The clusters that did not
agree were inspected for evidence of correctness
resulting in 85 high-confidence manually curated
clusters that were used to compare all four
methods.

INTRODUCTION

Next-generation sequencing allows large sets of bacterial
genomes from the same species to be generated for
multiple strain comparisons. The observation that for
some species strains can acquire and lose large portions
of their protein repertoire led to the concept of the
pan-genome (1,2). The most fundamental pan-genome
analysis is to compare differences in protein content
between strains. In order to determine these differences,
a correspondence between equivalent proteins in different
strains must be established. The most common meaning of
equivalent protein is a protein’s ortholog. Orthologs are
defined as homologous genes that are related through
speciation from a single ancestral gene, not through gene
duplication (3,4). Orthologs tend to serve the same role
and have the same function, particularly the more closely
related the organisms are. Furthermore, for pan-genome
analysis of closely related strains, ‘operational’, not

functional, equivalence is more desirable than functional
equivalence alone since, for example, two copies of a
nearly identical protein are likely functionally equivalent,
but could be under differential regulation. The copies
under similar transcriptional regulation (i.e. in similar
genomic neighborhoods) are likely to be the ones with
similar operational equivalence; therefore, pan-genome
analysis software should consider the genomic neighbor-
hood of orthologous genes. When a gene is duplicated
after speciation, or in species pan-genomes after strain
differentiation, both copies of the gene are defined to be
co-orthologs to the unduplicated gene in the other species
or strains. For pan-genome analysis, we believe it is pref-
erable to cluster only the co-orthologs with the same
genomic context, but additional information should be
reported indicating the co-ortholog relationship.

In general, determining orthologs is a hard problem
(4-6) and has most often been investigated across species
where evolutionary time has allowed for a great deal of
protein sequence and genome context divergence. For
greatly diverged species, genome context has been found
to have little benefit for ortholog clustering (7). The key
issue is distinguishing paralogs, homologous genes arising
from gene duplications, from orthologs. Often, after gene
duplication, paralogs diverge to take on different roles
and functions. For diverged species, tree-based methods
tend to perform best at ortholog clustering, albeit at the
cost of being much less computationally efficient. The
reason for this is that tree-based methods build multiple
sequence alignments that can distinguish which amino
acid residues are conserved within orthologs, but not
between paralogs, even when the average pairwise align-
ment scores for orthologs versus paralogs may be indis-
tinguishable. Graph-based methods, which rely on only
the pairwise alignment scores, which are much more
computationally efficient to generate, can suffer by com-
parison. For strains of the same species, the orthologous
proteins tend to have little divergence and retain a
conserved genome context. Paralogs that have diverged
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are easily distinguishable from the highly conserved ortho-
logs by simple pairwise distances. Very recently duplicated
paralogs are often indistinguishable even using tree-based
methods, but are separable based on genome context.
Pan-genome ortholog clustering tool (PanOCT) was
designed to make use of this genome context or conserved
gene neighborhood (CGN) information to better separate
very recent paralogs.

There are a number of commonly used programs
for determining orthologous gene clusters, but they were
designed for clustering genes from distantly related
cukaryotes, not closely related strains/species. These
ortholog-finding programs consist of three conceptual
methods: tree-based, graph-based and hybrid methods
(4). Tree-based methods infer orthologs and paralogs by
comparison of trees made with homologous genes to
species trees. Graph-based methods use pairwise align-
ments to determine homology/distance between proteins
to weight edges of the graph. Hybrid methods use a com-
bination of tree- and graph-based methods. Mainly for
computational efficiency, but also for availability, the
graph-based InParanoid (8), OrthoMCL (9) and Sybil
(10) ortholog clustering programs are often used for com-
parative genomic analysis (11-16).

PanOCT is a graph-based method, but differs from
existing methods in its use of both the Basic Local
Alignment Search Tool (BLAST) score ratio (BSR) (17)
and CGN in a weighted scoring scheme to generate
clusters containing single orthologous genes from each
of multiple genomes and by detecting and accounting
for potential frame-shifts. The concept of using the
context of neighboring genes, that are themselves
orthologous, to identify orthologs is not new (7,18);
however, coupling CGN together with pairwise sequence
identity and frame-shift detection to cluster orthologs in
a single open-source application is novel. Algorithms have
been developed that use both reciprocal best hit (RBH)
and CGN, but either are used only as the back-end of a
static database (ATGC, (19)), are used to score and visu-
alize the genomic context of homology ‘pillars’ in a web
browser (YGOB, (20)), or are functioning to re-cluster
pre-computed ortholog/paralog clusters using CGN
(IONS, (21)). Direct comparison with ATGC was not
possible since the application was unavailable. PanOCT
was compared with three popular graph-based programs:
InParanoid (8), OrthoMCL (9) and Sybil (10) alone and in
combination with IONS (21). GOB, the back-end
CGN-detection script of YGOB (20), was obtained from
the author. Using only ortholog clusters that were the
same for InParanoid, OrthoMCL, Sybil and PanOCT
as the pillars to input to GOB, the output of GOB was
also compared with PanOCT.

InParanoid (8) tries to distinguish out-paralogs
(i.e. duplications occurring before a species split) from
in-paralogs (i.e. recent duplications after a species split)
using a combination of RBH, also known as bi-directional
best hit, and a heuristic clustering method for resolving
overlapping groups of paralogs. A pairwise BLASTP
cutoff score of 50 bits and an overlap cutoff of 50% are
required for further consideration of orthology.
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OrthoMCL (9) tries to distinguish in-paralogs from
out-paralogs similarly to InParanoid. This program also
uses RBH BLASTP matches to identify orthology, but
uses a BLASTP P-value cutoff of 1 x 10 instead of the
bit score cutoff and does not consider the length of the
match. Potential orthologous and paralogous protein
relationships are converted into a graph with weighted
edges. The resulting graph is used as input to the Markov
Cluster algorithm (22) to attempt to separate orthologs
from paralogs.

Sybil (10) clusters are computed in a two-step process:
Jaccard coefficient-based clustering of the proteins within
a genome to determine paralogs and RBH BLASTP
match clustering of the resulting Jaccard clusters (JAC)
between genomes to determine orthologs. The Jaccard
clustering step computes a similarity coefficient from
filtered intra-genome unidirectional pairwise BLASTP
matches (E-value of at most 1x 107> and a percent
identity of at least 80%), resulting in clustering of
in-paralogs called JACs. RBH matches of JACs from dif-
ferent genomes are then clustered to form Jaccard
orthologous clusters. Similar to InParanoid and
OrthoMCL, Sybil clusters in-paralogs with orthologs,
but the JAC parameters can be set to effectively exclude
Jaccard clustering results, creating ortholog-only clusters
based solely on the RBH BLASTP matches.

PanOCT uses BLASTP matches and CGN to predict
orthologous clusters for pan-genomes. CGN is defined as
the conservation of gene order and orientation within the
genomes of closely related species. PanOCT is specifically
designed for pan-genome analysis of closely related
species/strains where CGN can be effectively used to dis-
tinguish groups of paralogs into separate clusters of
orthologs (7); however, it will also work on analysis of
more distantly related microbial species, but CGN will
be of less benefit.

MATERIALS AND METHODS

System and software requirements

PanOCT was written in PERL (http://www.perl.org
(1 August 2012, date last accessed)) and tested using
PERL version 5.10 on Linux CentOS and Mac OS X
10.6 operating systems. To perform BLAST searches,
either National Center for Biotechnology Information
(NCBI) BLASTALL (23) version 2.2.10 or later
(ftp://ftp.ncbi.nih.gov/blast/executables/release/ (1 August
2012, date last accessed)) or WUBLAST 2.0 (now called
AB-BLAST available at http://blast.advbiocomp.com
(1 August 2012, date last accessed)) are required.

Input requirements

PanOCT requires four input files. The first is either a
NCBI (options -m 8 or 9) or WUBLASTP (using the
btab program) tabular output file consisting of
all-versus-all BLASTP searches of all predicted proteins
in each genome to be analyzed. The second input require-
ment is a text file containing unique genome identifiers,
one identifier per line, to determine which genome is to be
treated as the reference genome in the output files and
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which genomes to include in the analysis. The genome
identifier can be associated with specific proteins in two
ways: (i) by placing the genome identifier after the protein
identifier (e.g. NTO8AB0001-GENOME_IDENTIFIER)
or (ii) in the gene attribute file. The gene attribute file is
the third required input file. It is a tab-delimited file con-
taining the following data: contig id, protein identifier
(e.g. locus), 5'-coordinate, 3’-coordinate, annotation and
genome identifier. The final input file requirement is the
protein fasta file used in the all-versus-all BLASTP
searches. The protein fasta file is used by PanOCT to
calculate the length of each protein, which is necessary
in order to compute the BSR.

\In addition to the input file requirements mentioned
above, PanOCT has a number of configurable command-
line options: amino acid percent identity cutoff (default is
35%), BLAST E-value cutoff (default is 10™°), minimum
percent match length of subject and query (default is 1%),
frame-shift overlap parameter (default is 1.33; can be
disabled), the number of amino acids at the beginning or
end of a match that can be missing and still be considered a
full length match between 0 and 100 (default is 20) and the
number of blast matches needed to confirm a protein
fragment/frame-shift (default is 1).

Output

PanOCT produces seven tab-delimited text output files
plus a runtime report file. The most informative output
files are the match_table and match_table_id files, which
contain the ortholog clusters, one cluster per row. Each
column contains protein identifiers with the first column
beginning with the reference genome, followed by subse-
quent genomes ordered as instructed in the genome iden-
tifier file. The match_table_id file lists the percent identity
for each protein to the reference in addition to the protein
identifiers. The third output file has the following fields:
locus identifier, annotation and each subsequent column
containing the BSR (17). The fourth file is the frame-shift
report, showing for each protein fragment the identity of
retained and ignored fragments that are considered part of
the same frame-shifted gene/pseudogene. Additional
optional output files are available and are documented
in the README.txt packaged with the distributed
tarball. A detailed description of each output file is
included with the source code.

PanOCT overview

All ortholog clustering methods start with a measure of
protein similarity/homology based on alignment scoring
between the proteins. The selection of orthologs is clear
when only one protein per genome is homologous to each
other (although even in this case compensating gene losses
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in each organism could cause non-orthologs (i.e. out-
paralogs) to be considered orthologous). However, the
choice is more complicated when multiple proteins per
genome are homologous. When the species are closely
related, CGN can be used as a contextual clue to discrim-
inate between orthologs and paralogs. For example, two
proteins from the same genome, P and P’, are homologs
and have homology to proteins C and C’ from another
genome. Based on homology alone, if P is more similar to
C than to C/, and C is more similar to P than to P/,
C might be assigned the ortholog of P based on RBH.
However, by using CGN to distinguish orthologs when
the proteins are nearly identical in addition to RBH,
C’ can be assigned as the ortholog of P and C the
ortholog of P’ (Figure 1).

There is circularity in the above example where CGN
evidence for a choice of ortholog is based on prior identi-
fication of the orthologs for the neighboring genes. To
address this problem, a measure of likely orthology
using only homology information must be generated
before determining the final orthology using CGN infor-
mation. This measure of orthology is then combined
within a window surrounding each potential ortholog
pair (POP) to assign a weighted score (WS), including
both homology and CGN measures.

Flowchart

PanOCT initiates by reading in the four input files
described above (Figure 2). The set of pairwise BLAST
matches that pass defined minimal cutoff criteria are
considered valid BLAST matches (assigned nonzero
homology) and become directed edges (from the query
protein to the target protein) in the homology graph.
Nodes in the graph represent the proteins. Edges represent
directed homology relationships from a query protein
node to a target protein node. Edges between nodes in
the same genome are used for some of the homology
scoring criteria, but are not used for ortholog clustering
in order to exclude paralogs. The BSR is computed for
each valid BLAST alignment and stored for each edge.
The BSR is the bit score of the BLAST alignment
divided by the bit score of the query protein aligned to
itself. Potential frame-shifted genes are then identified (see
‘Frame-shift detection” section). The outgoing edges from
each node are sorted by the BSR values to determine and
flag the best hit (BH) edge for the query protein to a target
protein in each genome. A RBH is found when there exists
a pair of oppositely directed BH-directed edges between a
pair of nodes. Both oppositely directed BH edges are also
flagged as RBH edges. The top RBH edges for a node are
defined to be the set of outgoing RBH edges that have
higher BSR values than any non-RBH outgoing edge
from that node including edges to the same genome. The

s )

——

Figure 1. An example of how CGN can be used to cluster paralogous genes into orthologous pairs. Open arrows indicate proteins, with dotted lines
illustrating best BLAST matches. Gray arrows indicate paralogous proteins with multiple high-identity BLAST matches. The genes on top are from
one genome and those on the bottom from a second genome. The slashes indicated that there are genes in between not drawn.
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Input data
Genome tags
Protein sequences
Gene attributes
BLASTP tabular results

!

Exclude BLAST results

Percent identity < 20%
E-value > 1€
Match length < 1%

| Frame-shift detection |

!
Flag best hits (BH) and
reciprocal best hits (RBH)
i

Store cliques
« Top hits (THC)
« All hits (AHC)

1

|Ca|culate CGN score

Calculate clusters

| Format data for printing |

e
S
Write output
to disc

Figure 2. Flow chart of PanOCT.pl logic. Standard symbols for con-
structing flow charts were used.

top RBH edges are then tested to see if they form a clique
(a completely connected subgraph, where undirected edges
exist between every node in the subgraph). The edges
within the clique are treated as undirected since each
node within the clique has two oppositely directed edges
due to being RBH. Cliques are defined as a Top Hits
Clique (THC) if a set of nodes and their top RBH edges
form a clique of size greater than two and further defined
as an All Hits Clique (AHC) if the top RBH edges are also
the only edges between all nodes in the clique. Next,
a homology score (HS) is computed and used in the
calculation of a CGN score (see ‘CGN score’ section
and Figure 3A). The CGN score is assigned for each
directed edge in the graph between POPs (Figure 3B).
Edges are filtered out prior to clustering that are not
RBH by CGN score to remove ‘noise’ edges. Ortholog
clusters are computed by hierarchically agglomerating
protein nodes greedily using the highest scoring CGN
edges first. Clusters grow as the next largest CGN score
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edge connects the clusters containing the query and target
proteins for that edge. This merging of clusters is not
allowed if the resulting cluster would have more than
one protein from the same genome. The final step is to
format the data for writing to any of the optional output
files.

Frame-shift detection

Even for the four ‘complete’ genomes extensively analyzed
for this paper, a protein from one genome would often
match adjacent protein fragments in a different genome
due to frame-shift sequencing/assembly errors or the
presence of pseudogenes. To identify potential frame-
shifted genes, PanOCT looks for BLAST matches of one
protein to more than one adjacent protein in the appro-
priate order, orientation and with a minimal overlap.
To distinguish between protein fragments and tandem
protein duplication, PanOCT tests if the amount of the
target protein covered by non-overlapping sequence is sig-
nificantly more than that covered by overlapping
sequence. The ratio of overlapping to non-overlapping
coverage is a user-definable parameter. In situations
when sequencing or assembly error may have resulted in
the fusion of neighboring genes, a voting scheme is used
to determine if adjacent protein fragments should be
combined or left as separate proteins. PanOCT will
retain the protein fragment with the longest BLASTP
match length to another protein for ortholog clustering
while ignoring those fragments with shorter BLASTP
match lengths.

Homology score

The HS is set to one for a valid BLAST match (Figure
3A). The HS is incremented by two if the target protein is
the BH for the query protein for the target protein’s
genome. The weight is further incremented by five if the
edge is a RBH. A RBH is when the target protein is a best
BLAST match for the query protein and reciprocally the
query protein is a best BLAST match for the target
protein as sorted by BSR. The top RBH edges are
defined for a node to be all outgoing directed RBH
edges, which when sorted by BSR come before any
outgoing non-RBH edges, including paralog edges. By
definition, paralog edges cannot be RBH edges since
RBH edges can only be between proteins in different
genomes. Each query protein will have at most one
directed RBH edge per target genome. There will be a
symmetric oppositely directed RBH edge from the target
protein to the query protein. We treat this pair of directed
RBH edges as an undirected edge for clique determin-
ation. If a set of nodes and their top RBH edges form a
THC of size greater than two (i.e. more than pairwise), the
HS is incremented by five times the fraction of genomes in
the clique (FGC; Figure 3A). However, if the top edges
are also the only edges (an AHC), the HS is incremented
by 10 times the FGC.

CGN score

For each possible ortholog edge and the POP it connects in
the graph, we compute a CGN score (Figure 3B). The CGN
score for a POP is a weighted combination of the HSs for a
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A Homology Score (HS) Calculation
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HS = 1 (if valid BLAST match) + 2 (if BH) + 5 (if RBH) + (5 if THC or 10 if AHC)x FGC

B calculation of CGN Score

Genome A (POP query set): ﬁ 7} _.}.4-_

e iﬁ (——5)7}.4.-— >

Genome B (POP target set): _‘> _> _'}'_“’ _> _> 4_ _""A 4_ NN

Position (n):
Relative Orientation Score (ROS): 1 1
Relative Invertion Score (RIS): 1 1

Relative Distance Weight (RDW): 5 | 5

Distance From Pop (DFP): 3'] 3!

1
0

33

+5
0 1 1 111 0
1 1 1 111 0
6 6 6 6] 6 5
341 3 3¢ 3¢ 3¢ 32

Weighted score (WS,) = (HS, + ROS, + RIS, + RDW,) x DFP,

5
CGN score of POP (WS, ) = ) WS,
i=-5

Figure 3. Calculation of the HS (A) and an example of how the CGN is computed (B).

fixed number N (currently set to 5) of genes upstream and
downstream of both the query and target proteins in a
POP. These weights are based on: relative orientation
score (ROS), relative inversion score (RIS), relative dis-
tance weight (RDW) and distance from the POP (DFP,
Figure 3B). For each protein in the POP query set, every
homology edge to the POP target set is evaluated. The
POPs are oriented in the same direction for calculating
relative orientation and relative inversion scores.

For each homology edge, the WS, which is initialized to
be equal to the HS, is incremented by one (via the ROS) if
the protein from the query set has the same relative orien-
tation as the protein from the target set. If the query set
protein is on the same strand as the POP query protein,
then the target set protein should be on the same strand as
the POP target protein. The WS is further incremented by
one if the query set protein and the target set protein both
have not been inverted relative to the POP (measured by
the RIS). The RIS is set to one if both the query and target
set proteins are upstream of the POP. Likewise, the RIS
has a value of one if both the query and target set proteins
are downstream of the POP.

In a well-conserved gene neighborhood, orthologs
are expected to be in exactly the same relative DFP,
unless broken by insertion, deletion or inversion events.
A relative distance score (RDS) is assigned to penalize
query/target set proteins that are not the same number
of genes from the POP. The relative distance for a query
or target set protein is the number of proteins it is
away from the POP, defined as the position number (#;
Figure 3B). The RDS is computed as the absolute value of
the difference between the positions of the query and
target set proteins. Using this penalty, RDS is converted
to a RDW (N+1 minus the RDS; Figure 3B). By defin-
ition, the match between the POP query protein and the
POP target protein will receive maximal increments from
the ROS, RIS and RDW.

Since the CGN score is used as an attempt to break near
ties in the HSs, the pairwise WS for each query set protein

should not be equally weighted but rather focused on
the POP query protein itself and its nearest neighbors.
To achieve this, the weight of the WS is exponentially
decreased the further away the query/target set proteins
are from the POP via the DFP weight (Figure 3B). Each
query set protein may have more than one pairwise WS if
paralogs exist within the target set proteins. To avoid
double counting either query or target set paralogs, the
larger of the two WSs is used. The CGN score of the
POP is computed as the sum of the pairwise WSs for
the entire set of query proteins.

Validation

The complete genome sequences of four Acinetobacter
baumannii strains were downloaded from GenBank:
ATCC 17978 (CP000521-523), AYE (CU459137-141),
SDF (CU468230-233) and AB0057 (CP001182-1183). To
obtain consistent structural annotation predictions across
genomes, each genome was run through the JCVI anno-
tation pipeline (24,25). These gene predictions were used
to generate files containing the combined protein
sequences of all four genomes and gene attributes for
PanOCT (Supplementary Figures S1 and S2, respectively).
NCBI BLASTP results were generated (E-value cutoff
1 x 107, filter off) and used by each of the four clustering
methods. Each clustering method was run using default
parameters with the exception of Sybil, where the
Jaccard-clustering P-value was set to —1 to eliminate the
inclusion of paralogs, which reduces Sybil to a simple
RBH algorithm. An increase in the inflation parameter
of OrthoMCL failed to exclude paralogs, so the default
of 1.0 was maintained (data not shown). Cluster results
from each of the clustering methods were compared.
Clusters where all four methods agreed were assumed to
be largely correct and uninformative for comparing
relative performance. All other clusters were examined
using ClustalW multiple sequence alignments, neighbor-
joining trees, high-quality functional annotation evidence
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(HMM matches to equivalog level PFAM/TIGRFAM
families (17)) and genomic context as evidence of
orthology. This resulted in only 85 manually curated
clusters containing 328 proteins that we felt were clustered
with high confidence. The use of genomic context (CGN)
as supporting evidence certainly biases the results toward
PanOCT, which is the only method of the primary four to
make use of CGN. That is why IONs and GOB, which
also use CGN, were included in comparisons. These 85
manually curated clusters became the reference set used
to evaluate the performance of each clustering method.

The clusters from each of the four primary ortholog
clustering methods were given as input to IONs for four
different runs. The set of clusters where all four primary
methods agreed were used as the high confidence clusters
or ‘pillars’ to be input to GOB.

The performance of each orthology detection method
was evaluated using sensitivity (TP/(TP+FN)) and the
positive predictive value (PPV; TP/(TP + FP)), where TP
is the number of true positives, FN is the number of false
negatives and FP is the number of false positives. The TP,
FN and FP values were calculated over the set of pairwise
orthology assertions inherent in each reference cluster. For
example, if a reference cluster contained four orthologs (A,
B, C and D), there would be six pairwise orthology asser-
tions (A-B, A-C, A-D, B-C, B-D and C-D). For a clustering
method, a TP is when the clustering method’s clusters in-
herently assert a pairwise orthology which is in the refer-
ence set, a FP is when the clustering method’s clusters
inherently assert a pairwise orthology that is not in the ref-
erence set but at least one of the two proteins in the pairwise
orthology is present in the reference set, and a FN is when
the clustering method’s clusters do not inherently assert a
pairwise orthology, which is present in the reference set
(Supplementary Figure S3). Clustering methods were
given credit for including a protein in a cluster when they
included at least one protein fragment from that protein for
frame-shifted genes/pseudogenes. Clusters were not
penalized if they included multiple protein fragments
from the same frame-shifted gene/pseudogene.

To determine the hardware demands of PanOCT
compared with the other methods used in this study,
resource statistics for each clustering method were
tracked by submitting independent jobs to an Oracle
Grid Engine (Oracle Corporation, Redwood Shores, CA,
USA) grid, using the qacct command to gather information
for each run. A total of 25 runs per method were launched.
The input for the first runs contained three Escherichia coli
genomes, whereas the final runs contained 25 genomes.
Each run contained genomes used in the previous run
plus one additional genome. All four methods were run
on the same order of genomes to eliminate artifacts due
to order of addition.

RESULTS
Protein clusters were computed for four clustering
methods  [PanOCT  (Supplementary  Figure S4),

OrthoMCL (Supplementary Figure S5), InParanoid
(Supplementary Figure S6) and Sybil (Supplementary
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Table 1. Comparison of clusters containing paralogs
No. of InParanoid OrthoMCL
members
Clusters  Paralogs n (%)  Clusters  Paralogs n (%)

1 1961 1415

2 523 527 42 (8)

3 849 12 (1) 797 25 (3)

4 2240 22 (1) 2310 33 (1)

5 40 40 (100) 62 62 (100)
6 17 17 (100) 20 20 (100)
7 10 10 (100) 11 11 (100)
8 4 4 (100) 5 5 (100)
9 2 2 (100) 1 1 (100)
10 2 2 (100)
11 1 1 (100) 3 3 (100)
15 2 2 (100)
16 1 1 (100)

17 1 1 (100)
18 1 1 (100) 1 1 (100)
22 1 1 (100)
23 1 1 (100) 1 1 (100)
26 1 1 (100)
29 1 1 (100)

144 1 1 (100) 1 1 (100)
213 1 1 (100)
Total 5653 114 (2) 5161 212 (4)

Figure S7)] for all proteins in four A. baumannii
genomes, and results of the differences were evaluated
using automated measures and manual inspection. Each
of the four methods differed in the number and size of
clusters they produce (data not shown). All four
methods produced similar numbers of clusters containing
between one and four loci with PanOCT and Sybil con-
taining more singleton clusters than either InParanoid or
OrthoMCL (data not shown). Only OrthoMCL and
InParanoid produced clusters containing more than four
members, with the largest OrthoMCL cluster containing
213 members (Table 1). Every cluster with greater than
four loci contained paralogs, whereas only 1-8% of
clusters with one to four loci contained paralogs.
OrthoMCL produced some clusters with no orthologs,
only paralogs; whereas, InParanoid will only add
paralogs if orthologs are also present.

Comparing cluster membership

Except when all four methods agree, it is hard to directly
compare clusters. This is because members of a single
cluster from one clustering method could correspond to
multiple clusters from another method, which may in turn
correspond to different clusters from the original method.
Therefore, instead of comparing clusters to evaluate the
results of each clustering method, the cluster membership
for each protein was evaluated. For each protein, two
methods agreed if the protein was included in clusters
with identical membership and disagreed otherwise. Of
6710 total non-redundant clusters containing 15180
proteins, all four methods agreed for 86% of proteins
(13041) in 69% of the clusters (4631; Figure 4A). Three
methods agreed and one disagreed: PanOCT, InParanoid
and Sybil agreed for 4% of proteins; PanOCT,
OrthoMCL and Sybil agreed for 3%; InParanoid,
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Figure 4. Agreement/disagreement between how proteins are clustered by the four methods for the entire set of clusters (A) and for the 85 manually
curated clusters (B). The number of proteins (A) or clusters (B) that are in agreement for each possible subset of the four methods is graphed. Each
subset pattern is indicated with shaded boxes for agreement and open boxes for disagreement. For example, when there are two shaded boxes and
two open boxes the two shaded methods agree and the two open methods disagree with all three other methods; diagonal lines in a box indicate that
while the two methods with diagonal lines disagree with the two shaded methods they agree with each other.

OrthoMCL and Sybil agreed for 1% and PanOCT,
InParanoid and OrthoMCL agreed for <1% of proteins
(Figure 4A).

Comparing to reference clusters

To directly compare and evaluate the behavior of each
method, a reference set of 85 manually curated clusters
was generated out of the set of clusters shown to
disagree among the methods. Clustering method results
were compared back with the reference set and cluster
agreement or disagreement was scored (Figure 4B).
Of the 85 reference clusters, PanOCT agreed with 85
(100%), InParanoid agreed with 19 (22%), OrthoMCL
agreed with 38 (45%) and Sybil agreed with 65 (76%).
These results can be split into 15 (2*-1) possible
combined cluster prediction patterns of the four
methods (Figure 4B). PanOCT, OrthoMCL and Sybil
made the same cluster prediction for the largest number
(36 or 42%) of clusters in agreement with the reference set.
The next three major patterns of agreement with the ref-
erence clusters were PanOCT, InParanoid and Sybil (19 or
22%), PanOCT alone (18 or 21%), and finally PanOCT
and Sybil (10 or 12%) (Figure 4B).

Performance

The performance of each method was further compared
with the 85 reference clusters, using both sensitivity and

PPV. PanOCT had the highest PPV of 1.000, while Sybil,
InParanoid and OrthoMCL had PPVs of 0.958, 0.766 and
0.699, respectively (Table 2). PanOCT also had the greatest
sensitivity (1.000), followed by OrthoMCL with 0.922,
then Sybil and InParanoid at 0.863 and 0.692, respectively.
Consistent with the findings in Table 1 where OrthoMCL
had the largest number of paralogs in clusters, OrthoMCL
had the highest FP rate of all four methods. InParanoid
was the worst performer against the reference clusters,
having the lowest number of TP, and the second highest
FP rate. It is a little misleading to report sensitivity and
PPV for only the 85 reference clusters, representing clusters
that differed among the four clustering methods, since this
is only a fraction of the number of clusters where all four
methods agreed. If we presume that the clusters where all
four methods agreed are overwhelming correct; hence,
treating them as true positives, the PPV values for an
expanded set of 4716 clusters (85+4631) were 1.000,
0.999, 0.995 and 0.990 for PanOCT, Sybil, InParanoid
and OrthoMCL, respectively, and the sensitivity values
were 1.000, 0.997, 0.993 and 0.998 for PanOCT, Sybil,
InParanoid and OrthoMCL, respectively (Table 2).

CGN post-processing with IONS and GOB

To independently confirm that CGN improves clustering
of orthologs, the previously determined clusters from each
clustering method and the consensus clusters where all
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four methods agree were used as input for IONS (21) and
GOB (20), respectively. IONS was able to correct some
initial clusters for OrthoMCL (Supplementary Figure S8)
and InParanoid (Supplementary Figure S9) by splitting
clusters with paralogs into ortholog-only clusters using
CGN (Table 2). IONs seemed to be particularly tuned
for OrthoMCL clusters. For Sybil (Supplementary
Figure S10) and PanOCT (Supplementary Figure S11),
IONS could not improve clustering since there were no
paralogs in the clusters but did split a few good clusters,
degrading the performance slightly. IONS did not achieve

Table 2. Evaluating method performance using PPV and sensitivity
measurements

Method TP FP FN PPV Sensitivity
Four clustering methods againt 85 reference clusters
PanOCT 401 0 0 1.000  1.000
Sybil 345 15 55 0.958  0.863
InParanoid 269 82 120  0.766  0.692
OrthoMCL 365 157 31 0.699  0.922

Four clustering methods against expanded reference clusters

PanOCT 16074 0 0  1.000 1.000
Sybil 16018 15 55 0999  0.997
InParanoid 15942 82 120 0.995  0.993
OrthoMCL 16038 157 31 0990  0.998

Four Clustering methods plus IONS or GOBS against 85 reference
clusters

PanOCT IONS 398 0 31 0.99

Sybil IONS 342 6 60  0.98 0.85

InParanoid IONS 266 52 123 0.84 0.68

OrthoMCL IONS 363 49 33 0.88 0.92

GOBS 325 1 62 1.00 0.84
A

NT16AB0606
NT20ABA3455
NT08AB3383
NT17AB0523

NT16AB0380
NT17AB0360
NT20ABA3639
NT08AB3660
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n NT16AB0456
NT20ABA3563
k NT08AB3580

NT16AB2267
I NT20ABA1635

NT17AB1956
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the same performance as PanOCT when starting with
clusters from another method (Table 2). GOB was able
to use the confident ortholog clusters where all four
primary methods agreed, to better determine separation
of paralogs using CGN (Supplementary Figure S12), but
still did not match PanOCT’s performance, measured by
Sensitivity (Table 2).

Evaluation of differences

To better understand the reason for the observed differ-
ences in performance, each prediction pattern with dis-
agreement to the reference clusters was manually
evaluated and summarized in Supplementary Table SI.
About 50% of the 85 references clusters were incorrectly
identified due to the presence of paralogs, while the re-
maining 50% of reference clusters were missed because
of differences in protein length (e.g. different start sites,
truncations and splitting due to frame-shifts). There were
several examples where OrthoMCL (Figure 5A),
InParanoid (Figure 5B) or both failed to separate signifi-
cantly diverged paralogs into ortholog clusters when Sybil
and PanOCT do. It is not clear from our analysis why
OrthoMCL differed from InParanoid on which diverged
paralogs to include in a cluster. Where PanOCT differed
in paralog separation from Sybil is for less diverged
paralogs where homology is not sufficient and CGN
information must be used (Figure 6). Looking outside of
the 85 reference clusters, there were a few instances where
PanOCT and/or Sybil seemed to make an arbitrary choice
between paralogs when no convincing CGN or homology
information existed (data not shown).
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Figure 5. Separation of divergent paralogs into orthologous clusters. The left panels denote consensus Neighbor-joining trees from 100 bootstrap
replicates as previously described (26). The thick lines infer the strength of bootstrap values >74. The scale bar represents the number of amino acid
substitutions. The panels on the right show tables of pairwise BLAST protein percent identities. OrthoMCL (A) and InParanoid (B) grouped every
protein depicted into two large clusters (one in A and another in B), while the other three methods produced clusters identical with the phylogenetic
trees (three in A and two in B). Protein percent identity was sufficient to group these proteins into unambiguous clusters (tables on right).
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Figure 6. Separation of paralogs into orthologous clusters using CGN. Cluster results of each of the four methods compared with six reference
clusters. Reference clusters are outlined in bold (reference clusters 53, 54, 55, 49, 48 and 47 from Supplementary Table S1). Note that reference
clusters 53, 54 and 55 are located in a chromosomal region different from reference clusters 49, 48 and 47. These regions are labeled 1 and 2,
respectively, and method cluster results are colored either solid or hashed to help differentiate.

Scalability

Since PanOCT was created for pan-genome analysis, a
much larger set of bacterial genomes was used to test
the scalability of the PanOCT software. A graph of the
reported maximum memory usage showed that PanOCT
used more memory per genome than the other three
methods (Supplementary Figure S13A). PanOCT
memory usage is unchanged until the sixth genome is
added, with a usage of ~0.25 GB per genome, maxing
out at 0.5 GB per genome by the 25th genome. As a
result of an in-memory data storage strategy, PanOCT is
able to finish orders of magnitude faster than Sybil and
InParanoid, and in a fraction of the time it takes
OrthoMCL, when run on identical data (Supplementary
Figure S13B).

Robustness

To show that PanOCT is robust for large datasets,
PanOCT was run on a set of 60 A. baumannii strains
(Supplementary Table S2), including the original four
used for analysis in this article. Clusters formed with the
original four strains were compared with the clusters from
60 strains (Supplementary Figure S14). The clusters
generated from the pan-genome analysis of 60 strains
were projected onto the original four strains by removing
all proteins not from the original four strains from the
clusters and then compared with the original clustering
results. A robust clustering method should minimize the

clusters that change (split or merge) when new strains are
added. For the 85 reference clusters, 1 cluster changed. For
the 4361 clusters where all four methods agreed, 100
clusters changed. For the entire set of 5865 PanOCT
clusters, 262 clusters changed. The small number of
clusters that changed indicates that PanOCT is generally
a robust clustering method. Almost all of the clusters that
changed were joined by weak homology with a lack of
CGN evidence, suggesting that in these instances,
PanOCT may be too aggressive in assigning orthologs.

DISCUSSION

Pan-genome analysis is simplified when clear orthologs
can be determined and separated from paralogs.
PanOCT utilizes CGN information to separate recently
diverged paralogs into orthology clusters where other,
homology-only clustering methods cannot.

Systemic differences in clustering tendencies between the
methods were analyzed by examining clusters where the
methods differed. The tendency of OrthoMCL and
InParanoid to agree is, in part, due to the inclusion of par-
alogous proteins in their clusters, while PanOCT and Sybil
tend to agree because they do not. Notably, OrthoMCL
and InParanoid often disagree on which paralogs to
include when including paralogs (Figure 4A). OrthoMCL
formed clusters with only paralogs from a single genome,
while InParanoid only formed clusters containing paralogs
if there was at least one ortholog from another genome. It is
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not clear when, if at all, paralogs should be included in
clusters for pan-genome analysis. Sybil often failed to
include closely related paralogs in clusters because their
protein sequences were too similar to be separated by
RBH alone, creating singleton clusters for the paralogs,
justifying the use of CGN to aid in clustering.

Recruiting paralogs into clusters negatively impacted the
PPV of OrthoMCL and InParanoid compared with Sybil
and PanOCT, through an increase in the number of false
positives. Therefore, a more direct comparison can be
made by comparing PanOCT to Sybil (with Jaccard clus-
tering turned off), which do not include paralogs. This then
becomes a comparison of RBH plus CGN versus RBH
alone. Both methods have excellent PPVs, but differ
mainly in sensitivity. PanOCT had greater sensitivity
than Sybil primarily because it was able to place proteins
with very similar identities into clusters based on the con-
servation of gene order surrounding these loci. This
provides support for the use of CGN in addition to RBH
to cluster orthologs from closely related species.

One of our four test genomes contained a large number
of transposons, which were frequently inserted into a gene
creating two protein fragments. PanOCT included the
fragment with the more conserved CGN in some cases
where the other methods favored the longer fragment or
in the case of OrthoMCL would include both fragments in
the same cluster. InParanoid applies a protein length
constraint so that a match is not considered if it is less
than half the length of the longer protein. This means that
InParanoid will not include as many protein fragments in
clusters as the other three methods do. PanOCT was the
most permissive in allowing short fragments (i.e. from
truncation events), causing some differences compared
with the other three methods. Future revisions of
PanOCT could be made to treat protein fragments
created by transposon insertions in the same way it
handles frame-shifted/pseudogene protein fragments, by
ignoring the shorter fragment for clustering purposes
and outputting this information to a file.

Further investigation is needed to determine the appro-
priate orthology clustering when little or no CGN
evidence is present. Some interesting occurrences were
observed in the test genomes, which raise questions as to
when orthology should be asserted and if in some cases
clusters should be created when orthology is not asserted.
There were several observed cases where a gene is
duplicated at a point of genome rearrangement with
strong CGN present on only one side of each of the
duplicated proteins (data not shown). Should this
duplicated gene be included in a cluster as an in-paralog
since it cannot be separated using CGN? There were cases
where strong CGN existed, but a protein in the middle of
the CGN was more diverged in one genome than the
others: is this a rapidly diverging ortholog or a horizontal
transfer/homologous recombination? In other cases, a
string of highly diverged proteins with reasonable CGN
were observed, which may represent a horizontally
transferred cassette. OrthoMCL tends to put protein frag-
ments due to frame-shifts, psecudogenes or transposon
insertions into the same cluster, whereas PanOCT
recognizes and outputs these situations explicitly.

PaGge 10 orF 11

PanOCT currently creates ortholog clusters containing
at most one protein from each genome. For highly similar
proteins, which could in some cases be co-orthologs,
PanOCT uses CGN to make a choice of which to
include in a cluster. The intent is to cluster proteins that
are most likely to be operationally equivalent. We plan to
output information about these highly similar proteins in
a file separate from the cluster output in a future release
of PanOCT.

In conclusion, orthology detection programs designed
for the purpose of comparing the protein content of dis-
tantly related ecukaryotes, such as OrthoMCL and
InParanoid, might not be well suited to Dbacterial
pan-genome studies, particularly for studies including
draft genome sequences. Although all four methods
compared in this study agreed on ~70% of the clusters
and ~86% of the proteins, PanOCT, by using CGN, out-
performed three other clustering methods for a manually
curated set of reference clusters. IONS and GOB were able
to take some clustering information as input and use CGN
to improve performance, but did not match PanOCT’s
performance. Although we believe that PanOCT outper-
forms other ortholog clustering tools, there is still room
for improvement, particularly in being more conservative
at ortholog assertion to make the clustering more robust
to the addition of more genomes.

AVAILABILITY

The PanOCT source code as well as the input and output
files used in this study can be freely obtained at http://
panoct.sourceforge.net/ (2 August 2012, date last
accessed) under version 3 of the GNU General Public
License (http://www.gnu.org/licenses/ (2 August 2012,
date last accessed)).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2 and Supplementary
Figures 1-14.
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