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Abstract

Understanding the mechanisms behind human mobility patterns is crucial to improve our

ability to optimize and predict traffic flows. Two representative mobility models, i.e., radiation

and gravity models, have been extensively compared to each other against various empiri-

cal data sets, while their fundamental relation is far from being fully understood. In order to

study such a relation, we first model the heterogeneous population landscape by generating

a fractal geometry of sites and then by assigning to each site a population independently

drawn from a power-law distribution. Then the radiation model on this population landscape,

which we call the radiation-on-landscape (RoL) model, is compared to the gravity model to

derive the distance exponent in the gravity model in terms of the properties of the population

landscape, which is confirmed by the numerical simulations. Consequently, we provide a

possible explanation for the origin of the distance exponent in terms of the properties of the

heterogeneous population landscape, enabling us to better understand mobility patterns

constrained by the travel distance.

Introduction

For understanding the mechanisms of human mobility [1–3], optimizing the mobility flows

[4], and predicting the dynamics on mobility networks [5–7], a variety of mobility models

have been extensively studied [8], such as gravity model [9], intervening opportunities model

[10], and radiation model [11]. Among these models, the gravity model has been widely used

for predicting the traffic flows between populated areas. The gravity model predicts the traffic

flow between an origin and a destination in terms of a simple formula, similar to Newton’s

gravity law, using populations of the origin and destination as well as the geographical distance

between them [9, 12, 13]. Precisely, the traffic from a site i to another site j is given by

Tij /
mimj

rgij
; ð1Þ

where mi (mj) denotes the population of site i (j) and rij is the distance between sites i and j.
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The value of distance exponent γ is found to range from 0.5 to 3 for several data sets [13]. This

original gravity model and its variants have been applied to human mobility and transporta-

tion [11–21] ranging from the individual level [22] to the international level [6], and other

datasets such as international trade [23], scientific collaboration [24], and mobile phone com-

munication [18, 25] to name a few, mostly due to their simplicity. The gravity models never-

theless have limitations such as the absence of universality regarding the exponent estimation

[11].

In order to overcome these limitations of the gravity models, Simini et al. [11] recently

suggested the radiation model, similar to the intervening opportunities model, that considers

the opportunity for travelers rather than the distance traveled. By employing the radiation

and absorption processes of particles, the radiation model describes the mobility patterns

without any parameter estimation. Precisely, the traffic from a site i to another site j is given

by

Tij ¼ Ti

mimj

ðmi þ sijÞðmi þ sij þmjÞ
; ð2Þ

where Ti is the outgoing traffic from the site i and sij is the total population, except for the

sites i and j, within a circle centered at the site i with radius rij [11]. The radiation model has

several advantages compared to the gravity model such as clear theoretical background, uni-

versality due to the absence of parameters to be estimated, and better prediction for long-dis-

tance travels, despite some unresolved issues like relatively poor predictability on short-

distance travels [17]. Moreover, the radiation model requires additional information on Ti,

in contrast to the gravity model. The variants of the radiation and intervening opportunities

models, e.g., a population-weighted opportunities model [26] and a radiation model with an

additional scaling exponent [27], have also been studied.

The radiation and gravity models have been compared with each other, often together

with other mobility models, in terms of the predictability of mobility patterns observed in

various empirical data sets [17, 18, 28]. Here we raise a question: Beyond the comparison,

can these radiation and gravity models be more fundamentally connected to each other? The

possibility of such connection was briefly argued by Simini et al. [11, 29] such that the sur-

rounding population sij was assumed to be proportional to r2
ij in the case with the uniformly

distributed population, and later to be proportional to rdfij with the fractal dimension df of the

population. These assumptions lead to the asymptotic values of γ = 4 and 2df, respectively.

However, the population landscape in reality can be characterized not only by a fractal geom-

etry of populated areas or sites but also by a power-law distribution of the population at each

site. In this paper, we first devise a population landscape model characterized both by a fractal

dimension df and by the power-law exponent β of the population distribution, and then

derive the distance exponent γ as a function of df and β from the radiation model on our pop-

ulation landscapes, which we call the radiation-on-landscape (RoL) model. We also show

that the distance exponent can vary according to the population sizes of origin and destina-

tion sites. These results shed light on the connection between gravity and radiation models.

More importantly, we unveil the origin of the distance exponent in the gravity model in

terms of the properties of the heterogeneous population landscape, provided that the radia-

tion model is correct. Therefore we can better understand the mechanism behind the traffic

flows constrained by the travel distance.

Gravity model explained by the radiation model on a population landscape
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Results

Modeling heterogeneous population landscapes

As for the properties of heterogeneous population landscapes, we consider the fractal geometry

of cities and the power-law distribution of their populations, both of which are well-known

characteristics of human settlement. On the one hand, the fractal geometry suggested by Man-

delbrot [30] has been applied to the landscapes of human settlements in several states of the

United States of America [31] and over the world [32]: The fractal dimension in those datasets

is found to range from 1.4 to 1.9. The fractality has also been studied regarding the inner struc-

tures of cities [33–35] and their growth patterns [36–39]. On the other hand, the power-law

distribution of urban populations was presented in the classic paper by Zipf [9] as well as in a

number of recent studies [40–44]. The power-law exponent of the population distribution of

cities is found to have the value ranging from 1.7 to 3 [9, 40, 42, 45]. Despite the ongoing

debate on whether populations are characterized by a power-law or a log-normal distribution

[43, 46, 47], the power-law distribution would be still a reasonable assumption for model

studies.

For modeling the heterogeneous population landscape, we first generate a set of sites in a

two-dimensional space with a fractal dimension df. Then we assign to each site i the population

mi independently drawn from P(m) *m−β with an exponent β, which will be called the popu-

lation exponent. Note that the geometry of the sites can be implemented irrespective of the

functional form of P(m). In our work, we focus on the case in which the location and popula-

tion of each site are fully uncorrelated with each other.

In order to generate a fractal geometry of sites, we employ the Soneira-Peebles model [48],

originally developed for simulating the self-similar galaxy distribution. The model on the two-

dimensional space iteratively locates sites within each circle centered at the site in the previous

layer whose radius is decreasing as the layer deepens, see Fig 1(a). Precisely, we consider a cir-

cle centered at the origin with radius R. Within this circle, η> 1 sites are randomly placed in

the first layer and each of these sites is assigned a circle with radius R/λ, with λ> 1 denoting

the contraction factor between layers. The same process is repeated until the depth of the layer

Fig 1. Modeling heterogeneous population landscapes. (a) Schematic diagram of the Soneira-Peebles model in the two-dimensional space

with η = 3. The number in each circular symbol denotes the layer which it belongs to. The sites at the first layer (blue) are randomly placed

within the circle with radius R. Similarly, the sites at the second layer (red) are randomly placed within the circles with radius R/λ. (b) An

example of the generated population landscape using the Soneira-Peebles model with η = 2, λ = 21/1.5 (i.e., df = 1.5), and L = 13, and a

population distribution P(m)*m−β with the population exponent β = 3. The height in the vertical axis represents the normalized value of the

population assigned to each site.

https://doi.org/10.1371/journal.pone.0218028.g001
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reaches L, eventually leaving us with ηL sites in the Lth layer. Here L denotes the number of lay-

ers. In our work, we consider the set of sites only in the last layer to find its fractal dimension

as [49]

df ¼
ln Z
lnl

: ð3Þ

Once the set of N = ηL sites with a fractal geometry is generated, we draw N independent values

from a population distribution P(m) to randomly assign them to the sites. As for the popula-

tion distribution we adopt the power-law distribution with the population exponent β> 1:

PðmÞ ¼ ðb � 1Þmb� 1

0
m� b for m � m0: ð4Þ

where m0 is the lower bound of the population. We set m0 = 100 to scale the population to a

realistic size. Fig 1(b) shows an example of the generated population landscape in the two-

dimensional space using η = 2, λ = 21/1.5 (i.e., df = 1.5), L = 13, and β = 3. The height in the ver-

tical axis indicates the population assigned to each site. Although there exist many other

modeling approaches for generating heterogeneous population landscapes [36, 39, 50, 51], we

have adopted the Soneira-Peebles model for the fractal geometry, mostly because the imple-

mentation of this model is efficient and scalable.

Connecting the radiation-on-landscape model to the gravity model

The connection between radiation and gravity models can be made by the observation that the

surrounding population sij of the radiation model in Eq (2) might be correlated with the dis-

tance rij of the gravity model in Eq (1). The relation between sij and rij can be analytically

derived in our population landscape model. Using this relation, the radiation model in our

population landscape, i.e., the radiation-on-landscape (RoL) model, can be described by Eq (2)

but in terms of rij. By expanding the RoL model with respect to rij, one can derive the distance

exponent γ as a function of the fractal dimension df and the population exponent β of popula-

tion landscapes.

Scaling behavior of surrounding population. We first remind that the surrounding pop-

ulation sij is defined as the total population, except for the sites i and j, within a circle centered

at the site i with radius rij. Let us denote by Λij the set of sites, except for i and j, within a circle

centered at the site i with radius rij, and the number of sites in Λij is denoted by nij. In a df-
dimensional space, one can write as

nij ¼ crdfij ; ð5Þ

with a coefficient c. The surrounding population is written as

sij ¼
X

l2Lij

ml ¼
Xnij

k¼1

mk: ð6Þ

where mk denotes the population of the kth populated site in Λij, such that

m1 � m2 � � � � � mnij
. As all mls are statistically independent of each other, one can relate

mk with its rank k using P(m) as [52]

k
nij
¼

Z 1

mk

PðmÞdm: ð7Þ

Gravity model explained by the radiation model on a population landscape
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From Eq (4) we have

mk ¼ m0

k
nij

 !� 1=ðb� 1Þ

; ð8Þ

where we note that β> 1, leading to

sij �
Z nij

1

mkdk ¼
b � 1

b � 2
m0ðnij � n1=ðb� 1Þ

ij Þ for b 6¼ 2;

m0nij ln nij for b ¼ 2:

8
><

>:
ð9Þ

Therefore one gets

sij �

b � 1

b � 2
m0ðcr

df
ij � c1=ðb� 1Þrdf =ðb� 1Þ

ij Þ for b 6¼ 2;

m0cr
df
ij lnðcr

df
ij Þ for b ¼ 2;

8
><

>:
ð10Þ

where we have used Eq (5). When β> 2, the term of rdfij dominates sij for large rij, while the

term of rdf =ðb� 1Þ

ij does for β< 2. Therefore, we obtain the scaling relation between sij and rij
for large rij:

sij � raij; ð11Þ

with

a ¼
df=ðb � 1Þ for b < 2;

df for b > 2:

(

ð12Þ

Expansion of the RoL model. The relation between sij and nij in Eq (9), together with the

relation between nij and rij in Eq (5), allows us to rewrite the radiation model in terms of rij,
i.e., the RoL model. From Eq (2) we define the travel probability as

pij �
Tij

Ti
¼

mimj

ðmi þ sijÞðmi þ sij þmjÞ
; ð13Þ

and the rescaled travel probability as

pij
mimj

¼
1

ðmi þ sijÞðmi þ sij þmjÞ
: ð14Þ

For the expansion, we consider three cases: (i) mi, mj� sij, (ii) mi� sij�mj, and (iii) mi�

sij.
(i) If mi, mj� sij, the rescaled travel probability is expanded as

pij
mimj

� s� 2

ij 1 � ð2mi þmjÞs
� 1

ij þO
m2

i

s2
ij

 !" #

: ð15Þ

Here we find the leading term of s� 2
ij � r� 2a

ij from Eq (11), leading to

pij
mimj

�
r� 2df =ðb� 1Þ

ij for b < 2;

r� 2df
ij for b > 2:

8
<

:
ð16Þ
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This scaling form of the distance dependence enables us to compare our RoL model to the

gravity model in Eq (1):

Tij

mimj
� r� gij : ð17Þ

By comparing the distance dependence of the RoL and gravity models, we obtain the distance

exponent γ as a function of the fractal dimension df and the population exponent β:

g ¼ 2a ¼
2df=ðb � 1Þ for b < 2;

2df for b > 2:

(

ð18Þ

Note that the result of γ = 2df has been suggested in a previous work [29].

(ii) If mi� sij�mj, one gets

pij
mimj

�
s� 1
ij

mj
1þ

m2
i

mj
� mi

 !

s� 1

ij �
sij
mj
þO

m2
i

s2
ij

þ
s2
ij

m2
j

 !" #

: ð19Þ

From the leading term of s� 1
ij � r� aij , we obtain

g ¼ a ¼
df=ðb � 1Þ for b < 2;

df for b > 2:

(

ð20Þ

(iii) Finally, if mi� sij, one has

pij
mimj

�
1

miðmi þmjÞ
1 �

2mi þmj

miðmi þmjÞ
sij þO

s2
ij

m2
i

� �" #

; ð21Þ

irrespective of mj. Since the leading term 1

miðmiþmjÞ
is independent of rij, we have

g ¼ 0: ð22Þ

However, the subleading terms are still functions of rij, leading to a weak distant-dependent

behavior of the rescaled travel probability.

From the above analysis, it is remarkable to find how the distance exponent γ can vary

according to the population sizes of origin and destination sites, i.e., mi and mj, respectively.

This strongly implies that a given data set does not necessarily have to be characterized by the

single value of the distance exponent. In reality, travelers from small towns may have different

reasons for selecting their destinations, hence different travel distances, than those from big

cities; the population size of the destination can also affect the traveling behaviors.

We provide an intuitive explanation for our results in Eqs (18) and (20). We remind that in

the gravity model, the distance exponent γ plays a role of spatial cost in determining the traffic

flows because the larger γ leads to the stronger dependence of the traffic flows on the distance.

Let us consider a job-seeking situation as in the original radiation model [11]. Since the num-

ber of cities is proportional to rdf , a higher-dimensional geometry with a larger df would pro-

vide more opportunities in the same range of r from the origin. It implies that a job-seeker can

find a job at a closer city and does not need to travel farther in a higher-df space, leading to a

larger γ. Dependency of γ on the heterogeneity of the population distribution can also be

understood with the job-seeking example. In the original radiation model, a place with the

larger population provides more opportunities, and a job-seeker finds a job at the closest city

providing the better opportunity than the origin. For example, let us consider a homogeneous

case with 10 medium-sized cities with two workplaces per city, which can be contrasted to a

Gravity model explained by the radiation model on a population landscape

PLOS ONE | https://doi.org/10.1371/journal.pone.0218028 June 6, 2019 6 / 13

https://doi.org/10.1371/journal.pone.0218028


heterogeneous case with one extremely large city with 11 workplaces and nine small cities with

one workplace per each. Then the job seekers in the homogeneous case tend to travel to any

other cities providing a little better opportunities, implying a smaller γ. In contrast, the job

seekers in the heterogeneous case tend to travel only to the extremely large city and do not

have to travel farther than that city, implying a larger γ. Since the smaller β implies a more het-

erogeneous population distribution, one can relate the smaller β to the larger γ, closing our

arguments for Eqs (18) and (20).

Numerical validation

We numerically test the analytic results using the heterogeneous population landscapes

described in Fig 1. We generate 100 different population landscapes with the same parameter

set of η = 2, λ = 21/1.5 (i.e., df = 1.5), R = 1, and L = 13, then assign to the sites the populations

drawn from P(m)/m−β in Eq (4). We also set the upper bound of mi as 107. Once the popula-

tion landscapes are generated, one can calculate for every pair of sites i and j the distance rij,
the number of sites for the surrounding population nij, the surrounding population sij, and the

travel probability pij using the following Eq (23) for the finite system. The travel probability for

the finite system [17] is given by

pij �
Tij

Ti
¼

1

1 �
mi
M

mimj

ðmi þ sijÞðmi þ sij þmjÞ
; ð23Þ

where M� ∑i mi denotes the total population in the system. As almost all mis are much smaller

than M, our analytic results remain valid.

Surrounding population. The results of (rij, nij) for all possible pairs of sites i and j
are depicted as a heat map in Fig 2(a), from which we estimate the fractal dimension

d̂f � 1:44� 0:07 and the coefficient ĉ � 7:55� 103 in Eq (5). Here the scaling behavior is

observed in the intermediate range of rij. The lower bound of this range is related to the small-

est length scale, i.e., R/λL� 10−2 for the parameter values used, while the upper bound is

related to the largest length scale, which is trivially R = 1.

Fig 2. Properties of the heterogeneous population landscapes. (a) Numerical validation of the scaling relation between nij and rij in Eq (5) for

the fractal geometry of sites generated using Soneira-Peebles model with η = 2, λ = 21/1.5 (i.e., df = 1.5), R = 1, and L = 13, averaged over 100

different landscapes. (b, c) Numerical validation of the analytic relation between sij and rij in Eq (9), together with Eq (5), on the same fractal

geometry of sites as in (a), but also with P(m) *m−β for the values of β = 1.5 (b) and of β = 3 (c), respectively. For each gray-colored heat map,

the darker color implies more pairs of sites around the point (rij, nij) or (rij, sij). The log-binned curve (red circles) of the heat map is compared

to the corresponding equation (light blue curve).

https://doi.org/10.1371/journal.pone.0218028.g002
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Similarly, from the results of (rij, sij) for all possible pairs of sites i and j, we get the heat map

for a few values of β, as shown in Fig 2(b) and 2(c). When log-binned, it gives the curve of sij as

a function of rij, which turns out to be comparable to the analytic result in Eq (9) when using

estimated values of d̂f and ĉ for both cases with β< 2 and β> 2. Accordingly, the scaling rela-

tion between α, df, and β in Eq (12) is also validated.

Rescaled travel probability. Next, we test the validity of the expanded forms of rescaled

travel probabilities in Eqs (15), (19), and (21), by comparing them to the numerical results on

the generated population landscapes using Eq (23). In particular, for studying the effects of ori-

gin and destination populations on the scaling behavior of the rescaled travel probability, the

sites are decomposed into 10 groups according to their population sizes, denoted by Gv for

v = 1, � � �, 10. Then all pairs of origin and destination sites can be decomposed into 100 groups

of pairs, such that Gvw = {(i, j)|i 2 Gv and j 2 Gw} for v, w = 1, � � �, 10. For each group of pairs,

say Gvw, we calculate the rescaled travel probabilities for all pairs in Gvw using pij in Eq (23) to

obtain a heat map for ðrij;
pij

mimj
Þ (not shown). By log-binning the heat map, one gets the curve of

the rescaled travel probability as a function of rij for each Gvw, as shown in Fig 3. We find that

these numerical results are in good agreement with the expanded forms of rescaled travel

probabilities for mi, mj� sij in Eq (15), for mi� sij�mj in Eq (19), and for mi� sij in Eq

(21), respectively. Accordingly, the scaling relations between γ and α, i.e., the scaling relations

between γ, df, and β in Eqs (18), (20), and (22) are also validated. This implies that the distance

exponent γ can vary according to the population sizes of origin and destination sites, even in

the same population landscape. Here we remark that a recent empirical study showed that the

origin and destination populations affect the travel patterns, whereas the distance exponent

has been assumed to be the same irrespective of the populations [53].

We remark that the number of pairs of highly populated sites is in general much lower than

those of other cases, so that the corresponding curves of the rescaled travel probability tend to

be more fluctuating or even apparently missing, e.g., in the case with the groups of large mi

and mj for β = 3 in Fig 3(d). Except for this case, we generically observe clear scaling behaviors

of the rescaled travel probability in the intermediate range of rij. In addition, the curves are

found to saturate to a constant for sufficiently small rij, whereas for sufficiently large rij, these

curves converge to eventually approach the lower bound of the rescaled travel probability, 1

M2.

These findings can be explained by Eq (23): On the one hand, for sufficiently small rij, sij
becomes negligible as there would be only few or even no sites in the surrounding area

between i and j. Thus, the rescaled travel probability becomes independent of rij as
pij

mimj
� 1

miðmiþmjÞ
. On the other hand, if rij becomes sufficiently large, sij approaches the total pop-

ulation M, irrespective of mi and mj. This is why all curves converge and eventually approach

the lower bound of the rescaled travel probability as
pij

mimj
� 1

M2.

Finally, we discuss the generic behavior of the distance exponent according to the popula-

tion sizes of origin and destination sites. We first point out that the scaling relations in Eqs

(18), (20), and (22) have been derived in the limiting cases of mi and mj. Therefore, these

results cannot be simply applied to the scaling behaviors observed for the cases with intermedi-

ate ranges of mi and mj. For these cases, one can estimate the apparent distance exponent γvw
based on the assumption of the simple scaling form as

pij
mimj

� r� gvwij ð24Þ

for each group of pairs Gvw. It is found that the value of γvw appears to be continuously varying

according to the origin population mi for the smallest and the largest groups of mj, as depicted

Gravity model explained by the radiation model on a population landscape
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in Fig 4. For example, when mj� sij, the value of γvw is� 2α for mi� sij, and then it continu-

ously decreases as mi increases. We also find the clear dependency of γvw on the destination

population mj for a given mi.

Conclusion

Although two representative mobility models, i.e., gravity and radiation models, have been

compared to each other against the empirical traffic data sets [17, 18, 28], the more fundamen-

tal connection between these models has been far from being fully understood. In order to

study such a connection in a realistic population landscape, we first model the heterogeneous

population landscape by assuming a fractal geometry of sites and the population at each site

following a power-law distribution. Then the radiation model on such population landscapes,

namely, the radiation-on-landscape (RoL) model, can be written in terms of the distance

between two sites. By expanding the rescaled travel probability in the RoL model and compar-

ing it to the gravity model, we derive the distance exponent in the gravity model as a function

Fig 3. Numerical validation of the expanded forms of the radiation-on-landscape (RoL) model. The expanded forms of the rescaled travel

probabilities in Eqs (15), (19), and (21) (solid curves) are tested against the numerical results using pij in Eq (23) calculated on the same

population landscapes used in Fig 2 (symbols), for the values of β = 1.5 (top) and 3 (bottom), respectively. For clearer visualization, we show

only the curves of the rescaled travel probability for the group of the smallest mjs (left) and those for the group of the largest mjs (right), but for

all groups of mi in each panel. The analytic results of the distance exponent γ in Eqs (18), (20), and (22) are also plotted by black dashed lines for

comparison.

https://doi.org/10.1371/journal.pone.0218028.g003
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of the fractal dimension and the population exponent of the population distribution. We also

find that this distance exponent can vary according to the population sizes of origin and desti-

nation sites. These analytic expectations are confirmed by numerical simulations on our popu-

lation landscapes. Consequently, we could connect two representative mobility models, and

more importantly, the origin of the distance exponent could be related to the properties of the

heterogeneous population landscape as well as the population sizes of origin and destination

sites. Therefore we can better understand the mechanism behind the traffic flows constrained

by the travel distance. In particular, the effects of the populations of origins and destinations

on the distance exponent can be empirically studied as a future work.

In our work we have assumed that the location and population of each site are fully uncor-

related with each other, while there might be some correlations between them in reality. One

can study the effects of spatial correlations, e.g., by the positively correlated populations at

close sites, on the traffic flows and their characteristic distance exponent. In addition, as for

the functional form of the population distribution, one can adopt other functional forms than

the power law, such as the log-normal distribution given by Gibrat’s law [46].

Finally, we remark that the mass term mi in many mobility models has been used to denote

the population at the site, while it can be interpreted as other sources of attraction of sites, e.g.,

each site’s traffic volume [17], economic indicator [23], communication volume [18], and cita-

tions [24]. Indeed, the diverse values of distance exponent have been observed according to

the modes of transportation, geographical regions, and granularities [13]. Considering our

above findings on the mass dependency of the traffic flows, it is of crucial importance to

empirically and theoretically relate various observables attributed to the site for better under-

standing of the human mobility.
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