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Cardiovascular system is known to be nonlinear and nonstationary. Traditional linear assessments algorithms of arterial stiffness
and systemic resistance of cardiac system accompany the problem of nonstationary or inconvenience in practical applications. In
this pilot study, two new assessment methods were developed: the first is ensemble empirical mode decomposition based reflection
index (EEMD-RI) while the second is based on the phase shift between ECG and BP on cardiac oscillation. Both methods utilise
the EEMD algorithm which is suitable for nonlinear and nonstationary systems. These methods were used to investigate the
properties of arterial stiffness and systemic resistance for a pig’s cardiovascular system via ECG and blood pressure (BP). This
experiment simulated a sequence of continuous changes of blood pressure arising from steady condition to high blood pressure
by clamping the artery and an inverse by relaxing the artery. As a hypothesis, the arterial stiffness and systemic resistance should
vary with the blood pressure due to clamping and relaxing the artery. The results show statistically significant correlations between
BP, EEMD-based RI, and the phase shift between ECG and BP on cardiac oscillation. The two assessments results demonstrate the
merits of the EEMD for signal analysis.

1. Introduction

Arterial stiffness is a powerful physiological marker of
cardiovascular morbidity and mortality. However, the car-
diovascular system is a complicated system which has
effects of multiple underlying mechanisms. Correlations
among systolic arterial pressure (SAP), arterial stiffness,
and systemic resistance are significant topics for cardio-
vascular system. Moreover, since a cardiovascular system
is nonlinear and nonstationary, the characteristics of the
system should be assessed by suitable algorithms based on
innovative signal processing techniques for such a nonlinear

system. Therefore, two methods were developed to assess the
arterial stiffness and systemic resistance of a cardiovascular
system based on ensemble empirical mode decomposition
(EEMD) technique. EEMD is an innovative signal processing
algorithm developed to decompose intrinsic mode functions
from a nonlinear and nonstationary time series [1].

In this study, for the purpose of obtaining a sequence
of changes in the blood pressure, such as increasing then
steady high blood pressure for SAP, arterial stiffness, and sys-
temic resistance in a cardiovascular system, an experimental
surgical operation has been conducted on a healthy young
pig. In such an experiment, the clamping of intestine artery
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stimulated an acute rising of SAP and the relaxing of arterial
clamping reversed the reaction to arterial clamping. Changes
in SAP stimulated corresponding changes on arterial stiffness
and systemic resistance of the cardiovascular system [2, 3].
This procedure has provided the material for the investi-
gation so that a better understanding of the connections
between SAP, arterial stiffness, and systemic resistance of the
cardiovascular system can be realized.

Previous studies have shown that augmentation index
(AIx) and reflection index (RI) provide as good indicators
for aortic stiffness [4–6], which can be calculated as the ratios
between the amplitudes of forward wave, reflected wave and
systolic peak. AxI is determined by both the magnitude
and timing of the reflected wave [6]. Furthermore, a more
accurate measurement can be obtained after separating the
BP signal into its forward and reflected components, which
requires an extra measurement of aortic flow. Previously,
Westerhof et al. presented a new method to quantify the
magnitude of reflection independent of the time of the
reflected wave. In his method, a triangular shape of the
flow wave was assumed to determine the timing features of
arterial pressure. Hence, the reflection index (RI) derived by
Westerhof ’s method can be calculated via BP only [6].

On the other hand, pulse wave velocity (PWV) is another
popular method for the quantification of aortic stiffness [7].
The most widely used method for determining PWV is to
measure the time delay between characteristic points on
two pressure waveforms that are a known distance apart.
Recently, an innovative analysis algorithm of multimodal
pressure flow (MMPF) was proposed to trace the interaction
between BP and blood flow using the phase shift of
spontaneous oscillations [8–10]. In this study, it is assumed
that the ECG can present the activating potential of heart
beating and it is measured as the driving signal for the
cardiovascular system [11]. In addition, BP performs as the
output signal of the cardiac cycle, which reflects complicated
responses of the overall cardiovascular system. Thus, a
new application of multimodal analysis was proposed to
investigate the interactive phase shift between ECG and BP
during a cardiac cycle. The assumption made in this study is
that the phase shift between intrinsic components of cardiac
oscillations extracted from recordings of ECG and BP reflects
the systemic resistance of a cardiovascular system. Therefore,
signal processing techniques for decomposing the intrinsic
components from ECG and BP signals are critical for these
new applications.

Methodologically, there are many different signal pro-
cessing methods that perform high-efficiency signal decom-
position, such as independent component analysis (ICA)
[12] and wavelet decomposition [13]. ICA contributes to the
applications of blind signal separations based on statistical
characteristics of the signals, which reflect linear combi-
nations of different signal sources. Wavelet decomposition
offers simultaneous interpretation of the signal in both
time and frequency that allows local, transient, intermittent
components to be calculated. However, such traditional
signal processing method is based on linear assumption.
The components derived by wavelet decomposition are often
obscured due to the inherent averaging. In 1998, Huang et al.

proposed the innovative algorithm of EMD signal decompo-
sition, in which the components are decomposed adaptively
to the nature of signals but not the base of transfor-
mation [14]. Theoretically, each intrinsic mode function
(IMF) decomposed by EMD reflects the response actuated
by the corresponding activity of a particular underlying
physiological mechanism. In practices, the unpredictable
intermittent turbulences damage the consistencies of IMFs.
This phenomenon is noted as mode mixing. Recently, an
ensemble empirical mode decomposition (EEMD) has been
introduced which is considered as an enhanced algorithm
of EMD, which solves the problem of mode mixing in the
original EMD [1]. In this pilot study, it is assumed that the
reflected waves of BP can be derived as a particular intrinsic
component (i.e., IMF) by EEMD. Hence, a new EEMD-based
calculation of RI can be achieved. Moreover, EEMD also
works to decompose the cardiac oscillations from ECG and
BP in the new application of multimodal analysis. Phase shift
between the cardiac oscillations of ECG and BP is considered
to be a phase delay between the driving signal (i.e., ECG) and
the output signal (i.e., BP) of the cardiovascular system. It
is considered as a new assessment of systemic impedance of
the cardiovascular system which is the second EEMD-based
assessment presented in this study.

Finally, Pearson’s correlation coefficient was applied to
check the correlations between SAP, EEMD-based RI, and
the phase shift (between ECG and BP on cardiac oscillation).
According to the results of the correlation analysis, EEMD-
based RI acts as an indicator of arterial stiffness, showing
significant positive correlation with SAP and significant
negative correlation with the phase shift between ECG and
BP on cardiac oscillation. The phase shift between ECG and
BP on cardiac oscillation also acts as another indicator for
systemic resistance of a cardiovascular system, which has a
negative correlation with SAP. These two indicators show
two different profiles of the cardiovascular system and have
significant negative correlations with each other. Moreover,
correlations between SAP (a direct measurement of BP), RI
(a secondary parameters depends on the waveform of BP),
and phase shift between ECG and BP (a phase delay between
two different signals) show different profiles of the cardiovas-
cular system and significant connections among them.

2. Material

In this investigation, the study material (i.e., ECG and BP
recordings) was recorded during an animal experiment,
which was approved by the Animal Research Ethics Review
Committee of the Far Eastern Memorial Hospital in Taiwan.
In this experiment, a male Lanyu-50 pig with body weight of
around 10–15 kg was the subject. After intramuscular injec-
tion of Zoletil (Zoletil 50 Vet; Virbac S.A., Carros, France)
3–5 mg/kg, an intravenous line was established in the vein
behind the ear. An oximeter was applied on the tail. Other
monitored biosignals included body temperature and ECG.
Body temperature was maintained by a heating blanket and
warm air. Additional Zoletil was prepared to achieve immo-
bility before intubation. After intubation and confirming the
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position of the endotracheal tube (size 5.0–5.5 mm internal
diameter), 4 mg pancuronium was injected intravenously.
Subsequently, 5 mg/kg Zoletil and 4 mg pancuronium were
given hourly. The pig was anesthetized following the same
procedures above, with additional central venous catheter
(20G-22G-22G, BD) at the right internal jugular vein and an
arterial catheter (20G) at the left femoral artery under cut-
down procedure. Lactate Ringer’s solution, Hespander, and
whole blood (donated from other pigs) were administered
to maintain adequate volume status (central venous pressure
>5 mmHg) and hemoglobin level (>8 g/dL). Norepinephrine
or epinephrine (bolus or continuous infusion) can be
administered as required to maintain systolic blood pressure
>100 mmHg, especially after graft reperfusion. At the end of
the surgery, if the hemodynamic profile was stable, weaning
from ventilator support can be attempted.

To generate the ECG and BP recordings during clamping-
relaxing-clamping-relaxing of the intestinal artery, the pig’s
intestinal artery was blocked by clamping briefly (e.g., one
minute) and then relaxing the clamping to produce suc-
cessive time series recording under different situations and
transition state between them. This designed process was run
twice consecutively to derive four-minute recordings of ECG
and BP. The raw data of ECG and BP were measured by Intel-
liVue MP60 (Philips), an multichannel physiological moni-
toring system usually equipped in surgical operation rooms
and intensive care units. The data was measured and stored
at sampling rate of 1000 Hz and length of 240,000 sample
points. No preprocessing algorithms had been applied to the
raw data recorded by the MP 60 before further analysis.

3. Methods

3.1. Empirical Mode Decomposition (EMD). Empirical mode
decomposition (EMD) performs an adaptive method to
remove oscillation successively though repeatedly subtrac-
tion of the envelope means [14]. To a signal x(t), the EMD
algorithm consists of the following steps.

(1) Connect the sequential local maxima (respective
minima) to derive the upper (respective lower)
envelop using cubic spline.

(2) Derive the mean of envelope, m(t), by averaging the
upper and lower envelopes.

(3) Extract the temporary local oscillation h(t) = x(t) −
m(t).

(4) Repeat the steps of 1–3 (i.e., the sifting process) on
the temporary local oscillation h(t) until m(t) is close
to zero. Then, h(t) is an IMF noted as c(t).

(5) Compute the residue r(t) = x(t)− c(t).

(6) Repeat the steps from (1) to (5) using r(t) for x(t) to
generate the next IMF and residue.

Therefore, the original signal x(t) can be reconstructed
using the following formula:

x(t) =
n∑

i=1

ci(t) + rn(t), (1)

where ci(t) is the ith IMF (i.e., local oscillation) and rn(t) is
the nth residue (i.e., local trend).

As the algorithm uses all the local extremes to construct
the envelopes, the mode mixing would be inevitable when
the signal contains intermittent processes. As discussed by
Wu and Huang [1], the intermittence would cause the
resulting true physical processes to be obscured by the
fragmentation of a given signal.

3.2. Ensemble Empirical Mode Decomposition (EEMD). EMD
is an iterative signal processing algorithm which decomposes
the IMFs from the signal by the iterative sifting processes
[14]. The essential algorithm of EMD is associated with
a major difficulty of mode mixing. Figure 1 shows first
8 IMFs decomposed from a pig’s BP recording by the
original technique of EMD. Significant phenomenon of
mode mixing can be observed in IMF 4–6, which perform
inconsistencies in mode functions. Recently, Wu and Huang
proposed EEMD as a noise-assisted data analysis method to
overcome mode mixing problem [1]. In EEMD, white noise
is added into the original signal to generate the mixtures for
decompositions by EMD. Ensemble IMFs can be derived by
averaging the IMFs decomposed from the mixtures. Since
the intermittent fluctuations, which cause mode mixing
problem, are coupled with the added white noise to be
filtered, the problem of mode mixing has been effectively
solved in EEMD. Figure 2 shows first 8 IMFs decomposed
from the same recording by the noise-assisted technique of
EEMD. The problem of mode mixing was solved and IMFs
present consistencies in mode functions.

3.3. Monte Carlo Verification and Noise Removal. Monte
Carlo simulation is a computational algorithm that relies on
repeated random sampling to compute their results. In the
confidential test of EMD, the repeated numerical simulations
to characterize the properties of random noises applied to
EMD can be based on the application of Monte Carlo simula-
tion. Then, the confidential zone of IMFs decomposed from
random noises can be defined by Monte Carlo simulations.
An IMF with properties out of the confidential zone can
be verified as a dominant component of the signal. This
approach for verifying the dominant components of the
signals is noted as Monte Carlo verification [2, 15]. Monte
Carlo verification works to verify the IMFs contributed by
noise or the dominant signal. The high-frequency noise
of real-world signals can be reconstructed via the noisy
components verified by the Monte Carlo verification, and the
main waveform of signals can be reconstructed by the rest of
intrinsic components and residual.

In the Monte Carlo verification, two parameters of
energy density and averaged period for each IMF should be
calculated using the following equations [16]:

En = 1
N

N∑

j=1

[
Cn
(
j
)]2,

Tn =
∫
SlnT ,nd lnT

(∫
SlnT ,n

d lnT

T

)−1

,

(2)
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Figure 1: First 8 IMFs derived from a 12-second recording of a pig’s BP by the original technique of EMD. Significant mode shifting can be
observed in IMFs 4-5, which reflect inconsistencies in mode functions.
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Figure 2: First 8 IMFs derived from a 12-second recording of a pig’s BP by the noise-assisted technique of EEMD.

where Cn( j) is the jth sample of the nth IMF, En is the energy
density of the nth IMF, SlnT ,n is the Fourier spectrum of the
nth IMF as a function of lnT , T is the period, and Tn is the
averaged period of the nth IMF.

On the logarithmic energy density/averaged period plot
as shown in Figure 3, the first 3 IMFs can be fitted by a
straight line with negative slope. According to the character-
istics of white noise and fractal Gaussian noise derived by
EMD [16–18], logarithmic energy density/averaged period
plot for IMFs decomposed from a Gaussian noise is similar to
a straight line with negative slope. Thus, the high-frequency
noisy components are considered as the first n IMFs, which
have a distribution of logarithmic energy densities and
averaged periods similar to a straight line with negative
slope value in the Monte Carlo verification. In Figure 3, the

first 3 IMFs are verified as the noisy components of blood
pressure signals. Moreover, IMF 8 has an averaged frequency
of 0.46 Hz, which is induced by the activity of an unidentified
physiological mechanism with lower frequency band than
that of the basic cardiac cycle. Hence, the main waveform
of blood pressure signal can be constructed via IMFs 4–
7. In Figure 4, the reconstructed pulses of BP have main
waveforms similar to the original pulses but excluding high-
frequency noise and baseline shifting.

3.4. The EEMD-Based Calculation for RI. Augmentation
index (AIx) is an assessment of wave reflection and an
indicator of aortic stiffness [4, 5]. Unfortunately, the inflec-
tion points on systolic peaks are not distinguishable, and
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Figure 3: Logarithmic energy density-averaged period plot for the
first 8 IMFs decomposed from pig’s blood pressure signal.

so AIx cannot be obtained easily in this study. Recently,
Westerhof demonstrated a new quantification method for
wave reflection in the human aorta [6]. They assumed a
triangular wave to simulate the extra measurement of aortic
blood flow, with duration equal to ejection time, and to get
approximations of the inflection points of BP using the time
point of 30% of ejection time. In this study, the calculation of
RI using the assumption of 30% ejection time is noted as the
referred calculation of RI. Magnitudes of forward wave (Pf )
and reflected backward wave (Pb) are separated using the
magnitude of BP at the inflection point and the secondary
rising magnitude of BP. Then, the reflection index (RI) is
defined as

RI = Pb
Pb + Pf

. (3)

In the EEMD-based calculation of RI, IMFs 1–3 decom-
posed from BP had been verified as high-frequency noisy
components using the Monte Carlo verification [15]. Thus,
complete pulses of the pig’s BP can be reconstructed via IMFs
4–7. IMF 4 contributes a high-frequency part of BP with
small amplitude. Sometimes, an intrinsic component of the
original signal coupling with different added white noises
can be decomposed into two different IMFs in EEMD. Then,
two IMFs present a very high value of Pearson’s correlation
coefficient and can be merged together as single IMF. In this
investigation, Pearson’s correlation coefficient between IMFs
6 and 7 is 0.825 and the averaged frequencies are similar.
Therefore, these 2 IMFs can be combined as an intrinsic
component. Moreover, IMF 5 presents double in the number
of peaks compared to the number of heart beats, as the same
number of fluctuating cycles of the combination of IMFs 6
and 7. Half of the peaks of IMF 5 accompany the systolic peak
of BP, and the other half accompany the dicrotic peaks of BP.
Theoretically, the decomposition of EEMD is adaptive to the
waveform of the signal; the separation between IMF 5 and its
corresponding residue is sensitive to the discontinuous point
on the systolic peak of BP as the inflection point. Therefore,
the reconstructed wave via IMFs 4, 6, and 7 presents the
basic fluctuation pattern of BP. And IMF 5 contributes the
appended part of BP as the combination of reflection wave

and dicrotic wave. In this investigation, the reconstructed
wave via IMFs 4, 6, and 7 is considered as the forward
wave as shown in Figure 5(a). It is also assumed that IMF
5 contributes the reflected wave and the dicrotic wave as
two riding waves on the forward wave of BP. Figure 5(b)
illustrates the forward wave only, and Figure 5(c) illustrates
IMF 5, which contains the reflected wave and dicrotic wave.
The forward wave follows the same rhythm as the heartbeat
and presents the main cardiac oscillation of BP. IMF 5
contains the reflected wave and the dicrotic wave and shows
an averaged frequency of oscillation twice that of the cardiac
oscillation. Thus, the magnitude of the reflected wave (Pb)
was defined as the amplitude of the reflected wave in IMF
5. In addition, the magnitude of forward wave (Pf ) was
measured using the amplitude of the reconstructed forward
wave.

3.5. Phase Shift between ECG and BP on Cardiac Oscillation.
Cerebral autoregulation controls dilatation and contributes
to the constriction of the arterioles to maintain blood flow
in response to changes of systemic blood pressure [19].
Therefore, a multimodal analysis algorithm was used to
assess autoregulation mechanism by quantifying nonlinear
phase interactions between spontaneous oscillation in blood
pressure and flow velocity [8, 9]. Multimodal analysis acts to
trace the phase delay between the spontaneous oscillations
extracted from two different physiological signals (i.e., blood
pressure and blood flow in the pioneering application).

In this investigation, ECG and BP are treated as the
driving and output signals of the cardiovascular system. As
a system defined in the field of digital signal processing,
system impedance causes the decay ratio and phase delay
between the output and the input. Phase shift between
ECG and BP reflects the phase delay between the input and
output of a human cardiovascular system. Peaks of IMF 6
decomposed from ECG present the R points of ECG signal,
and peaks of IMF 6 decomposed from BP present the peaks
of systolic wave. Therefore, phase shift between ECG and
BP also presents a ratio between the pulse transit time (i.e.,
transit time between R peaks of ECG and peaks of systolic
blood pressure) and heartbeat interval. It is assumed that
the interactive phase shift (phase delay) between ECG and
BP on the cardiac oscillation reflects the phase delay caused
by the systemic impedance of the cardiovascular system.
To determine the intrinsic components (i.e., IMFs) which
reflect the cardiac oscillations of BP and ECG, the pig’s
ECG and BP recordings are decomposed into the first 9
IMFs. Table 1 shows the averaged frequencies of IMFs 5–9
for ECG and BP. Average frequency of IMF contributes as
a clue to find the corresponding physiological mechanism
for each component. In contrast to the human heartbeat
rhythm, a young pig’s heartbeat is much quicker than that
of a human. Average frequency of a pig’s heartbeat is around
3 Hz. Therefore, the cardiac oscillations were identified as
the 6th IMFs for both ECG and BP. Furthermore, Hilbert
transform was used to derive the time-amplitude-phase
distribution from the cardiac oscillations [8–10]. Figure 6
illustrates the evaluated phase shift between ECG and BP
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Figure 4: The original pulses and the reconstructed pulses of BP. (a) The original pulses of a pig’s BP. (b) The reconstructed pulses of a pig’s
BP, which are reconstructed via the IMFs 4–7.

Table 1: Averaged frequencies of IMFs 5–9 decomposed from a
pig’s ECG and blood pressure by EEMD.

ECG Blood pressure

IMF 5 7.19 Hz 6.20 Hz

IMF 6 3.10 Hz 3.09 Hz

IMF 7 2.16 Hz 2.98 Hz

IMF 8 1.12 Hz 0.46 Hz

IMF 9 0.47 Hz 0.24 Hz

on cardiac oscillation. The cardiac oscillation of ECG was
defined as the IMF with rhythm similar to heart beating, as
IMF 6 derived from ECG. And the cardiac oscillation of BP
was defined as the IMF with rhythm similar to the occurrence
rhythm of systolic peak, as IMF 6 derived from BP. Then, the
accumulative time-phase distributions can be via the time-
phase distributions shown in Figure 6. Therefore, the phase
shift is defined as the difference between the accumulative
phases for every time point.

3.6. Pearson’s Correlation Coefficient. Pearson’s product-mo-
ment correlation coefficient is a measurement to identify the
linear relationship between two variables [20]. In Pearson’s
correlation coefficient, the value of 1 indicates a perfect linear
relationship between two variables and a negative correlation
is indicated by the value of −1.

The traditional interpretation of a correlation coefficient
uses five “rules of thumb” to interpret the correlation
between two variables as follows [21]:

0.20 > |r| > 0 as negligible correlation,

0.40 > |r| > 0.20 as low correlation,

0.60 > |r| > 0.40 as moderate correlation,

0.80 > |r| > 0.60 as significant correlation,

1.00 > |r| > 0.80 as high correlation.

A positive value of correlation coefficient represents a
positive correlation between two variables and a negative
one presents a negative correlation. In this study, the
value of correlation coefficient is interpreted using such
interpretation rules.

4. Results

The analysis results of EEMD-based RI and progression
of SAP as well as the magnitude of the forward wave of
BP during the simulated surgical operation are shown in
Figure 7. According to the results, it is shown that SAP
rises and then remains steady on a high level during the
period of artery clamping then falling during the period
of arterial relaxing as shown in Figure 7(a). Moreover, it
is also shown that there are cyclic changes in SAP and in
the magnitude of forward wave. To verify the underlying
physiological mechanism causing the cyclic changes, the
number of cycles were counted and found that the average
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Figure 5: Illustration of a reconstructed pulse of a pig’s BP. A whole pulse is assumed to be the ensemble of the forward wave and two riding
waves (i.e., reflected wave and dicrotic wave). (a) Solid line shows the reconstructed forward wave of a pig’s BP and the dash line shows
complete waveform. (b) Assumed forward wave, which was reconstructed via IMFs 4, 6, and 7; (c) IMF 5 contains the reflected wave and
dicrotic wave.

period of the cyclic change of SAP is 2.92 seconds (with
average frequency of 0.34 Hz), which performs a rhythm
similar to the respiration rate according to our observation.
Moreover, the cyclic changes in SAP and in the magnitude
of the forward wave also affect the values of RI, which
also contains cyclic changes in values. To eliminate the
effect caused by the interaction between respiration and
the heartbeat, EEMD-based RI was filtered using a moving
average filter (9 samples have been used for the moving
average filter, since the average number of heartbeats during
a cyclic change of SAP is around 9). Figure 7(b) shows
the original and filtered EEMD-based RI. Furthermore, the
same calculations of RI were repeated using the referred
algorithm proposed by Westerhof et al., and compared to

the EEMD-based results. In Figure 8(a) the two different
RI are presented by time-sequence plots. Furthermore, the
distribution of the two different RIs is shown in Figure 8(b).
A positive correlation has been observed between the two RIs
(r = 0.759).

In addition, multimodal analysis was conducted to inves-
tigate the systemic resistance in the cardiovascular system
using the phase shift between ECG and BP on the cardiac
oscillation. Due to the sensitivity of the Hilbert spectrum, the
phase shift between two cardiac oscillations is not constant.
Therefore, phase shift was also filtered by a moving average
filter (the number of points used for moving average filter
is 100, which is the equivalent cut-off frequency of 10 Hz
for the sampling rate of 1000 Hz). The phase shift between
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the difference between the accumulative time-phase distributions of
cardiac oscillations for ECG and BP.

ECG and BP on cardiac oscillation is shown in Figure 9(a).
For the purpose of comparison with the analysis results of
phase shift between ECG and BP, pulse transit time (PTT)
between ECG and BP was analyzed. Figure 9(b) shows the
analysis result using PTT. Phase shift is found to be more
sensitive to the changes of manual control conditions (i.e.,
actions of clamping and relaxing). Analysis results of PTT
are shown in Figure 9(b). PTT reflects the time delay between
the R peak of ECG and the systolic peak of BP. The phase shift
presented by the phase delay is different from the time delay
presented by PTT. According to the plots shown in Figure 9,
the phase shift is found to be more sensitive to the manual
control actions than that presented by PTT.

For further comparisons among the original physiolog-
ical signals (i.e., SAP) and the physiological indexes (i.e.,
phase shift between ECG and BP on cardiac oscillation
and two different RIs derived by the EEMD-based and the
referred algorithms), correlation coefficients were used to
evaluate the correlations between the two different physio-
logical signal/index. Table 2 shows the values of correlation
coefficients for correlations of one-to-one comparisons.
According to the results shown in Table 2, the two different
assessments of RI have a positive correlation since they
similarly perform as indicators for arterial stiffness. RI has
a positive correlation with SAP, and phase shift between ECG
and BP has a negative correlation with SAP. Furthermore,
Figure 10 shows interesting correlations among SAP, RI, and
phase shift between ECG and BP on cardiac oscillation.

5. Discussions and Conclusions

In previous studies, there were many different physiological
parameters (such as pulse transit time, augmentation index,
and reflection index) developed to investigate humans’
cardiovascular systems using traditional algorithms based
on linear assumption. However, since the human cardio-
vascular system is nonlinear and nonstationary, 4 necessary
conditions (i.e., complete, orthogonal, local, and adaptive)
should be considered in system analysis. Recently, EEMD

proposed as an innovative analysis algorithm, which had
been developed to satisfy the 4 conditions, is considered as a
better solution to develop new assessments for cardiovascular
system. Therefore, this approach has been considered to
develop EEMD-based algorithms for cardiovascular system
evaluation. This study did not provide satisfiable number of
cases to prove any clinical findings. However, the EEMD-
based analysis algorithm is computing extensive and time
consuming. Hundred times of EMD are required in an
EEMD decomposition to diminish the residue of added
white noises. Therefore, EEMD-based analysis algorithms are
hard to implement in an embedded system and applied to
online monitoring system.

In the practical applications of EMD and EEMD,
which algorithm fits the requirements of decomposition
to nonlinear and nonstationary signals is still a critical
issue. IMFs decomposed by the original EMD can conserve
the characteristics of nonlinearity well in mode functions.
However, mode mixing is a weakness of EMD in applications
for extracting any mode functions with particular physical
or physiological meanings. In contrast EEMD works to
solve the problem of mode mixing. But characteristics of
nonlinearity for mode functions can be destroyed in the
ensemble form of IMFs. In this study, extracting intrinsic
components with consistent characteristics in modulation
is more important than conserving the characteristics of
nonlinearity in the mode functions. Therefore, EEMD was
applied in this investigation. What kind of characteristics
should be conserved in the IMFs determines the use of EMD
or EEMD.

In this study, an animal experiment was conducted for
simulating changes in the cardiovascular system using a
designed process to generate study material. In this one-
animal experiment, relationships among different parame-
ters are considered purely and directly. Influences caused by
individual can be ignored in this investigation. Moreover,
SAP is considered as a directly physiological measurement,
EEMD-based RI is a secondarily derived parameter from BP,
and phase shift between ECG and BP is a correlated phase
delay between two physiological measurements. Therefore,
connections among SAP, EEMD-based RI, and phase shift
between ECG and BP are considered to reflect interactions
of different physiological mechanisms in the human cardio-
vascular system.

According to the results, EEMD-based RI and phase shift
between ECG and BP are significantly correlated with SAP.
Furthermore, the correlation between these two parameters
is also significant. It contributes an evidence for interactions
among SAP, arterial stiffness, and systemic resistance of
cardiovascular system. Moreover, this pilot study aims to
present the functions of these two presented analysis tech-
niques basedon EEMD but not the physiological findings.
Hence, in order to make a contribution for understandings of
underlying mechanisms of humans’ cardiovascular systems,
further study should be conducted with a sufficient number
of animal experiments in the future works. Furthermore,
mutual information analysis provides a powerful tool to
verify the dependence between the two variables [22]. For
the purpose of detailing the connections and dependencies
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Figure 7: The analysis results of EEMD-based RI. (a) SAP and the magnitude of forward wave. (b) The original and filtered EEMD-based
RI.
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Figure 8: Comparisons between the analysis results of RI using different algorithms. (a) The time-sequence plot of RI during the simulated
surgical operation. (b) The distribution of the referred RI against the EEMD-based RI.

among those parameters, the mutual information criteria
should be considered and applied in future work.

Moreover, both the referred and the EEMD-based algo-
rithms of RI evaluation present an interesting phenomenon
during the period of artery clamping as shown in Figure 8.
The value of RI eruptively increases at the instant of artery
clamping and falls down at the first 20 seconds during artery
clamping. Then, the RI arises again and becomes steady.

During the periods of artery relaxing, the changes of RI
values present much smoother patterns than those during
the clamping periods.

In addition, IMFs decomposed by EEMD are ensembles
of many EMD decompositions to mixtures of the signal and
different added white noises. A complicated signal, which
contains many intrinsic mode functions, coupled with dif-
ferent added white noise to generate different combinations
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Figure 9: Phase shift between ECG and BP on cardiac oscillation.

Table 2: Correlations among the SAP, RI, and phase shift. According to the interpretation rules used in this study, 0.6 > r > 0.4 represents a
moderate correlation and 0.8 > r > 0.6 represents a significant correlation.

Physiological signal/index Correlation coefficient Correlation

EEMD-based RI Referred RI 0.759 Positive and significant

EEMD-based RI Phase shift −0.707 Negative and significant

Referred RI Phase shift −0.543 Negative and moderate

SAP EEMD-based RI 0.708 Positive and significant

SAP Referred RI 0.731 Positive and significant

SAP Phase shift −0.693 Negative and significant

Systolic arterial pressure 

(SAP) 

Reflection index 

(RI) 

Phase shift between ECG and BP  
on cardiac oscillation 

Positive correlation 

 r = 0.708 

Negative correlation Negative correlation

   r = −0.693 r = −0.707

Figure 10: Illustration of the correlations among SAP, RI, and phase
shift between ECG and BP on cardiac oscillation.

of IMFs in EEMD. Therefore, an intrinsic component of the
original signal may appear with different orders in different
EMD decompositions because of coupling with different
added noises. Two IMFs sharing the same frequency can
be resulted when an intrinsic component is decomposed
into two IMFs evenly in EEMD. In Figure 2, IMFs 6 and
7 sharing the same frequency are a good example for this
phenomenon. This is not a difficult problem to deal with.
An orthogonal test to two successive IMFs is helpful to verify

this phenomenon. The two IMFs sharing the same frequency
can be merged together as a single IMF.

Finally, the referred algorithm of RI analysis is based
on the triangular method to separate reflective and forward
waves of BP. This method was derived and validated in
central aorta but not femoral aorta. In this investigation,
EEMD was considered to perform an adaptive algorithm
in intrinsic component separation. Reflective and forward
waves of BP are considered as two intrinsic components
of BP with slight phase delay and difference in waveforms.
EEMD works to separate these two components adaptively
to the waveform of BP. The referred algorithm is considered
to be as a criterion of inflection point determination without
validation for BP signals derived from femoral aorta. The
analysis results by the referred algorithm were used to be
compared with the analysis results by EEMD-based method.
In practical applications, the referred algorithm based on tri-
angular method in femoral BP analysis should be validated.
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