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Abstract

Motivation: Gaining a comprehensive understanding of the genetics underlying cancer development and progres-
sion is a central goal of biomedical research. Its accomplishment promises key mechanistic, diagnostic and thera-
peutic insights. One major step in this direction is the identification of genes that drive the emergence of tumors
upon mutation. Recent advances in the field of computational biology have shown the potential of combining
genetic summary statistics that represent the mutational burden in genes with biological networks, such as protein–
protein interaction networks, to identify cancer driver genes. Those approaches superimpose the summary statistics
on the nodes in the network, followed by an unsupervised propagation of the node scores through the network.
However, this unsupervised setting does not leverage any knowledge on well-established cancer genes, a potential-
ly valuable resource to improve the identification of novel cancer drivers.

Results: We develop a novel node embedding that enables classification of cancer driver genes in a supervised set-
ting. The embedding combines a representation of the mutation score distribution in a node’s local neighborhood
with network propagation. We leverage the knowledge of well-established cancer driver genes to define a positive
class, resulting in a partially labeled dataset, and develop a cross-validation scheme to enable supervised prediction.
The proposed node embedding followed by a supervised classification improves the predictive performance com-
pared with baseline methods and yields a set of promising genes that constitute candidates for further biological
validation.

Availability and implementation: Code available at https://github.com/BorgwardtLab/MoProEmbeddings.

Contact : anja.gumpinger@bsse.ethz.ch or karsten.borgwardt@bsse.ethz.ch or hhorn@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancer is a disease of unchecked cellular growth, caused by genetic
alterations such as mutations, copy number variations or gene
fusions in so called cancer driver genes. Those alterations can mod-
ify both, the activity and cellular function of the gene, and can be
classified into activating (proto-oncogenes), or loss of function
(tumor suppressor genes and DNA repair genes). Identification of
such cancer driver genes is one of the main goals of oncogenic re-
search, as it facilitates mechanistic, diagnostic and therapeutic
insights.

Cancer genes can be identified through statistical tests that evalu-
ate the mutational burden of the gene (e.g. Kandoth et al., 2013;
Leiserson et al., 2015; Mularoni et al., 2016). However, those analy-
ses are complicated by the extensive mutational heterogeneity:
Many genes are mutated in a small number of samples, and only few
genes show significant mutation across many samples (Vogelstein
et al., 2013). This phenomenon convolutes the differentiation be-
tween genes that only carry passenger mutations, and rarely mutated
cancer genes. A potential explanation of this diversity in candidate
genes is that genes interact in various pathways (Hanahan and

Weinberg, 2011) and protein complexes, and the cancerous poten-
tial of a cell is a consequence of the disruption of the pathway, but
not necessarily the mutation of one specific gene within the
pathway.

Recent research adopted this interaction-based view on cancer
biology: the combination of biological networks and summary sta-
tistics that measure each gene’s association to cancer helped the
identification of novel cancer driver genes (e.g. Horn et al., 2018;
Leiserson et al., 2015; Reyna et al., 2018). In those networks, nodes
correspond to genes and edges represent relationships between the
adjacent genes. There exists a vast number of biological networks,
that are derived from different sources and that cover different
scales. Prominent examples are co-expression networks (Willsey
et al., 2013), co-dependency networks (e.g. AchillesNet; Li et al.,
2018), co-evolution networks (Niu et al., 2017), metabolic path-
ways (Kanehisa et al., 2017) or protein–protein interaction (PPI)
networks (Lage et al., 2007; Li et al., 2017; Szklarczyk et al., 2019).
Especially, PPI networks constitute an interesting representation of
gene interactions, as they commonly combine information from
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different data sources, tissues, and molecular processes at different
scales. However, those PPI networks are far from complete, and our
knowledge of them is biased toward well-studied genes (Horn et al.,
2018). This phenomenon is referred to as knowledge contamination:
well-studied (cancer) genes have a tendency to have more connec-
tions in the networks. The potentially large impact on the interpret-
ation of network analyses has to be considered and accounted for,
as it might confound results.

Methods that use networks as a representation of molecular rela-
tionships commonly start with superimposing scores on the nodes.
These scores measure the marginal association of the gene to the dis-
ease of interest. A prominent choice to represent each gene’s associ-
ation to cancer is the MutSig P-value (Lawrence et al., 2014): it is a
meta-P-value describing whether there is a statistically significant
difference in (i) the mutational burden, (ii) the clustering of muta-
tions and (iii) the functional impact of mutations in a gene between
healthy and cancer tissues. A plethora of methods has been devel-
oped to analyze such gene scores in combination with network in-
formation to identify altered subnetworks of genes within the
original network. They can be broadly categorized into clustering
methods, that aim to find modules of associated genes that cluster
together in a network (e.g. Jia et al., 2011; Rossin et al., 2011) and
methods that use network diffusion or network propagation
(reviewed in Cowen et al., 2017; Reyna et al., 2018) to detect
altered subnetworks. Both types of methods underlie the common
paradigm that genes influencing the same phenotype interact within
a network. Especially network propagation methods have shown
success in identifying novel cancer driver genes (Hristov et al., 2020;
Leiserson et al., 2015; Reyna et al., 2018; Ruffalo et al., 2015;
Vandin et al., 2011, 2012). However, network propagation methods
exploit by construction the flow of information between genes along
paths, and the longer the paths are, the more information gets
diluted. This complicates the detection of cancer genes that do not
lie on short paths between other cancer genes.

Another approach that has proven successful and does not lever-
age this assumption is NetSig. It identifies cancer genes based solely
on the local neighborhood of genes in a network (Horn et al., 2018).
At its core lies the computation of an empirical P-value for each gene
that describes the aggregation of genes with low MutSig P-values in
the direct neighborhood. Due to knowledge contamination, the size
of a gene’s local neighborhood is affecting the NetSig statistic. To cir-
cumvent this, NetSig implements various permutation schemes that
take the node degree into account, thereby correcting for this bias.

Although the aforementioned methods showed great success in
many biomedical applications (Cowen et al., 2017), including the dis-
covery of novel cancer genes, they approach the task of gene identifi-
cation from an unsupervised perspective. However, there exists
knowledge on well-established cancer genes (e.g Sondka et al., 2018),
an important layer of additional information that has, to the best of
our knowledge, only been leveraged in few methods for the prediction
of cancer driver genes, namely Bayesian modeling (Sanchez-Garcia
et al., 2014) and unsupervised network propagation (Hristov et al.,
2020). In most cases, well-established cancer genes are only used to
validate the importance and correctness of findings from new meth-
ods as a post-processing step. It seems to be an interesting approach
to reformulate the task of identifying novel cancer genes as a super-
vised problem, and learning by exploiting what we already know.

Herein, we propose a novel approach to classify cancer genes in
a supervised manner, leveraging the cancer gene annotations from
the Cancer Gene Census (CGC) in the COSMIC database (Sondka
et al., 2018). We achieve this by formulating the problem of finding
novel cancer driver genes as a node-classification problem in an
interaction network. The heart of our contribution is a novel embed-
ding of nodes in the network based on the distributions of node-
features in k-hop neighborhoods, coupled with a network propaga-
tion. We combine the InWeb PPI network (Lage et al., 2007; Li
et al., 2017) with MutSig P-values (Lawrence et al., 2014), and the
CGC genes, resulting in an imbalanced dataset due to the low num-
ber of known cancer genes compared with the gene corpus. To ad-
dress this, we develop a cross-validation scheme that enables the
supervised prediction of cancer driver genes with a set of classifiers.

We compare our approach against both, supervised and unsuper-
vised baselines, and show an improvement with respect to all classi-
fication metrics. Last, we evaluate the resulting set of high
confidence novel cancer driver candidate genes and find strong links
between the predictions and cancer. The list includes known tumor
suppressors such as GATA4 (Agnihotri et al., 2011), genes known
to be affected by recurrent rearrangements FOS (Fittall et al., 2018)
as well as genes known to be involved in tumor relevant pathways
ID2 (Kijewska et al., 2019), MYLK (Avizienyte et al., 2005; Cui
et al., 2010; Zhou et al., 2008), RALA (Seibold et al., 2019).

2 Materials and methods

Before we present our novel node embedding procedure, we start by
introducing the notation used in this Section, and formally state the
problem at hand.

2.1 Notation and problem statement
Consider a PPI network that describes interactions between genes.
We can represent this interaction network as a graph G, where the n
nodes correspond to the genes, and the m edges correspond to inter-
actions between genes. We denote the vertex-set as V, and the edge
set as E. We denote an edge between two nodes u; v 2 V as e(u, v),
and assume a weighting function x : V � V ! ½0;1� that assigns
each pair of nodes in the network a value between 0 and 1, such that
xðu; vÞ > 0() eðu; vÞ 2 E. In the case of a weighted network, the
function x might correspond to confidence scores of edges, in the
case on an unweighted network, x is a binary indicator.
Additionally, we assume the existence of a d-dimensional feature
representation for every vertex v 2 V, denoted by xv 2 Rd or in ma-
trix notation by X 2 Rn�d. We write the graph as G ¼ ðV;E;X;xÞ.

We define the k-hop neighborhood of a vertex v 2 V as the set of
all genes that can be reached from v along at least k edges. This can
be expressed recursively as

N k
v ¼ fu j eðw; uÞ 2 E; 8w 2 N k�1

v ;

u 62 N l
v 8 l 2 f0; ::; k� 1gg;

(1)

where N 0
v ¼ v (see Fig. 1a for visualization of one- and two-hop

neighborhoods).

Problem statement. We assume a partially labeled, one-class setting
in which we have a positive label l1 for a subset Vl of the nodes, but
the majority of the nodes are unlabeled, denoted by the set Vu. Our
goal is to develop a node embedding cGð�Þ based on the feature repre-
sentation X of all vertices v 2 V and the network G that, in combin-
ation with a binary classifier C, enables the decision of whether any
unlabeled node u 2 Vu belongs to the class l1. That is CðcGðxuÞÞ ¼
Pðyu ¼ l1Þ, where yv denotes the label of node v.

More specifically, our goal is to develop a node embedding that
serves as input for the supervised, binary classification task of identi-
fying cancer driver genes. It is based on the integration of a PPI net-
work with scores that measure the marginal association of each gene
to cancer, when those scores are superimposed on the nodes in the
network.

2.2 Generation of node embeddings for the prediction

of cancer driver genes
The node embeddings proposed in this article are based on two dif-
ferent concepts. The first one is the representation of each node as a
distribution across its neighbors’ feature vectors. It is motivated by
the success of methods such as NetSig (Horn et al., 2018) that focus
on the local neighborhood of nodes in the network. However, we
extend this idea in three directions: (i) we do not restrict ourselves to
one-hop neighborhoods, (ii) we condense the distributions into their
moments, resulting in a concise and computationally efficient repre-
sentation and (iii) we integrate edge weights into the approach. This
moment representation addresses the knowledge-bias in the
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network, as the description of a distribution via its moments is inde-
pendent of the number of draws from that distribution. The second
concept is a Weisfeiler–Lehman like (Weisfeiler and Lehmann,
1968; Shervashidze et al., 2011) aggregation of local features, that is
an iterative combination of features from a node’s local neighbor-
hood. It is similar to the network propagation approaches described
in Cowen et al. (2017), and is widely used in methods such as hier-
archical HotNet (Reyna et al., 2018) and its earlier versions
(Leiserson et al., 2015; Vandin et al., 2012), but also in graph con-
volutional networks (e.g. Gilmer et al., 2017; Kipf and Welling,
2016), where different regimes for aggregation over local neighbor-
hoods are being actively researched.

2.2.1 Embedding genes using moments of local neighborhood

distributions

Each node v 2 V in the network is represented by its d-dimensional
feature vector xv 2 Rd, and we denote the ith feature by xv:i. The
moment embeddings described in this section are computed for each
of the d features identically and independently, and eventually
stacked together. We assume the existence of a probability distribu-
tion Pk

v:i that generates the ith feature for all nodes in the k-hop
neighborhood of node v. That is, the ith feature values of k-hop
neighbors of v constitute draws from this distribution,
8u 2 N k

v : xu:i � Pk
v:i. We create an embedding for every vertex v

that is based on a concise description of the distributions Pk
v:i for

i ¼ 1; ::; d, and hyperparameter k 2Nþ. For this, we start by defin-
ing a function ��ðXÞ that maps a scalar random variable X � P to its
first four moments, that is:

��ðXÞ ¼ ½EX½X�; EX½X2�; EX½X3�; EX½X4�Þ�: (2)

In practice, the expectations in Equation (2) can be replaced
with the sample mean lð�Þ, variance rð�Þ, skewness nð�Þ and kurtosis
jð�Þ and applied to a realization of the random variable X, denoted
by x ¼ ½x1; . . . ;xq�. We write this function as

�ðxÞ ¼ ½lðxÞ; rðxÞ; nðxÞ; jðxÞ�; (3)

and call it a moment embedding function. For a vertex v, we denote
with Xk

v:i the values of the ith feature of vertices in the k-hop neigh-
borhood of v, i.e. Xk

v:i ¼ fxu:i ju 2 N k
vg. Those values constitute a

draw from the distribution Pk
v:i. We describe the node embedding of

vertex v with respect to feature i by applying the function �ð�Þ up to
its k-hop neighborhoods, that is

gk
i ðvÞ ¼ ½xv:i ; �ðX1

v:iÞ; . . . ; �ðXk
v:iÞ�; (4)

The value k is a hyperparameter of the embedding that indicates
the maximum neighborhood to be included (see Fig. 1a for an ex-
ample of the node embeddings). The moment embedding gk

i is a
function that creates a representation of every vertex v 2 V by
describing its k-hop neighborhoods with respect to a scalar feature
indexed by i, such that gk

i ðvÞ 2 Rð1þ4kÞ. This function can be applied
to each of the d node features separately, and the resulting represen-
tations are stacked to give

gkðvÞ ¼ ½gk
1ðvÞ ; . . . ; gk

dðvÞ�
T : (5)

This results in the moment embedding function
gk : V ! Rd�ð1þ4kÞ.

2.2.2 Embeddings using network propagation

The second type of node embeddings is based on a Weisfeiler–
Lehman like aggregation of nodes in the neighborhood with continu-
ous node features. In this procedure, the representation of every node
is simultaneously updated based on the representations of the node’s
direct neighborhood (see Fig. 1b for an example). That is, given an
initial feature representation xv of vertex v, it is represented as

xt
v ¼

1

jN 1
v j

X
v02N 1

v

xt�1
v0 (6)

at the tth Weisfeiler–Lehman iteration. This aggregation corre-
sponds to the element-wise mean across a node’s one-hop neighbor-
hood, and can be used to generate node embeddings by stacking the
representations for t iterations as follows:

qtðvÞ ¼ ½x0
v ; x

1
v ; . . . ; xt

v�; (7)

and qtðvÞ : Rd ! Rð1þtÞ�d. The number t of iterations of this propa-
gation scheme is treated as a hyperparameter that can be tuned dur-
ing learning.

2.2.3 Combining moment and propagation embeddings to represent

genes in a network

Here, we propose a combination of the two concepts introduced
above, and call the resulting node embedding a moment propagation
embedding, short MoPro embedding. It corresponds to a compos-
ition of the moment embeddings gk and the propagation embedding
qt above, and can be written as:

ct;kðvÞ ¼ ðqt�gkÞðvÞ: (8)

This function first creates the moment embedding from the fea-
ture vector xv of a vertex v, and continues to propagate this repre-
sentation of the local neighborhoods through the network. As the
combination of both functions, it maps the original feature represen-
tations of the vertices to a higher dimensional space as follows:
ct;k : V !Rð1þtÞð1þ4kÞ�d.

2.2.4 Extension to networks with weighted edges

If a non-binary weighting function x exists, i.e. the edges in the net-
work are weighted and weights can for instance represent confi-
dence scores, we can incorporate this layer of information into our
approach: for every edge in the network, the value of the weighting
function is non-zero, that is 8eðv; uÞ 2 E : xðv; uÞ 2 ð0; 1�, with 1
indicating the highest confidence. These weights can be used to dis-
tribute importance of neighbors in a local neighborhood by rescaling
the node-features in the moment embedding. This rescaling is done
for each feature i separately, such that the values of features i in the
k-hop neighborhood of node v become

Xk;weight
v:i ¼ ff ðxu:i;xðv; uÞÞ jxu 2 N k

v ; g (9)

with a problem-specific weighting-function f ð�; �Þ. For k-hop neigh-
bors u of v with k>1 the weight xðu; vÞ is zero by definition.

(a) (b)

(c)

Fig. 1. Illustration of moment propagation embeddings for node feature i. (a)

Computation of moment embedding gk
i ðvÞ for vertex v and k¼ 2. Blue nodes indi-

cate the one-hop, orange nodes the two-hop neighborhood. Moments of the distri-

butions P1
v:i and P2

v:i that describe the values of feature i in the one- and two-hop

neighborhood of vertex v are computed and aggregated. (b) Computation of propa-

gation embedding: The node representation is updated by aggregating over all nodes

in its one-hop neighborhood. (c) Two paths q1 and q2 connect root vertex v with its

two-hop neighbor u
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Hence, we compute it in the following three-step process, and de-
note it as xkðu; vÞ: (i) First, we enumerate all paths of length k be-
tween v and u, denoted by the set Qk, and individual paths in Qk are
denoted as qjðv;uÞ (see Fig. 1c). (ii) Second, we compute the weight
of each path in Qk as the product of its k edge weights and (iii) third
we compute the weight xkðv;uÞ as a function on the set of path
weights, g : ½0;1�jQ

k j ! R. We treat this function gð�Þ as a hyper-
parameter, and use either gð�Þ ¼ maxð�Þ or gð�Þ ¼ meanð�Þ.

3 Results

3.1 Dataset description
In order to find novel cancer driver genes, we combine data from a The
Cancer Genome Atlas (TCGA) pan-cancer study of 9 423 tumor
exomes (comprising all 33 of TCGA projects; Bailey et al., 2018) with
the well-established InBio Map PPI network (Lage et al., 2007; Li
et al., 2017). The network constitutes our view of interactions between
genes on a protein level. The network has an average degree of 61.02
(6128.33), and the sizes of the k-hop neighborhoods are illustrated in
Figure 2a. We represent each node in the network with its �log10

transformed MutSig P-value (Lawrence et al., 2014). Those P-values
measure whether a gene shows significantly different mutational pat-
terns in tumor versus normal tissues. In total, we have access to P-val-
ues for 18 154 genes. As a pre-processing step, we remove all nodes
from the network that cannot be represented with a MutSig P-value, as
well as all isolated nodes. This results in a total of 11 449 genes that
are present in the InBio Map network, are connected to at least one
other node and have been tested with the MutSig tool. Those constitute
our candidates for network-based prediction of cancer driver genes.

Class labels. In general, supervised machine learning requires access
to labeled data to train a classifier. To obtain labels for the genes,
we use the CGC data from the COSMIC database (Sondka et al.,
2018). We downloaded a list of 723 genes that have been causally
implicated in cancer, and use this set as our ground truth. Genes in
the CGC are categorized into Tiers 1 and 2, where genes in Tier 1
show a documented activity relevant to cancer, and genes in Tier 2
show strong indications to play a role in cancer. For our analysis we
treat both tiers equally. We overlap the set of 723 genes with our
network, giving a total of 635 cancer genes. This leads to a dataset,
in which ‘positive’ samples make up <6.0% of our dataset. We refer
to the remaining genes as unlabeled genes, and we are interested in
finding new cancer genes among them.

Using the CGC genes, we observe a knowledge-bias in the InBio
Map PPI network (see Fig. 2b), that is cancer genes tend to have
higher degrees in the network. We furthermore observe an increased
correlation between degree and MutSig P-values for cancer genes
(Pearson correlation: 0.17) compared with unlabeled genes (Pearson
correlation: 0.10), as can be seen in Figure 2c and d. Although this
indicates that MutSig can identify the highly mutated cancer genes,
there exist many well-established cancer genes whose mutation rates
lie within the background distribution (i.e. their MutSig P-values are

undistinguishable between cancer genes and unlabeled genes). This
poses three challenges that have to be addressed: (i) we do not have
a high-quality negative class, i.e. in general any gene not classified as
a cancer gene might potentially be a cancer driver, (ii) the dataset is
imbalanced, a fact that requires attention during supervised classifi-
cation and (iii) the dataset is affected by knowledge contamination.
We address challenges (i) and (ii) with an elaborate and unbiased
cross-validation procedure to train and test a classifier, as well as to
predict cancer driver genes from the unlabeled genes. The third chal-
lenge is addressed by using the moments in the MoPro embeddings.
Although we observe that moments such as skewness and kurtosis
exhibit positive correlations with the node-degree, this is the case for
both, cancer genes and unlabeled genes (see Supplementary Fig. S1).

3.2 Experimental setup
3.2.1 Cross-validation for one-class, imbalanced learning

To address the above mentioned challenges imposed by the class imbal-
ance and the lack of a negative class, we developed a cross-validation
procedure that is based on the repeated undersampling of the majority
class. The cross-validation procedure is illustrated in Figure 3, and a
pseudocode can be found in the Supplementary Algorithm S1. The
dataset can be represented as a matrix D 2 R11 449�d, where d is the
number of node features (Fig. 3a). The cross-validation procedure con-
sists of three main steps:

Step 1: Data splits. We split the dataset D into two disjoint datasets,
Dl and Du (Fig. 3b), where Dl consists of all genes in the positive
class, and a random subsample of the unlabeled genes. We under-
sample the majority class such that 10% of samples in Dl are cancer
genes. For the sake of training a classifier, we assign the unlabeled
samples in Dl to the negative class, and assume this to be the ground
truth for the current split. This dataset will be used in the second
step to train and evaluate a classifier. The genes in Du remain un-
labeled, and we use the classifier trained on Dl to predict their can-
cer status.

Step 2: Training and evaluation of the classifier. Next, the dataset Dl

is split into a cross-validation (80% of data) and a hold-out test set
(20% of data; Fig. 3c). On the cross-validation set, we do a 5-fold
stratified cross-validation to find the best hyperparameters of the
classifier C, resulting in C0. We retrain the classifier on the complete
cross-validation set, and evaluate the predictive performance of C0
on the hold-out test set. Importantly, the cross-validation and hold-
out test sets are disjoint. This implies that samples in the hold-out
test set have never been seen during training, nor were they used to
choose the best hyperparameters of the classifier. This set is solely
used to evaluate the ability of the classifier to generalize to unseen
samples. The strict separation of the cross-validation and the hold-
out test set is necessary to avoid an inflation of the evaluation met-
rics. Furthermore, each classifier was run and evaluated on the test
data only once.

(a) (b) (c) (d )

Fig. 2. Dataset description: (a) the distribution of neighborhood sizes, for neighborhoods defined as in Equation (1), for k ¼ 1; 2; 3. (b) The distribution of the node degree,

shown for 635 cancer genes and 10 816 unlabeled genes. (c) The distribution of the MutSig P-values, in cancer genes and unlabeled genes. (d) The correlation between the de-

gree and the MutSig P-values for cancer genes and for unlabeled genes
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Step 3: Prediction.. Last, we apply the classifier C0 from the previous
step to predict the cancer status of genes in the unlabeled dataset Du

(Fig. 3d).
This cross-validation procedure learns to distinguish cancer

genes from a random split of the unlabeled genes. However, this is a
potentially incorrect assumption, since unlabeled genes in the set Dl

might be yet-to-discover cancer genes. For this reason, we repeat the
complete cross-validation procedure for r different random splits of
the dataset into a labeled subset Dl and a unlabeled subset Du,
resulting in a set of classifiers E ¼ fC01; ::; C0rg. Each Dl is divided into
an 80% cross-validation dataset and a 20% test dataset. The cross-
validation dataset is used for hyperparameter optimization of the
classifiers and the test dataset is used for evaluation in terms of area
under the precision recall curve (AUPRC), precision, recall and F1-
score. C0i is the best classifier on the ith random split of the data,
determined on the cross-validation dataset. For each C0i 2 E, where
i ¼ 1; ::; r, we compute the performance metrics (AUPRC, precision,
recall, F1-score) on the test set of the ith split, and report the mean
and standard deviation of the metrics across all r classifiers in the set
E as the final result.

In order to obtain comparable results for different classification
algorithms, we ensure that each algorithm is trained and evaluated
on the same r splits of the data. We determine the total number of
splits r based on the minimum number of predictions we want to ob-
tain for every gene without a cancer label in the dataset. We set this
value to five, resulting in r¼11 data splits, and evaluate the effect of
varying r in terms of the average AUPRC on the test sets in an ex-
periment (see Section 3.3.3 and Fig. 4b).

Since this splitting of the data is random, the underlying data dis-
tribution of the negative class varies from split to split, and the clas-
sifier optimized on each split learns the data modalities of the
negative class in the current split. Every gene is predicted with each
classifier in our set of classifiers (excluding the ones for which it was
in the Dl set used for training), and might be classified as a cancer
gene by some of the classifiers, but not by others. This can be inter-
preted as the fact that a gene might be more similar to a cancer gene
in some aspects, but more similar to a non-cancer gene in others.
Eventually, a gene is classified as a cancer gene according to the ma-
jority vote across all classifiers (for which it was not in the training
data). In the case of ties, we resort to the conservative prediction of
‘no cancer gene’. Importantly, as there exist no known labels for
those genes, we analyze them qualitatively.

3.2.2 Classification

We represent each node in the network by the MoPro embeddings
computed from the log-transformed MutSig P-values, as described
in Section 2.2.3. We apply four different state-of-the-art classifica-
tion algorithms to predict the binary class labels in the cross-
validation procedure described above, using python’s sklearn

module: logistic regression, random forests, support vector machines
(SVMs) and gradient boosting. For every classifier, we optimize
across a grid of standard hyperparameters, as well as the following
data-specific hyperparameters: (i) whether or not to include a scaling
step in the classification pipeline (SCALE), (ii) whether to use edge
weights to generate node embeddings (WEIGHT), (iii) how to repre-
sent weights between two nodes in a k-hop neighborhoods with
k>1 (PATH; see Section 2.2.4), as well as (iv) the number of propa-
gation steps t and (v) the number of k-hops to generate moment
embeddings from, where k 2 f1; 2g, t 2 ½1; . . . ; 6�. We restrict the
value of k to a maximum of 2, as we observe that three-hop neigh-
borhoods in the InBio Map network already span major parts of the
network (see Fig. 2a). In order to weight the contribution of node
features in local neighborhoods during the generation of moment
embeddings (function f ð�; �Þ in Equation 9), we use a simple multipli-
cation between the node features and the edge weights, resulting in a
lowering of the contribution of the �log10 transformed P-values for
edges that exhibit confidences below 1.0.

In order to evaluate the predictive performance of each classifier,
we use the AUPRC, as well as precision, recall and the F1-score. As
described in the previous Section, to evaluate the performance of a
set of classifiers E resulting from the cross-validation procedure,
those metrics correspond to the average across the classifiers in E.
We furthermore report the number of predicted genes that are novel,
i.e. those that are not contained in the COSMIC CGC gene set. We
would like to note that, although the area under the ROC curve

(a ) (b ) (c )

(d )

Fig. 3. (a) The dataset consists of 11 449 genes, each one represented by a set of features. 635 of those genes are classified as cancer genes (Sondka et al., 2018), highlighted in

yellow. The remaining 10 814 genes are unlabeled (green). Cross-validation scheme on one data split, resulting in one best classifier C0. (b) The unlabeled genes are sub-sampled

at random and combined with the cancer genes, giving rise to the labeled dataset Dl. The unlabeled genes in Dl are assigned a negative class label. The remaining unlabeled

genes make up the set Du. Those are the genes for which the cancer status will be predicted in the current split. (c) The Dl dataset is split, and 80% of the data are used to find

the best hyperparameters of the classifier via 5-fold CV, resulting in the classifier C0. The remaining 20% are used as test set for evaluation of the classifier C0. (d) The classifier

C0 that has been trained on the cross-validation set in Dl is used to predict the cancer status of genes in Du

(a)

(b)

Fig. 4. Evaluation of a set of logistic regression classifiers (hyperparameters as in

Table 2). (a) AUPRC when varying the number of random splits r, and therefore the

number of classifiers in the set E. (b) Evaluation metrics as functions of the training

set size
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(AUROC) is a common metric to evaluate binary classifiers, its in-
terpretation is difficult in our setting. Due to the high class imbal-
ance and our primary interest in detecting members of the minority
class (i.e. the cancer genes), measuring precision and recall on the
minority class is a better suited metric for our task. The AUROC
values can be found in the Supplementary Tables S1 and S2.

3.3 Classification of cancer genes
3.3.1 Baseline methods

We compare our approach against univariate baselines, that is we
determine the cancer driver status of a gene based on (i) its degree,
(ii) its MutSig P-value and (iii) its NetSig P-value. Those results are
listed in Table 1. For all node features, we compare a ranking of the
genes by the respective feature (ranking) and a prediction with a set
of logistic regressors (LogReg), generated with the cross-validation
procedure described in Section 3.2.1. When ranking the genes based
on features, we report precision and recall at the threshold that gave
the best F1-score. For the MutSig and NetSig P-values, we also
evaluate predictive performance after Benjamini–Hochberg (BH)
correction at a false discovery rate of 10%. Note that since there is
only one classification result for the ranking and Benjamini–
Hochberg procedure, there are no standard deviations reported in
the table. Furthermore, in both cases, the number of novel genes
does not correspond to a majority vote, but is based on a single pre-
diction, using the prediction threshold that resulted in the highest
F1-score. We also apply hierarchical HotNet (Reyna et al., 2018), a
state-of-the-art network propagation method for the detection of
altered subnetworks in cancer, to the MutSig P-values (after �log10

transformation). We chose the score permutation scheme to obtain a
measure of significance (P¼0.01) and report all genes in subnet-
works of sizes > 1 as positives. For all methods we observe that
using the set of classifiers improves predictive performance with re-
spect to the AUPRC. Furthermore, we observe that the degree of a
gene in the network reaches AUROC values of up to 70% (see
Supplementary Table S1a), hinting toward the problem of

knowledge bias in biological networks. That is, the degree operates
as a confounder in those networks.

3.3.2 Cancer gene classification with MoPro embeddings

We generate MoPro embeddings from the �log10 transformed
MutSig P-values, and use these embeddings as input to the classi-
fiers. The results are listed in Table 2. We evaluate the four classi-
fiers on a grid of hyperparameters, and list the best values of the
ones specific to our proposed approach (see Section 3.2.2) in the
table. We observe a similar performance of all classifiers with re-
spect to AUPRC, with a minor exception for the random forest clas-
sifier. The classification using MoPro embeddings combined with
the cross-validation procedure to handle imbalanced classes clearly
outperforms the baselines. The baseline with the best AUPRC is the
logistic regression classification using MutSig P-values
(AUPRC¼31.2%). With the MoPro embeddings, AUPRC values of
up to 43.7% are achieved with the gradient boosting classifier
(closely followed by logistic regression and SVMs). A similar trend
can be observed for AUROC scores (see Supplementary Table S1).

For all analyses, we fixed the recall at 23.5%, that is the recall
achieved by ranking the NetSig P-values. We observe that with
MoPro embeddings, we obtain an up to three-fold improvement of
precision at that same recall value compared with the NetSig ap-
proach (ranked NetSig P-values: 21.9%, gradient boosting 63.6%).
When contrasting the precision of MoPro embeddings with the one
of the best baseline, that is logistic regression using the MutSig P-
value, we observe an improvement of �8%.

We optimize the data-specific hyperparameters, and find that for
all classifiers, using at least three propagation steps enables best clas-
sification. All methods but random forests performed best when
deriving moments from the k¼2-hop neighborhoods. Although ran-
dom forests and gradient boosting achieve better classification per-
formance when using weighted neighborhood distributions, this was
not the case in logistic regression and SVMs. There seems to be no
clear winner between the generation of weights in k-hop

Table 1. Results of cancer gene classification for the baselines

Feature Method AUPRC Precision Recall F1 No. of novel

Degree Ranking 0.096 0.105 0.436 0.169 2368

Degree LogReg 0.199 (0.007) 0.243 (0.012) 0.236 (0.000) 0.239 (0.006) 905

MutSig Ranking 0.248 0.474 0.202 0.283 142

MutSig LogReg 0.312 (0.007) 0.552 (0.060) 0.236 (0.000) 0.330 (0.011) 243

MutSig BH 0.248 0.490 0.191 0.274 126

MutSig Hier. HotNet — 0.137 0.111 0.123 444

NetSig Ranking 0.158 0.219 0.235 0.226 532

NetSig LogReg 0.275 (0.012) 0.278 (0.019) 0.228 (0.000) 0.250 (0.008) 704

NetSig BH 0.158 0.263 0.169 0.205 300

Note: The first column indicates the feature that was used to represent each gene during classification, the second column indicates the method that was used

for classification. In case of LogReg, we used the cross-validation procedure described in Section 3.2.1 and fixed the recall at 23.5%. AUPRC is the area under the

precision recall curve, the method with the highest AUPRC is printed in bold. The last column indicates the number of de novo cancer genes, i.e. those genes that

are not contained in the set of cancer genes.

Table 2. Results of cancer gene classification for the moment propagation embeddings

Method Scale Weight Path t k AUPRC Precision Recall F1 No. of novel

LogReg True — – 3 2 0.434 (0.014) 0.572 (0.046) 0.236 (0.000) 0.334 (0.009) 202

SVM False — – 6 2 0.431 (0.012) 0.584 (0.058) 0.236 (0.000) 0.336 (0.010) 198

RandFor True standard Mean 3 1 0.396 (0.021) 0.560 (0.057) 0.234 (0.004) 0.330 (0.011) 193

GradBoost True standard Max 3 2 0.437 (0.020) 0.636 (0.088) 0.236 (0.000) 0.343 (0.012) 150

Note: Classification results for different classifiers using the proposed moment propagation embeddings and the described cross-validation procedure. The

Columns 2–6 indicate the hyperparameters that gave the best classification performance for each set of classifiers. t and k are the hyperparameters of the moment

propagation embeddings, namely the number of propagation steps and the neighborhood degree up to which moments are computed. AUPRC is the area under

the precision recall curve, the method with the highest AUPRC is printed in bold. The last column indicates the number of de novo cancer genes, i.e. those genes

that are not contained in the set of cancer genes.
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neighborhoods when using the mean or the maximum aggregation
(Section 2.2.4).

3.3.3 Dependence of results on cross-validation parameters

The results in Table 2 are produced with r¼11 splits of the data
into Dl and Du (Section 3.2.1). We evaluate the performance of clas-
sification with MoPro embeddings for values of r in the range [5,
500] while keeping all data-specific hyperparameters (as described
in Section 3.2.2) fixed (using logistic regression). We observe that
the classification performance is not affected by changes in the par-
ameter r (see Fig. 4a). Note that we lose �2% in AUPRC due to fix-
ing the data hyperparameters.

We furthermore evaluate how the size of the training set affects
the classification performance. In our proposed cross-validation
scheme, the training set size is fixed due to the 5-fold cross-
validation, and contains 4064 genes (the cross-validation set
contains 5080 genes, such that 4064 genes are used in a 5-fold cross-
validation to train the classifier). We conducted an experiment
where this number is reduced, ranging between 10 and 4000 sam-
ples. We observe a steep increase in performance with an increasing
training set size up to 1000 training samples (see Fig. 4b), and a sat-
uration when using more than 1000 samples. This indicates, that at
least 1000 samples are required to represent the data distribution
during classification.

3.3.4 Ablation study

We conduct an ablation study to understand how the individual
parts in the moment propagation embedding contribute to the
improved performance. The results can be found in Table 3. We
evaluate two different types of experiments: (i) we only use the node
feature (i.e. the �log10 transformed MutSig P-value), and propagate
it through the network with the propagation embedding qtð�Þ
described in Section 2.2.2. This representation of the node features
is used to train a set of logistic regression classifiers. The results of
this analysis are listed in the row with label ‘propagation only’. (ii)
We represent each node with the moment embedding gkð�Þ; k ¼ 2
described in Section 2.2.1, without propagating the resulting repre-
sentation through the network. The results of this approach are
listed in the row with label ‘moments only’. We observe that remov-
ing the moment embedding results in a severe drop in performance
of �8%, while keeping moments but not propagating them leads to
a less severe reduction (�2.8%). This observation indicates that the
main improvement of performance compared with the baselines is
due to the description of a node by means of the distribution of node
features in its neighborhood, motivating the development of meth-
ods that improve the representation of local neighborhoods.

3.4 Evaluation of predicted cancer driver genes
To generate a candidate gene list, we created a consensus set of all
genes as follows: for each of the four classification algorithms (logis-
tic regression, SVM, random forest, gradient boosting), we took the
intersection of genes that were classified as ‘novel’ (see Table 2).
This means that a gene in the consensus set has (i) not been classified
as a cancer driver gene in the CGC dataset, and (ii) all four sets of
classifiers identified the gene as a cancer driver (as described in

Section 3.2.1). This led to 50 candidate genes, 31 of which were sig-
nificant in the MutSig data (P ¼ 8:04 � 10�42, hypergeometric test),
10 in the NetSig data (P ¼ 1:07 � 10�6, hypergeometric test) and 12
with hierarchical HotNet (P ¼ 2:04 � 10�7, hypergeometric test),
where P-values measure whether the set of 50 consensus genes is sig-
nificantly enriched with MutSig, NetSig and hierarchical HotNet
hits, respectively. By removing all genes from the consensus set that
were detected with at least one other method, 14 novel genes
remained. For those, we performed a literature review to estimate
the evidence for links to cancer.

In brief, four genes have a direct link to tumorigenesis in human.
The transcription factor GATA4 is a known tumor suppressor in
Glioblastoma Multiforme (Agnihotri et al., 2011). . In breast cancer
patients, ID2 is upregulated in brain metastasis and high expression
is linked to an increased risk of developing relapse (Kijewska et al.,
2019). Last, FOS exhibits recurrent rearrangements Osteoblastoma
(Fittall et al., 2018).

Five genes can be strongly linked to tumor relevant behavior and
pathways. ACVR1B (also known as ALK4) is linked to tumorigen-
esis through its interaction with activin-A (Kalli et al., 2019; Rautela
et al., 2019). CASP10 inhibition leads to reduced apoptosis, while
loss-of-function of RAP1A causes a reversion to a non-malignant
phenotype in a model of invasive carcinoma (Stammer et al., 2017).
MYLK is involved in proliferation and the migration of cancers of
the breast, prostate and colon (Avizienyte et al., 2005; Cui et al.,
2010; Zhou et al., 2008). CSNK1A1, a member of the CK1 kinase
family, is a regulator of the autophagic pathway in RAS-driven can-
cers, and knock-out experiments lead to cell death in Multiple mye-
loma (Carrino et al., 2019; Cheong et al., 2015).

For the remaining six genes, five (CASP1, CASP14, RBL1,
HNF4A and RALA) had weaker links (e.g. expression linked or
pathway membership), but no clear experimental evidence
(Gouravani et al., 2020; Krajewska, 2005; Schade et al., 2019;
Seibold et al., 2019; Wang et al., 2020).

Only for one gene (DLGAP2) we could not find any evidence for
a link to cancer.

4 Discussion and conclusions

In this article, we proposed a novel approach for the identification
of cancer driver genes by integrating MutSig summary statistics
(Lawrence et al., 2014) with PPI networks (Lage et al., 2007; Li
et al., 2017). In stark contrast to state-of-the-art approaches that set
out to solve this problem with unsupervised processes, we developed
an innovative node embedding procedure (MoPro embeddings)
to enable supervised classification of cancer driver genes.
Reformulating the problem of cancer-gene prediction in a supervised
fashion enables learning from what we already know: we include
knowledge on the data distributions of well-established cancer
driver genes and learn from these distributions to improve the pre-
diction task. We do so by combining two concepts: (i) the represen-
tation of a node based on the distribution of node features in its k-
hop neighborhood, followed by (ii) a network propagation. The
neighborhood distributions in (i) are described concisely by their
first four moments, which constitutes a computationally efficient
summary, and addresses the knowledge contamination that often
confounds analyses of biological networks.

We show that our approach outperforms baselines with respect
to AUPRC by a margin of more than 10%, and that results are sta-
ble with respect to the hyperparameters of the method. Interestingly,
we find that the main improvement in predictive performance is pre-
sumably caused by the representation of the distributions of node
features in a gene’s neighborhood, rather than the network propaga-
tion. This finding paves the way for further research: while the pro-
posed representation of the distributions by means of their moments
is straightforward and computationally efficient, another option is
to exploit principles of optimal transport (Villani, 2008) to compare
two nodes based on the distributions of features in their neighbor-
hoods. Togninalli et al. (2019) developed a kernel based on
Wasserstein distances between distributions for graph classification,
and this idea can be readily extended to node classification. Another

Table 3. Results of the ablation study for the set of logistic regres-

sion classifiers

Setting Method AUPRC

Baseline LogReg 0.434 (0.014)

Propagation only LogReg 0.348 (0.010)

Moments only LogReg 0.406 (0.011)

Note: In propagation only, the node feature is propagated, but no moment

embedding is computed. In moments only, moments are computed, but no

propagation embedding is computed. The first row repeats the baseline results

(moment propagation embeddings) for comparability reasons.
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possible route for future research is to build models that combine
both, node embeddings and classification, and to train them end-to-
end, as is done with graph convolutional networks (e.g. Duvenaud
et al., 2015; Hamilton et al., 2017; Kipf and Welling, 2016).

The set of high confidence consensus genes discovered with our
proposed approach contained both, genes that were previously iden-
tified as cancer drivers with methods such as MutSig, NetSig and
hierarchical HotNet, as well as novel genes that were not detected
with established methods. Those genes constitute promising targets
for future biological evaluation, and their detection showcases the
potential of combining network-derived features with supervised
machine learning techniques for the prediction of cancer driver
genes.
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