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Given the increase in research suggesting benefit following cognitive training in
older adults, researchers have started to investigate the potential moderating role
of genetic polymorphisms on transfer effects. The objective of this study was to
evaluate the moderating effect of catechol-O-methyltransferase (COMT) and brain-
derived neurotrophic factor (BDNF) polymorphisms on transfer effects following a single-
domain or multi-domain training intervention in healthy community-dwelling older adults.
A total of 104 men and women living in Shanghai were randomized to a multi-domain
or a single-domain cognitive training (SDCT) group. COMT rs4818 SNP and the BDNF
rs6265 SNP were analyzed from blood. At pre-intervention, post-intervention and at
6-month follow-up, participants completed the Repeatable Battery for the Assessment
of Neuropsychological Status (RBANS), the Color-Word Stroop Test (CWST), the
Trails Making Test (TMT) and the Visual Reasoning Test (VRT). COMT was found to
moderate immediate memory transfer effects following single-domain training only, with
G/- carriers displaying greater benefits than C/C carriers. BDNF was found to moderate
attention and inhibition independent of the training, with Met/- carriers displaying better
performance than Val/Val carriers. Overall, individualizing training methods with full
consideration of genetic polymorphisms may promote the maximization of cognitive
training benefits.

Keywords: cognitive training, catechol-O-methyltransferase, brain-derived neurotrophic factor, single nucleotide
polymorphism, successful aging
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INTRODUCTION

Thanks to the advances in medical technology and health care
systems, countries around the globe are experiencing a rise in
the older adult population (World Health Organization, 2015).
With an increase in life expectancy comes an increased risk
for the development of non-communicable diseases, including
dementia. Due to the insidious nature of the disease and the
lack of promising treatments available, dementia has become
one of the most challenging chronic diseases faced by society
and the healthcare system (World Health Organization, 2015).
Furthermore, in the context of an aging population, the
prevalence of dementia is expected to rise exponentially (World
Health Organization, 2015). Currently, dementia is estimated to
affect approximately 50 million individuals with a cost of more
than 600 billion dollars per year across the world (World Health
Organization, 2015). Consequently, there is a growing impetus
to discover interventions that may delay or prevent disease onset
and to delineate the mechanisms that determine intervention
efficacy. Cognitive training is one intervention that has received
growing interest as a tool to minimize cognitive impairment in
late adulthood (Reichman et al., 2010).

Over a decade of research suggests that cognitive training
is a viable intervention to enhance cognitive functioning
among healthy older adults (Cheng et al., 2012; Lampit
et al., 2014), persons with mild cognitive impairment (Li
et al., 2011), and persons with dementia (Sitzer et al.,
2006). Despite these promising findings, one must consider
individual variability in the intervention response and the
underlying mechanisms that may explain this variability.
Among the potential mechanisms, it is postulated that
cognitive training may generate its beneficial effects by
upregulating neurotransmitters, such as dopamine (Bäckman
et al., 2011), as well as neurotrophins, such as brain derived
neurotrophic factor (BDNF; Vinogradov et al., 2009),
two neurochemicals that are found to deplete with aging
(Komulainen et al., 2008; Tapia-Arancibia et al., 2008; Morcom
et al., 2010).

The catechol-O-methyltransferase (COMT) enzyme
modulates dopamine levels in the prefrontal cortex by degrading
dopamine into 3-methoxytyramine (Bäckman et al., 2006).
Consequently, the COMT gene has received attention as a
genetic contributor to variations in cognitive function. The gene
that codes for COMT contains a functional common Val158Met
polymorphism, with the wild-type Val allele exhibiting a
three- to four-fold increase in enzyme activity, resulting in
lower extracellular prefrontal dopamine, compared with the
substitution Met allele (Chen Z.-Y. et al., 2004). Several cross-
sectional studies in young adults show that the Val genotype is
associated with less efficient cognitive processing and poorer
performance on cognitive tests compared to the Met/Met
genotype (Bruder et al., 2005; Caldú et al., 2007). However, in
a prospective study of 2, 857 older biracial men and women
aged 70–79, it was found that COMT did not associate with
baseline cognitive function. Furthermore, in evaluating cognitive
trajectory over 8 years, COMTMet/Met was associated with
accelerated decline compared with Met/Val and Val/Val carrier

status. Specifically, Met/Met was associated with greater decline
in global cognitive function, measured by the Mini-Mental State
Examination; and executive function, measured by the Digit
Symbol Substitution Test (Fiocco et al., 2010). Although less
investigated, other functional polymorphisms in the COMT
locus, including the rs4818 (C1886G, Leu136Leu, synonymous)
is found to modulate COMT activity, with the C allele variant
associated with higher enzymatic activity than the G variant
(Diatchenko et al., 2005).

Polymorphism in the BDNF gene, resulting in a Val to Met
substitution at position 66 in the prodomain (BDNFMet), is
significantly associated with reduced BDNF secretion (Chen J.
et al., 2004). Although a recent meta-analysis of 21 studies
concluded that BDNF Val66Met does not associate with
cognitive function, age of the study samples was not considered,
whichmay have affected themeta-analytic outcome (Mandelman
and Grigorenko, 2012). Indeed, research suggests age-based
differential effects of BDNF polymorphism (Verhagen et al.,
2010). While a number of studies in young (Freundlieb et al.,
2015; Enge et al., 2016) and middle-aged (De Beaumont
et al., 2013) adults suggest that carriers of the Met variant
exhibit increased susceptibility for impaired cognitive function,
research that focuses on older adult cohorts suggests a
differential pattern, with Val/Val carriers displaying increased
risk for accelerated cognitive decline (Harris et al., 2006).
For example in a 10-year longitudinal study of healthy
older adults aged 67–86 years (Erickson et al., 2008), it
was found that Val homozygotes displayed greater decline in
executive function compared to Met allele carriers over time.
The authors postulated that this beneficial cross-over effect
may occur in the seventh decade of life (Erickson et al.,
2008).

Recently, research has shown a potential role for BDNF
(Freundlieb et al., 2015; Enge et al., 2016) and COMT
(Panizzutti et al., 2013; Colzato et al., 2014) polymorphisms
in moderating the cognitive training response in young adults
and clinical populations (i.e., schizophrenia). In the COGITO
study (Bellander et al., 2015), which evaluated the transfer effects
of cognitive training in 47 young adults and 78 older adults,
it was found that homozygote Val allele carriers performed
more poorly at baseline but showed greater improvement
for working memory near transfer. Although young adults
displayed greater gains following cognitive training relative to
older adults, analysis did not reliably discern a differential
age-effect for the moderating role of COMT on transfer
effects following cognitive training (Bellander et al., 2015).
While additional research is needed, this study suggests that
full consideration of the impact of genetic polymorphisms
may provide an opportunity to maximize training benefits
in older adults. Accordingly, research is needed to examine
genetic correlates of the cognitive training response in older
adults.

In a previously reported randomized controlled trial
(RCT) by the authors, examining transfer effects following
cognitive training in community-dwelling older adults living in
Shanghai, it was found that older adults in the single-domain
or multi-domain cognitive training (MDCT) program exhibited
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enhanced post-training cognitive performance, compared
with a wait list control group (Cheng et al., 2012). Given
the aforementioned associations between cognitive function
and biological correlates of brain function, including BDNF
and COMT polymorphism, and the potential modulating
role of genetic polymorphisms in transfer effects following
cognitive training, the objective of this study was to identify
differential response patterns to cognitive training that may
result from variants of the COMT and BDNF single nucleotide
polymorphism (SNP). More specifically, this study explored
the moderating role of BDNF and COMT on cognitive
transfer effects across and between training type (i.e., single-
domain and multi-domain training) in this sample of older
adults.

MATERIALS AND METHODS

Participants
A total of 270 healthy Chinese older adults were recruited
from the Ganquan-area community in Shanghai. Details of
the study design and CONSORT flow diagram are previously
reported (Cheng et al., 2012). Briefly, participants were eligible
for the study if they were: (1) between 65 years and
75 years of age; and (2) physically able to attend the training
courses. Exclusion criteria were: (1) illiteracy; (2) presence
of vision, hearing or communication deficits; (3) presence of
significant cognitive impairment, measured by the Chinese
Mini-mental status exam; (4) functional impairment with
difficulties in living independently; and (5) presence of an
existing neurodegenerative disorder, major neurological and/or
psychiatric disorder (e.g., stroke, depression, or schizophrenia),
or current diagnosis of cancer.

Study Design
This study was carried out in accordance with the
recommendations of the Human Research Ethics Committee
of Tongji Hospital. The protocol was approved by the Human
Research Ethics Committee of Tongji Hospital. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki (LL(H)-09-04) and prospectively registered with
the Chinese Clinical Trial Registry1 (RN: ChiCTR-TRC-
08000732). Eligible participants were randomized into one
of three groups: a MDCT, a single-domain cognitive training
(SDCT), or a wait list control group. Participants underwent
neurocognitive assessment at baseline (pre-intervention),
following 24 cognitive training sessions (post-intervention),
and at 6-month follow-up. The benefits of MDCT and SDCT
on cognitive function are reported elsewhere (Cheng et al.,
2012). Among the 270 participants recruited, 193 individuals
underwent baseline testing. Among these participants,
165 participants consented to provide blood for genetic
testing. Among those who refused to be genotyped, eight were
from the MDCT group and eight from the SDCT group.
The present study only included participants enrolled in the
MDCT and SDCT group to focus the moderating effects of

1http://www.chictr.org.cn

genetic polymorphism on training benefits. Consequently, the
final sample size for the current analysis included 104 older
adults.

Cognitive Training Methods
The cognitive training methods are described in detail elsewhere
(Cheng et al., 2012). Briefly, training methods were developed
based on Gates and Valenzuela’s (2010) operational definition
of cognitive training. The training tasks were developed
based on several effective tasks documented in the literature
(Ball et al., 2002; Noice et al., 2004; Uchida and Kawashima,
2008). The MDCT program included training strategies
that tapped into memory function (i.e., episodic memory,
face/name associative memory, verbal paired associates learning,
semantically unrelated word lists), reasoning (i.e., series
of numbers, symbols, words and figures), problem-solving
strategies (i.e., Tower of Hanoi), visuospatial map reading skills,
handcraft making and physical exercise (e.g., tips on stretching);
the SDCT program focused on training reasoning abilities only.
Both intervention groups comprised 24 1-h sessions of group
training with an average class size of 15 individuals at a frequency
of twice a week.

Cognitive Measures
Seven cognitive domains were measured over three time
points. Memory (immediate and delayed recall), visuospatial
function, language and attention scores were obtained from the
Repeatable Battery for the Assessment of Neuropsychological
Status (RBANS; Randolph et al., 1998), which was corrected
for age and displayed good reliability and validity in Chinese
older adults (Cheng et al., 2011). Cognitive inhibition, executive
function and reasoning were measured by the Color-Word
Stroop Test (CWST; Boone et al., 1990), the Trails Making Test
(TMT; Ashendorf et al., 2008) and the Visual Reasoning Test
(VRT; Xiao et al., 2002), respectively.

Genotyping
The COMT SNP rs4818, and the BDNF SNP rs6265 were
selected from ClinVar2. Using a Tiangen DNA Isolation Kit
(Tiangen Biotech, Beijing, China), leukocyte DNA was isolated
from blood samples collected in cubital veins at baseline.
SNPs were determined with the TaqMan SNP Genotyping
Assay (Applied Biosystems, Foster City, CA, USA) on ABI
PRISM 7900 sequence detection system instrument (Applied
Biosystems) and SDS 2.0 software (Applied Biosystems). COMT
and BDNF SNP distributions showed no deviation from
Hardy–Weinberg equilibrium within the entire sample (for
COMT, χ2

(1) = 0.013, p = 0.909; for BDNF, χ2
(1) = 0.634, p = 0.426).

Statistical Analysis
Analyses were performed using both intention-to-treat (ITT) and
per protocol (PP) analysis. Missing data points were imputed
using Stekhoven and Bühlmann’s missForest method (Stekhoven
and Bühlmann, 2012) for the statistical software R (Ihaka and
Gentleman, 1996). Multiple comparisons relevant to the analyses

2www.ncbi.nlm.nih.gov/clinvar
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mentioned in the following paragraph were corrected using the
false discovery rate (FDR) approach in R.

Subsequent analyses were performed using SPSS version
17.0 (SPSS Inc., Chicago, IL, USA). Chi-square or independent
t-tests were conducted to compare groups across demographic
characteristics and baseline cognitive performance. Analyses
were also conducted to determine the association between
genetic polymorphism and baseline characteristics. To exam
the effect of SNPs on cognitive training benefits, a full
factorial general linear model (GLM) with repeated measures
was conducted which included Time (baseline vs. post-
intervention, 6-month follow-up) as the within-group variable,
and SNP carrier status (Val/Val vs. Met for BDNF rs6265,
and C/C vs. G/- for COMT rs4818, respectively) and Group
(MDCT vs. SDCT) as the between-groups variable. All
models were adjusted for a priori covariates age, gender and
education.

RESULTS

Participant Characteristics
Among the 104 participants, 50 were randomized to the MDCT
group and 54 to the SDCT group. Among those randomized,
45 MDCT participants and 44 SDCT participants completed all
three cognitive testing sessions. The sample was 49% female, with
a mean age of 70.2 years (SD = 3.7) and a mean education level of
9.6 years (SD = 3.9). The MDCT Group had a larger male-female
ratio than the SDCT Group, see Table 1.

Association Between Genetic
Polymorphisms and Baseline
Characteristics
With respect to polymorphism of the BDNF gene, no
statistically significant between groups differences were found,

TABLE 1 | Demographic characteristics and baseline cognitive function by training group.

MDCT SDCT p

Gender (male:female) 31:19 22:32 0.030∗

Age (years) 70.7 ± 3.5 69.7 ± 3.8 0.155
Education (years) 10.1 ± 3.6 9.1 ± 4.1 0.188
Drop-out 5 10 0.217
RBANS total index 87.0 ± 14.3 86.1 ± 14.5 0.729

Immediate memory 82.7 ± 14.9 80.1 ± 15.6 0.729
Visuospatial/Constructional 99.0 ± 16.0 95.0 ± 16.2 0.392
Language 93.5 ± 12.0 92.1 ± 9.6 0.497
Attention 84.5 ± 17.9 87.2 ± 17.3 0.422
Delayed memory 91.6 ± 15.9 92.9 ± 17.7 0.694

CWST color interfere 20.5 ± 14.1 17.6 ± 9.8 0.227
CWST word interfere 45.5 ± 25.0 39.0 ± 16.8 0.121
TMT A completion time (s) 106.7 ± 48.3 109.2 ± 59.1 0.813
TMT B completion time (s) 202.6 ± 120.3 204.6 ± 107.8 0.926
Visual reasoning test 4.7 ± 2.0 5.0 ± 2.0 0.354

∗p < 0.05. MDCT, multi-domain cognitive training; SDCT, single-domain cognitive training; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status;
CWST, Color-Word Stroop test; TMT, Trail Making Test.

TABLE 2 | Demographic characteristics and baseline cognitive function by genotype group.

rs6265 p rs4818 p

Val/Val Met/- C/C G/-

Group (MDCT:SDCT) 8:18 42:36 0.041∗ 23:17 27:37 0.128
Gender (male:female) 12:14 41:37 0.571 26:14 27:37 0.024∗

Age (years) 70.8 ± 3.7 70.0 ± 3.7 0.338 69.6 ± 3.9 70.6 ± 3.6 0.210
Education (years) 9.4 ± 4.1 9.7 ± 3.9 0.729 10.5 ± 3.8 9.1 ± 3.9 0.067
Drop-out 4 11 0.872 6 9 0.895
RBANS total index 85.4 ± 14.5 86.9 ± 14.4 0.652 87.9 ± 15.1 85.7 ± 13.9 0.444

Immediate memory 79.2 ± 17.3 82.1 ± 14.5 0.447 81.4 ± 15.4 81.3 ± 15.2 0.985
Visuospatial/Constructional 99.2 ± 15.7 96.2 ± 16.3 0.415 100.0 ± 16.2 95.0 ± 15.9 0.120
Language 91.3 ± 8.6 93.3 ± 11.4 0.416 93.2 ± 9.9 92.5 ± 11.4 0.763
Attention 84.2 ± 16.3 86.5 ± 18.0 0.577 86.8 ± 16.6 85.3 ± 18.2 0.683
Delayed memory 90.3 ± 19.4 93.0 ± 15.9 0.488 93.2 ± 18.2 91.7 ± 15.9 0.667

CWST color interfere 22.2 ± 9.3 17.9 ± 12.8 0.116 20.7 ± 13.9 17.9 ± 10.8 0.242
CWST word interfere 43.9 ± 21.9 41.6 ± 21.2 0.632 43.6 ± 20.8 41.3 ± 21.7 0.593
TMT A completion time (s) 103.2 ± 38.9 109.6 ± 58.2 0.603 100.3 ± 41.4 112.9 ± 60.3 0.247
TMT B completion time (s) 206.1 ± 80.9 202.8 ± 122.8 0.901 196.6 ± 127.3 208.0 ± 104.6 0.621
Visual reasoning test 4.9 ± 2.1 4.9 ± 1.9 0.954 5.3 ± 2.0 4.6 ± 1.9 0.091

∗p < 0.05. MDCT, multi-domain cognitive training; SDCT, single-domain cognitive training; RBANS, Repeatable Battery for the Assessment of Neuropsychological Status;
CWST, Color-Word Stroop test; TMT, Trail Making Test.
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with the exception of cognitive training Group. Specifically,
significantly more Val/Val allele carriers were randomized to
the SDCT Group relative to the MDCT Group, χ2

(1) = 4.160,
p = 0.041. With respect to COMT polymorphism, no statistically
significant differences were found, with the exception of
sex. Specifically, significantly more males than females were
carriers of the COMT C/C allele, χ2

(1) = 5.126, p = 0.024.
Further, non-significant trends were found with respect to
education and baseline performance on the VRT, with CC
carriers of the COMT gene reporting slightly more years
of education, t(102) = 1.853, p = 0.067, and performing
slightly better on the VRT, t(102) = 1.708, p = 0.091, see
Table 2.

The Moderating Role of Genetic
Polymorphism on Cognitive Training
Outcomes Independent of Training Method
In the investigation of differential training effects based
on genetic polymorphism, independent of training mode,
no significant associations were found. Instead, the BDNF
SNP influenced cognitive function irrespective of cognitive
training. According to the adjusted ITT model, a main
effect for BDNF SNP was found, with Met/- carriers
performing better than Val/Val carriers on the CWST
color interfere task, F(1,97) = 5.417, p = 0.022, Figure 1.
This association remained statistically significant in the
adjusted PP analysis, F(1,82) = 6.519, p = 0.013. In the
ITT model, adjusting for all a priori covariates, the BDNF
Met allele was also found to associate with higher RBANS
attention score relative to the Val allele, F(1,97) = 3.929,
p = 0.050, Figure 2. This finding remained statistically
significant in the adjusted PP analysis, F(1,82) = 4.416,
p = 0.039.

FIGURE 1 | The effects of brain-derived neurotrophic factor (BDNF)
polymorphism on inhibition. Met/- carriers performed better than Val/Val
carriers on the CWST color interfere task across all time points,
F(1,97) = 5.417, p = 0.022. Note: CWST, Color-Word Stroop test. The error
bars represent standard errors.

FIGURE 2 | The effects of BDNF polymorphism on attention. Met/- carriers
performed better than Val/Val carriers on the RBANS attention tasks across all
time points, F(1,97) = 3.929, p = 0.050. Note: RBANS, Repeatable Battery for
the Assessment of Neuropsychological Status. The error bars represent
standard errors.

FIGURE 3 | The effects of catechol-O-methyltransferase (COMT)
polymorphism on immediate memory. COMT polymorphism determined
training benefits in the SDCT group only, indicating a larger gain for G/-
carriers than C/C carriers, F(2,104) = 4.990, p = 0.023, false discovery rate
(FDR) corrected. Training benefits differed between MDCT and SDCT in both
G/- carriers, F(2,118) = 4.624, p = 0.023, FDR corrected, and C/C carriers,
F(2,70) = 4.345, p = 0.023, FDR corrected. Note: MDCT, multi-domain
cognitive training; SDCT, single-domain cognitive training; RBANS,
Repeatable Battery for the Assessment of Neuropsychological Status,
respectively. The error bars represent standard errors.

The Moderating Role of Genetic
Polymorphisms in the Relationship
Between Cognitive Training Method and
Performance Outcomes
In the ITT adjusted GLM model, a significant
Time×Group×COMT interaction was observed for immediate
memory, F(2,194) = 4.802, p = 0.009; Figure 3). Subgroup analyses
showed that COMT polymorphism determined training benefits
in the SDCT group only (F(2,104) = 4.990, p = 0.023, FDR
corrected), and that training benefits differed between MDCT
and SDCT in both C/C (F(2,70) = 4.345, p = 0.023, FDR corrected)
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and G/- (F(2,118) = 4.624, p = 0.023, FDR corrected) carriers.
However, post hoc analyses only revealed better performance
on the immediate memory task among C/C carriers in the
MDCT group compared with C/C carriers in the SDCT group at
post-intervention (MMDCT = 98.0, SD = 15.9 vs. MSDCT = 84.4,
SD = 13.4; t(38) = 2.864, p = 0.042, FDR corrected). Findings were
similar for the adjusted PP model, F(2,164) = 5.299, p = 0.006.
COMT did not moderate any of the other training outcomes. No
three-way interactions were observed for BDNF.

DISCUSSION

Cognitive training has been shown to be a promising remediation
tool for cognitive function in late life. However, the underlying
mechanisms that predict individual differences in the treatment
response remain elusive. The identification of biological
parameters may help develop personalized training regimens
that compliment biological profiles. This study evaluated the
potential moderating role of BDNF and COMT polymorphism
on cognitive change following two methods of cognitive training
in older Shanghainese. Although COMT polymorphism did not
modulate training response across the two training methods, the
SNP was found to significantly moderate the association between
SDCT and immediate memory performance, with greater gains
found among the G/- allele carriers than the C/C carriers.
Subsequent post hoc tests suggested that C/C carriers benefit
more from multi-domain training than single-domain training;
whereas this differential effect of training method was not clear
in G/- carriers. This result is partially in line with two previous
studies, reporting that the Met allele of the functional COMT
rs4680 SNP associates with greater transfer effects for working
memory than the Val allele following cognitive training (Heinzel
et al., 2014; Bellander et al., 2015). Although genetic moderation
was found for different tasks (i.e., immediate memory vs.
working memory), it may be argued that performance on the
RBANS immediate memory index in the current study shares
common neural pathways that are required for working memory
performance (Cabeza et al., 2002, 2004). Importantly, both
rs4680 and rs4818 are located in the central locus of the COMT
gene and show linkage disequilibrium in the Chinese population
(Xiao et al., 2017).

The current findings contrast with a study conducted in
Netherlands (Colzato et al., 2014), which assessed themoderating
role of BDNF polymorphism on cognitive function following
a 7-week video game play intervention. Specifically, Colzato
et al. (2014) reported greater gains in transfer effects for divided
attention, but not selective attention, among Val/Val carriers
compared with Met/- allele carriers. In the current study,
Met/- allele carriers clearly displayed enhanced performance
of attention and inhibition compared with the Val/Val carrier
group; however, this association was found irrespective of
cognitive training. This finding aligns with previous research
in older adults suggesting enhanced controlled response and
inhibition in Met/- allele carriers compared with Val/Val carriers
(Gajewski et al., 2012; Getzmann et al., 2013). BDNF was
not found to moderate the training response for memory,
visuospatial function, or verbal fluency. With the exception of

verbal fluency, memory and visuospatial function are largely
hippocampal-dependent (Longoni et al., 2015), which may not
be as sensitive to remedial training in healthy older adults as in
younger adults (Freundlieb et al., 2012, 2015).

The present findings contribute to a growing body of
literature suggesting that genetic polymorphism has the potential
to modulate training benefits stemming from cognitive training
interventions. Strengths of the current study included evaluating
participants from a RCT that employed well-established training
patterns for community-dwelling older adults. The study also
included measurement of comprehensive cognition domains
with a 6-month follow-up period. However, similar to previous
studies, the present findings must be interpreted in light of the
existing study limitations. First, although the sample size was
similar to that reported in previous research, larger randomized
trials are needed to validate the current findings and that
of previous research. A larger sample will also allow for the
exploration of genetic haplotypes and gene-gene interactions
on cognitive transfer effects. Indeed, a second limitation of
the current study was that the sample size did not allow for
statistical evaluation of the combined contributions of COMT
and BDNF on cognitive outcomes. Future studies may employ
a more informative approach such as haplotypes of tag SNPs or
even genome-wide association (GWA). Furthermore, the current
sample size did not allow for the investigation of sex effects.
Indeed, there is increasing recognition of sex-differentials in
brain function and behavioral outcomes (Zhang et al., 2014).

Additional research is required to understand
age-differentials in the association between genetic variation and
cognitive function, including transfer effects following cognitive
training. Much of our understanding about the biological
correlates of cognitive function is based on younger individuals,
without considering age-related changes in the physiological
milieu of the individual. For example, the noted crossover effect
in the association between BDNF polymorphism and cognitive
function from ‘‘young old’’ to ‘‘older old’’ adults (Erickson
et al., 2008) needs further evaluation, which may further
help to understand inconsistent research findings. Furthermore,
additional research is required to understand how genes correlate
with peripheral biomarkers at various stages in the life span and
how this may influence cognitive function and transfer effects
following cognitive training. Previous research suggests that the
observed increase in blood BDNF following cognitive training
is restricted to cognitively impaired populations (Vinogradov
et al., 2009; Angelucci et al., 2015; Jeong et al., 2016), with no
observable changes in blood BDNF (Hakansson et al., 2017;
Passaro et al., 2017) or gene expression (Casoli et al., 2014)
in healthy older adults. These findings suggest that cognitive
training can potentiate substandard levels of BDNF, but may be
limited in triggering incremental increases from normal levels.

CONCLUSION

This study contributes to a growing body of literature that aims
to understand the underlying mechanisms involved in cognitive
remediation effects. This line of research is imperative as we
move forward in the context of an aging population, with an
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increasing interest in the creation of biological signatures that
may help maximize training benefits to ensure optimal cognitive
health in late life.
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