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Abstract

The Coronaviridae family of viruses encompasses a group of pathogens with a zoonotic potential as observed from previous
outbreaks of the severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus.
Accordingly, it seems important to identify and document the coronaviruses in animal reservoirs, many of which are
uncharacterized and potentially missed by more standard diagnostic assays. A combination of sensitive deep sequencing
technology and computational algorithms is essential for virus surveillance, especially for characterizing novel- or distantly
related virus strains. Here, we explore the use of profile Hidden Markov Model-defined Pfam protein domains (Pfam
domains) encoded by new sequences as a Coronaviridae sequence classification tool. The encoded domains are used first in
a triage to identify potential Coronaviridae sequences and then processed using a Random Forest method to classify the
sequences to the Coronaviridae genus level. The application of this algorithm on Coronaviridae genomes assembled from
agnostic deep sequencing data from surveillance of bats and rats in Dong Thap province (Vietnam) identified thirty-four
Alphacoronavirus and eleven Betacoronavirus genomes. This collection of bat and rat coronaviruses genomes provided essen-
tial information on the local diversity of coronaviruses and substantially expanded the number of coronavirus full genomes
available from bat and rats and may facilitate further molecular studies on this group of viruses.
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1. Introduction

The Coronaviridae family comprises enveloped positive-sense sin-
gle-stranded RNA viruses of the order Nidovirales with a genome
of up to 32 kb in length. The family is divided into Coronavirinae

and Torovirinae sub-families, which are further divided into six
genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus,
Deltacoronavirus, Torovirus, and Bafinivirus. While viruses in the
genera Alphacoronaviruses and Betacoronaviruses infect mostly
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mammals, the Gammacoronavirus infect avian species and mem-
bers of the Deltacoronavirus genus have been found in both mam-
malian and avian hosts (de Groot 2012; Drexler, Corman, and
Drosten 2014).

Coronaviruses (CoVs) cause a range of respiratory, enteric,
and neurological diseases in human and animals. In human
CoV infections, the severe acute respiratory syndrome coronavi-
rus (SARS-CoV) and Middle East respiratory syndrome coronavi-
rus (MERS-CoV) cause severe respiratory tract disease with high
mortality rates, and there is strong evidence of zoonosis for
both viruses (Hu et al. 2015; Dudas et al. 2018; Leopardi et al.
2018). Given such zoonotic movement, detailed descriptions of
the Coronaviridae in broad animal reservoirs that may cross the
host barriers to cause diseases in humans are important; many
of these Coronaviridae strains in animal reservoirs could repre-
sent uncharacterized strains and be missed by conventional di-
agnostic assays.

Advances in nucleic acid sequencing technology (commonly
termed Next-Generation Sequencing, NGS) are providing large
sets of sequence data obtained from a variety of biological sam-
ples and allowing the characterization of both known and novel
virus strains. Algorithms that can accurately and rapidly detect
and classify low-frequency virus sequences amidst a high-
sequence background are useful. The desired features of these
classification algorithms are the ability to rapidly process large
number of sequences and to accurately identify more distantly
related sequences. Use of such tools in the field during outbreak
sequencing is common, thus methods that are stand-alone re-
quiring no internet connection are desirable.

All viruses encode a collection of proteins required to ensure
self-replication and persistence of the encoding virus. Enzymes
for genome mRNA production and genome replication, pro-
teases for protein maturation, proteins for genome encapsida-
tion, and proteins for undermining the host antiviral responses
can all be identified conserved protein motifs or domains.
Likely because of selective pressures, viral genomes are stream-
lined and the functional protein content encoded by viruses is
much higher than for a cellular organisms. Thus, describing a
viral genome by the collection of encoded protein domains is a
potentially useful classification method that we would like to
explore in more detail.

Profile Hidden Markov Models (HMMs) provide a probabilistic
framework for describing multiple sequence alignments that
can reveal position-specific patterns (Krogh, Mian, and Haussler
1994; Eddy 1996, 1998; Durbin et al. 1998; Sonnhammer et al.
1998). The Pfam protein families database (Finn et al. 2016) of
>16,000 protein domains is available (Pfam 31.0 at http://Pfam.
xfam.org/). Within the Pfam collection, each domain family is
defined by a manually selected and aligned set of protein
sequences, which is used to construct a profile HMM of the do-
main. The HMM domain concept and search algorithms for gen-
erating and detecting profile HMMs have gone through a
number of refinements and a current rapid implementation for
finding profile HMMs in novel sequences is HMMER3 (http://
hmmer.org/, Eddy 2011).

A number of strategies have been developed to use protein
domains for virus sequence classification. The Virus Pathogen
Resource (ViPR) site has a useful compilation of Pfam domains
found in specific virus families (https://www.viprbrc.org/brc/
home.spg? decorator¼vipr) however the catalog is currently
limited to fourteen virus families while the International
Committee on Taxonomy of Viruses (ICTV) currently recognizes
ninty-six virus families (Lefkowitz et al. 2018). The use of profile
Hidden Markov Models (HMMs) for virus classification and

discovery was recently reviewed (Reyes et al. 2017). The use of
an HMM structure as the basis for sequence classification has the
potential to identify more distant members of protein domain
family. Both Metavir (Roux et al. 2011) and VirSorter (Roux et al.
2015) make extensive use of protein domains as part of effective
virus classification algorithms. The implementation VirSorter is
primarily focused on identifying novel bacteriophage sequences.
MetLab (Norling et al. 2016) and vFAM (Skewes-Cox et al. 2014)
methods have demonstrated the utility of such a protein domain
classification approach. ClassyFlu (Van der Auwera et al. 2014)
builds influenza subtype specific profile HMM-defined protein
domains for the HA coding region and then uses this database of
HMMs to classify test influenza HA segments.

We describe here a strategy using Pfam protein domains as
the basis for identifying and classifying Coronaviridae genomic
sequences. We show that the method can be used for rapid
identification of Coronaviridae sequences in de novo assembled
contigs, although sensitivity requires longer, ideally genome-
length contigs. If sufficient sequence across the virus genome is
available, the method can provide virus classification to the ge-
nus level. We then employ this method to identify fourty-five
novel Coronaviridae genome sequences from random-primed
deep sequencing data from bats and rats sampled from Dong
Thap province of Vietnam.

2. Materials and methods
2.1 Study setting and design

Fecal pellets from Scotophilus kuhlii bats were collected from
roosts on bat guano farms in the Dong Thap province in south-
ern Vietnam, �150 km south west of Ho Chi Minh City as shown
in the map (Fig. 1). Rat fecal pellets from Rattus argentiventer
were collected from trapped rice-field rats or from rats pur-
chased in wet markets in Dong Thap (locations are indicated in
the map, Fig. 4A). Samples were stored at �80�C until processed
for NGS. Approvals for the study were obtained from the Oxford
Tropical Research Ethics Committee (Approval No. 15–12)
(Oxford, UK), the institutional ethical review board of Dong
Thap Provincial Hospital and the Sub-Department of Animal
Health, Dong Thap province (Dong Thap, Vietnam).

2.2 Sample processing, library preparation, and NGS

Total nucleic acid was extracted as previously described
(de Vries et al. 2012; Cotten et al. 2014). In brief, a volume of
110 ml of each sample was centrifuged for 10 min at 10,000� g.
Unprotected (non-encapsidated) DNA in the samples was de-
graded by addition of 20 U TURBO DNase (Ambion). Remaining
nucleic acid was subsequently extracted using the Boom
method (Boom et al. 1990). Reverse transcription was performed
using non-ribosomal random hexamers (Endoh et al. 2005), and
second strand DNA synthesis was performed using 5 U of
Klenow fragment (New England Biolabs) followed by phenol/
chloroform extraction and ethanol precipitation. Illumina li-
braries were prepared for each sample, the material was
sheared to 400–500 bp in length, separately indexed, and multi-
plexed at ninety-six samples per HiSeq 2500 run, generating
two to three million 250-nt paired-end reads per sample.

2.3 De novo assembly and identification of
Coronaviridae contigs

Raw sequencing reads were trimmed to remove residual se-
quencing adapters and trimmed from the 30 end to a median
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Phred score> 35 using QUASR (Watson et al. 2013). The quality
controlled reads were assembled into contigs using de novo as-
sembly with SPAdes 3.10 (Bankevich et al. 2012). Coverage was
estimated for contigs followed by additional filtering for mini-
mum contig size cutoff (300 nt). Final details on the genomes in-
cluding GenBank accession numbers, sample locations, and
collection dates can be found in Table 1. For most of the sam-
ples, complete or nearly complete genomes were obtained from
the original SPAdes assembly. However, in a subset of samples
(usually those with mixed infections or with too high-sequence
coverage), SPAdes yielded two or more subgenomic contigs that
were manually checked by consulting short reads and re-
assembled.

2.4 Phylogenetic analyses

Global coronavirus reference sequences sharing �80 per cent nt
similarity to the reported CoVs in this study were retrieved from
GenBank in addition to selected reference CoV sequences for
comparison. The coding regions of spike protein from all refer-
ence and the assembled Coronaviridae sequences were extracted
and aligned in MUSCLE (Edgar 2004), followed by manual check
in AliView (Larsson 2014). The best-fitted nucleotide substitu-
tion models were determined in IQ-TREE v1.5.2 using the
Akaike Information Criterion (Nguyen et al. 2015). Maximum

likelihood (ML) phylogenetic trees were inferred in IQ-TREE
employing GTRþ IþC4 model of substitution, bootstrapping for
1,000 pseudoreplicates. Bootstrap values of �70 per cent were
considered as statistically significant, and resulting trees were
visualized and edited in FigTree v1.4.3 (Rambaut 2016).

2.5 Protein domain database

Using the HMMER3 hmmsearch function (Eddy 2011) and the
Pfam collection of profile HMM protein domains, we examined
all available Coronaviridae full genome sequences from GenBank
(as of January 2018; N¼ 2,255). A set of seventy-nine Pfam
domains were found at least once in a Coronaviridae genome
and these domains formed the basis for the classification meth-
ods explored here. The seventy-nine Pfam domains used for
Coronaviridae classification and their frequencies in the set of
2,255 Coronaviridae genomes are listed in Table 2.

A Random Forest (RF) classification using the Scikit-learn
(Pedregosa et al. 2011) RandomForestClassifier module was per-
formed on the initial triage contigs using a full genome
Coronaviridae genera training set as follows. For all full genomes
in each of the six Coronaviridae genera, all six open reading
frames were translated and peptides� 100 amino acids in
length were collected. HMMER3 hmmsearch (Eddy 2011) was ap-
plied to the set of peptides, screening against the Coronaviridae

Figure 1. Location of the sampling sites. The right panel shows the map of Vietnam, the left inset shows the Dong Thap province (marked in blue and separated by dot-

ted lines with neighboring provinces within the Mekong Delta region of southern Vietnam). The Mekong Delta river branches and flooding areas are marked in green.

Names of communal regions within Dong Thap province are indicated. Locations of the guano farms where bats were samples are marked with red diamonds, and the

locations of rat sampling sites are marked in orange triangles.
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Pfam domains ever found in the Coronaviridae (see Table 2). For
domain hits with e-values< 0.01, the Pfam domain scores were
collected into an array organized by genera. An RF model using
these six genera sets was then trained and built from 1,000 ran-
dom trees.

Classification of novel query sequences was performed as
follows. For each query nucleotide sequence, all six open read-
ing frames were translated and peptides� 100 amino acids in

length were collected. HMMER3 hmmsearch (Eddy 2011) was ap-
plied to the set of peptides, screening against the database of
Coronaviridae Pfam domains and for domain hits with e-val-
ues< 0.01, the domain scores were collected into an array. An
initial triage was performed to retain only contigs with at least
one of the five Coronaviridae Triage Domains (CTDs, see below)
to yield the initial triage contigs. The RF model was then applied
on each query contig and the genus level probability was

Table 1. Genome metrics. Compilation of metrics for the new Coronaviridae sequences reported here. The table includes for each genome the
genome id and GenBank accession number, and the Coronaviridae genus as identified by the tool described in this article. Also included are the
host species, the sample collection date, and location data. Finally, the number of short reads in the sample mapping to the complete genome
using bowtie2–2.2.3 (Langmead et al. 2009) and the ‘–very-sensitive-local’ settings and the final genome length are reported.

Genome_ID GenBanka Corona_
genus

Host Host_species Farm_ID Collection_
date

District Total_qc_
reads(for)b

Mapped_
readsc

Genome_
length (nt)

16715_23 MH687934 Alpha Bat Scotophilus kuhlii 55 11-Jun-2014 Chau Thanh 2,336,433 57,097 28,864
16715_24 MH687935 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,957,491 55,684 29,152
16715_31 MH687936 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,419,725 18,696 28,828
16715_32 MH687937 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,830,496 60,643 28,297
16715_39_c1 MH687938 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,235,269 51,709 28,238
16715_39_c2 MH687939 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,235,269 11,042 28,307
16715_45 MH687940 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 2,544,491 12,463 28,170
16715_47_c1 MH687941 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,723,720 17,632 28,257
16715_47_c2 MH687942 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,723,720 16,651 28,321
16715_5 MH687943 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 2,556,708 32,056 28,272
16715_53 MH687944 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 3,260,590 6,251 28,400
16715_56 MH687945 Alpha Bat Scotophilus kuhlii 99 16-Sep-2014 Cao Lanh 2,596,084 32,895 28,481
16715_61 MH687946 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 2,910,089 3,464 28,173
16715_63 MH687947 Alpha Bat Scotophilus kuhlii 98 17-Jun-2014 Cao Lanh 2,619,814 124,453 29,462
16715_7 MH687948 Alpha Bat Scotophilus kuhlii 55 11-Jun-2014 Chau Thanh 2,304,297 59,108 28,340
16715_76 MH687949 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 2,618,662 36,601 28,232
16715_77 MH687950 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 2,703,803 7,848 28,303
16715_78 MH687951 Alpha Bat Scotophilus kuhlii 55 11-Jun-2014 Chau Thanh 2,540,982 81,202 29,118
16715_84 MH687952 Alpha Bat Scotophilus kuhlii 99 10-Jun-2014 Cao Lanh 2,334,464 5,629 27,225
16715_86 MH687953 Alpha Bat Scotophilus kuhlii 55 11-Jun-2014 Chau Thanh 2,643,553 79,660 28,747
16845_24 MH687954 Alpha Bat Scotophilus kuhlii 55 18-Sep-2014 Chau Thanh 2,794,660 4,334 28,333
16845_47 MH687955 Alpha Bat Scotophilus kuhlii 98 17-Sep-2014 Cao Lanh 2,250,435 5,380 28,437
16845_53 MH687956 Alpha Bat Scotophilus kuhlii 99 16-Sep-2014 Cao Lanh 2,589,540 183,763 28,562
16845_64 MH687957 Alpha Bat Scotophilus kuhlii 55 18-Sep-2014 Chau Thanh 3,114,858 4,264 28,173
16845_87 MH687958 Alpha Bat Scotophilus kuhlii 55 18-Sep-2014 Chau Thanh 2,453,660 6,514 28,054
17819_17 MH687959 Alpha Bat Scotophilus kuhlii 98 12-Nov-2014 Cao Lanh 2,555,417 27,177 28,706
17819_22 MH687960 Alpha Bat Scotophilus kuhlii 55 13-Nov-2014 Chau Thanh 2,546,117 2,306 27,491
17819_4 MH687961 Alpha Bat Scotophilus kuhlii 55 13-Nov-2014 Chau Thanh 2,740,662 5,386 28,380
17819_50 MH687962 Alpha Bat Scotophilus kuhlii 55 13-Nov-2014 Chau Thanh 2,392,592 3,800 28,053
20724_95 MH687963 Alpha Bat Scotophilus kuhlii 99 6-Feb-2015 Cao Lanh 7,568,967 11,331 28,169
20745_10 MH687964 Alpha Bat Scotophilus kuhlii 99 6-Feb-2015 Cao Lanh 1,043,879 6,913 28,210
20745_17 MH687965 Alpha Bat Scotophilus kuhlii 55 13-Feb-2015 Chau Thanh 1,862,525 36,558 28,199
20745_6 MH687966 Alpha Bat Scotophilus kuhlii 99 6-Feb-2015 Cao Lanh 9,273,648 36,639 28,628
20745_8 MH687967 Alpha Bat Scotophilus kuhlii 99 6-Feb-2015 Cao Lanh 12,697,144 4,021 28,038
16715_52 MH687968 Beta Rat Rattus argentiventer 63 14-Nov-2014 Cao Lanh 2,519,218 30,551 31,047
20724_33 MH687969 Beta Rat Rattus argentiventer 65 12-Nov-2014 Tam Nong 536,662 9,918 31,976
20724_34_c12 MH687970 Beta Rat Rattus argentiventer 65 12-Nov-2014 Tam Nong 740,717 8,579 31,038
20724_34_c13 MH687971 Beta Rat Rattus argentiventer 65 12-Nov-2014 Tam Nong 740,717 18,463 31,171
20724_38 MH687972 Beta Rat Rattus argentiventer 65 12-Nov-2014 Tam Nong 8,568,196 14,281 31,334
20724_39 MH687973 Beta Rat Rattus argentiventer 65 12-Nov-2014 Tam Nong 6,703,538 68,652 31,389
20724_43 MH687974 Beta Rat Rattus argentiventer 65 12-Nov-2014 Tam Nong 255,794 27,831 31,224
22054_56 MH687975 Beta Rat not available 62 9-Dec-2013 Cao Lanh 442,567 2,982 29,727
22084_1 MH687976 Beta Rat Rattus argentiventer 65 4-Feb-2015 Tam Nong 29,862,809 100,936 31,068
22084_10 MH687977 Beta Rat Rattus argentiventer 65 4-Feb-2015 Tam Nong 343,514 21,210 31,355
22084_6 MH687978 Beta Rat Rattus argentiventer 65 4-Feb-2015 Tam Nong 28,864,231 121,999 31,289

aGenBank accession number.
bTotal paired eads (after quality control).
cTotal read mapped to final genome.
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calculated as the mean predicted probabilities of 1,000 random
trees in the forest. A CSV table with the probabilities and a heat-
map of the same data are the output from the process.

To facilitate the use of this tool for virus discovery and classifica-
tion, the process of HMMER3 Pfam domain identification, the encod-
ing of the domain content into a matrix and the RF classification
against all available Coronaviridae genomes was incorporated into a
single, platform-independent Docker image (available for download
at https://hub.docker.com/r/matthewcotten/cotten_myphan_corona
virus_classification_tool/). The tool can be downloaded and installed
on any computing platform (Unix, Mac, Windows) and includes all
required dependencies. Further details on installation and running
the tool can be found at the Docker hub link.

2.6 Forty-one virus mock contig set

For testing the specificity and sensitivity of the classification
methods, a test set of random genome fragments from forty-one
virus families including two of each of the six Coronaviridae gen-
era was prepared. The set was derived from 492 full genomes (12
genomes from each of 40 virus families) plus 2 genomes from
each of the 6 Coronaviridae genera. For each genome, 300 random
fragments in the size range from 500 nt to full genome size were
prepared, combined resulting in a total of 111,577 fragments in-
cluding 3,316 Coronaviridae fragments.

Table 2. Pfam domains used for Coronaviridae classification. A com-
pilation of the Pfam domains used for classification of the
Coronaviridae sequences. All available full Coronaviridae genome
sequences in GenBank were retrieved using the query
‘txid11118[Organism] AND 25600[SLEN]:48000[SLEN] NOT patent’ to
yield a set of 2,255 sequences (3 January 2018). All open reading
frames encoding peptides> 100 amino acids in length were were
analyzed with the hmmer-3.1b2-hmmscan program (Eddy 2011) and
the complete Pfam A database (http://Pfam.xfam.org/, Finn et al.
2016). Domains with E-value< 0.01 were counted and the
domain frequencies in the set of 2,255 Coronaviridae genomes were
reported.

Pfam_ida Name Frequencyb Categoryc

pfam13086 AAA_11 3,712 CATD
pfam06460 NSP13 2,492 CATD
pfam13604 AAA_30 2,438 CTD
pfam01443 Viral_helicase1 2,427 CTD
pfam01661 Macro 2,390 CTD
pfam01600 Corona_S1 6,838 abundant
pfam01601 Corona_S2 5,446 abundant
pfam00937 Corona_nucleoca 4,993 abundant
pfam01635 Corona_M 3,794 abundant
pfam08715 Viral_protease 3,290 abundant
pfam06478 Corona_RPol_N 2,712 abundant
pfam09408 Spike_rec_bind 2,599 abundant
pfam06471 NSP11 2,466 abundant
pfam13087 AAA_12 2,434 abundant
pfam13538 UvrD_C_2 2,432 abundant
pfam05409 Peptidase_C30 2,406 abundant
pfam08717 nsp8 2,398 abundant
pfam08716 nsp7 2,396 abundant
pfam16348 Corona_NSP4_C 2,386 abundant
pfam09401 NSP10 2,384 abundant
pfam08710 nsp9 2,382 abundant
pfam13245 AAA_19 2,067 abundant
pfam00680 RdRP_1 1,868 abundant
pfam03053 Corona_NS3b 1,773 abundant
pfam16451 Spike_NTD 1,461 abundant
pfam16251 NAR 1,142 abundant
pfam11633 SUD-M 855 moderate
pfam03187 Corona_I 586 moderate
pfam03996 Hema_esterase 563 moderate
pfam02710 Hema_HEFG 554 moderate
pfam03262 Corona_6B_7B 534 moderate
pfam02723 NS3_envE 495 moderate
pfam03620 IBV_3C 474 moderate
pfam08779 SARS_X4 414 moderate
pfam11289 APA3_viroporin 390 moderate
pfam09399 SARS_lipid_bind 387 moderate
pfam11501 Nsp1 371 moderate
pfam12124 Nsp3_PL2pro 371 moderate
pfam12379 DUF3655 370 moderate
pfam12383 SARS_3b 363 moderate
pfam11963 DUF3477 340 moderate
pfam04753 Corona_NS2 322 moderate
pfam01831 Peptidase_C16 315 moderate
pfam05213 Corona_NS2A 276 moderate
pfam13563 2_5_RNA_ligase2 245 moderate
pfam10469 AKAP7_NLS 238 moderate
pfam16688 CNV-Replicase_N 224 moderate
pfam02398 Corona_7 176 moderate
pfam10943 DUF2632 92 moderate
pfam12093 Corona_NS8 78 moderate
pfam17072 Spike_torovirin 70 moderate

(continued)

Table 2. (Continued)

Pfam_ida Name Frequencyb Categoryc

pfam03905 Corona_NS4 51 moderate
pfam05528 Coronavirus_5 48 moderate
pfam07204 Orthoreo_P10 27 rare
pfam00035 dsrm 16 rare
pfam04694 Corona_3 14 rare
pfam11030 Nucleocapsid-N 12 rare
pfam00943 Alpha_E2_glycop 7 rare
pfam00270 DEAD 7 rare
pfam03622 IBV_3B 7 rare
pfam13238 AAA_18 5 rare
pfam12226 Astro_capsid_p 5 rare
pfam11395 DUF2873 5 rare
pfam00523 Fusion_gly 5 rare
pfam00485 PRK 5 rare
pfam07690 MFS_1 4 rare
pfam04582 Reo_sigmaC 4 rare
pfam01481 Arteri_nucleo 2 rare
pfam06336 Corona_5a 2 rare
pfam00517 GP41 2 rare
pfam08291 Peptidase_M15_3 2 rare
pfam00069 Pkinase 2 rare
pfam07714 Pkinase_Tyr 2 rare
pfam01815 Rop 2 rare
pfam00083 Sugar_tr 2 rare
pfam00704 Glyco_hydro_18 1 rare
pfam01358 PARP_regulatory 1 rare
pfam02123 RdRP_4 1 rare
pfam00429 TLV_coat 1 rare

aPfam domains from Pfam 31.0 at http://Pfam.xfam.org/
bThe frequency of the domain occurrence in a set of all Coronaviridae genome

sequences (2,255 entries) retrieved from GenBank on 3 January 2018.
cCATD, Coronaviridae Absolute Triage Domain; CTD, Coronaviridae Triage

Domain. See text for details. Abundant, moderate, and rare indicate the fre-

quency of the domain in all Coronaviridae genome sequences.
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3. Results

The Pfam domain content of all 2,255 available Coronaviridae
genomes was determined and a variety of distribution patterns
were observed, from domains whose frequency across all
Coronaviridae was >95 per cent, to rare domains present in only a
few known genomes. To illustrate this variety, two genomes
examples of Alphacoronavirus, Betacoronavirus, Gammacoronavirus,
Deltacoronavirus, Torovirus, and Bafinivirus were selected and all
domains encoded by the full genomes were identified and their
positions in each virus genome is marked by colored rectangles
indicating frequent, moderate, or rare occurrence (Fig. 2). The
domain content is both extensive and varied by genus and this
information might be used to identity and classify Coronaviridae
sequences.

A hierarchical-clustering of domain content of all genomes
in each genus showed three distribution patterns (Fig. 3).
Domains present in a high frequency in single genus (upper-
third of the cluster map), domains present at high frequency in
most or all genera (bottom-third of the cluster map), and
domains with low frequency in some genomes or genera (mid-
dle of the cluster map). In particular, five domains (AAA_30,
Macro, Viral_helicase1, AAA_11, NSP13) were found to be
encoded by genomes from all six Coronaviridae genera in >95 per
cent of the 2,255 Coronaviridae genomes examined. We define
these domains as Coronaviridae Triage Domains (CTDs). Of the
five CTDs, three were promiscuous (encoded in all Coronaviridae
genomes as well as in other virus families), while two domains
appeared specific for Coronaviridae (AAA_11 and NSP13, termed
Coronaviridae Absolute Triage Domains (CATD)) and were
encoded in all Coronaviridae genomes, but were not found in
genomes from forty other common virus families infecting ani-
mals (results not shown).

The utility of domain content for Coronaviridae classification
was first tested by developing a simple triage method to identify
potential Coronaviridae sequence contigs. Preliminary work
identified four triage conditions as useful for this purpose.
These triage conditions were CTD_any (the contig encodes at
least one of the five CTDs), CTD_all (the contig encodes all five
CTDs), CATD_any (the contig encodes at least one of the two
CATDs) CATD_all (the contig encodes both CATDs). The pres-
ence of these domains was combined with contig length cutoffs
of 500 nt, 3,000 nt, 10,000 nt, and 20,000 nt.

The performance of these triage conditions for identifying
coronavirus contigs was examined. Using a mock contig set de-
rived from forty-one virus families (see Section 2), the Pfam do-
main content of each fragment was determined using HMMER3
and used to sort the fragments into Coronaviridae groups based
on fragment length plus CTD and CATD domain content. The
accuracy of the classification was assessed in comparison to the
classification of the original genome annotation in GenBank
(Fig. 4). We ran each classification process five times to control
for the random selection of features.

The analyses were run with four size cutoff classes and sen-
sitivity/specificity values for correct classification were color
and shape coded for Triage method (�500 nt panel A, �3,000 nt
panel B, �10,000 nt panel C, and �20,000 nt panel D, Fig. 4).
The highest sensitivity/specificity values were obtained with
the CTD_all triage for all four size classes (dark blue triangles,
Fig. 4). Overall performance was observed in the order
CTD_any<CATD_any<CATD_all<CTD_all. The combination
of triage with either the CTD_all or CATD_all triage, with a
20,000-nt size cutoff and RF classification using all Coronaviridae
domains resulted in classification of Coronaviridae sequence
fragments with both sensitivity> 0.9 and specificity> 0.975.

We next applied this protein domain-based method to clas-
sify Coronaviridae genomic sequences generated from next-gen-
eration sequencing surveillance data. The NGS data were
derived from bat and rat fecal samples collected in the Dong
Thap province (Fig. 1) and processed for agnostic, random
primed NGS as described in Section 2. All de novo assembled
Coronaviridae contigs that passed the quality control and mini-
mum length cutoff were subjected to Pfam domain content
identification, triage by CATD content and length and RF classi-
fication. This process is summarized in Fig. 5. The process iden-
tified thirty-four potential Coronaviridae genomes from 177 bat
fecal samples and 11 Coronaviridae genomes from 391 rat fecal
samples. These forty-five genomes were classified to the
Coronaviridae genus level using the Coronaviridae classification
tool (Fig. 6).

Note that screening using specific PCR targeting the con-
served RNA-dependent RNA polymerase (RdRp) gene had previ-
ously identified CoV sequences in some of the same samples
(29). The RdRp sequences generated in that study were closest
to the bat Alphacoronavirus NC_009657 (Scotophilus bat coronavi-
rus 512) and the rat Betacoronaviruses NC_026011 (Betacoronavirus

Figure 2. The distribution of Pfam domains across Coronaviridae genera. Panel A: Two examples of Alpha-, Beta-, Gamma-, Delta-, Toro- and Bafinivirus were selected and

all protein domains encoded by the full genomes, detected by profile HMMs, were identified and their positions in each virus genome is marked by colored rectangles.

Panel B: The Coronaviridae Absolute Triage Domains (CATDs) are marked with an red, the Coronaviridae Triage Domains (CTDs) are marked with orange, the frequent

Pfam domains are marked in shades of blue, the moderately frequent Pfam domains are marked in shades of green and the rare Pfam domains are marked in gray.
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Figure 3. Cluster map of Pfam protein domains encoded by Coronaviridae genomes. The protein domain repertoire, as detected by profile HMMs, is plotted as the fre-

quency of each domain in all available full genomes from all Coronaviridae genera. Each row represents a protein domain, each column represents a Coronaviridae ge-

nus. Colors indicate domain frequency within that genus (darkest blue¼1¼all genomes in this genus encode this domain; white¼0¼no genomes in this genus

encode this domain, see color bar at upper left).
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HKU24) or KF294372 (Longquan Rl rat coronavirus). These are likely
to be the same viruses described here at the full genome level.

Two lineages of Alphacoronavirus were identified in the sur-
veyed bat samples, one group showed some relationship to the
Scotophilus bat coronavirus 512 (GenBank NC_009657, Tang et al.
2006) with 96 per cent shared identity across the genome. The
other group of Alphacoronavirus was distant from any known
Alphacoronavirus strains and may represent new species. Two
groups of Betacoronavirus were identified in rat samples, the
closest available virus genome in GenBank was the
Betacoronavirus_HKU24 (KM349743) and the Longquan mouse co-
ronavirus (KF294357) with 95 and 94 per cent shared identity
across the entire genome. The next closest coronaviruses were

the human coronavirus OC43 and the porcine hemagglutinating
encephalomyelitis virus (PHEV) with �70 per cent shared amino
acid identity across the entire genome. The genome organiza-
tion for the new coronaviruses was similar to the closest refer-
ence genomes sharing similar open reading frame organization
as well as similar Pfam domains (Fig. 7A). Furthermore, the
expected ribosome slippage sequences between the ORF 1 A and
1AB, as well as the repeat sequences and protease cleavage sites
were all present in the new CoVs genomes (results not shown).

To examine the relationship between the reported viruses
and known Alpha- and Betacoronaviruses, the spike protein
encoding regions of these genomes were compared with the
spike coding regions from the most closely related coronavirus
genomes from GenBank. Consistent with observation at the full
genome scale, phylogenetic analyses suggested that the
Vietnamese bat Alphacoronaviruses belonged to two lineages; vi-
ruses in the one lineage are closely related (sharing 94–96 per
cent nt identities) to Scotophilus bat CoVs strains A515
(DQ648719), A527 (DQ648791), CYCU-S1/TW/2013 (KT346372),
and 512 (NC_009675), while viruses in the second lineage were
more distantly related (sharing 75–76 per cent nt identities) to
the four previously mentioned bat CoVs strains (Fig. 7B). The
CoVs identified from Vietnamese rats were classified as
Betacoronavirus and belonged to two distinct lineages as shown
in phylogenetic tree (Fig. 7B); viruses from one lineage closely
related to the CoV strain HKU24 from Hongkong (KM349743, Lau
et al. 2015), while viruses in the second lineage are more related
to the rat CoV strains Longquan-189 (KF294370) and -370
(KF294371) (Wang et al. 2015) and rat CoVs from China
(KY370051, KY370049, KY37048, and KY370043).

Figure 5. Workflow of the Coronaviridae classification tool to identify

Coronaviridae genomes in NGS data. First, short read NGS data from surveillance

samples were de novo assembled into larger contigs using SPAdes. Subsequently,

putative Coronaviridae genome sequences were identified by their encoded triage

domains (contig length>10,000 nt and the presence of at least one CTD) fol-

lowed by machine learning classification (using RF) to the Coronaviridae genus

level.

Figure 4. Sensitivity and specificity plot of various triage conditions. The HMM domain content of the forty-one virus mock contig set (111,577 viral genome fragments

including 3,316 Coronaviridae fragments) was determined for each fragment. The CTD or CATD domain content plus the contig length (�500 nt, �3,000 nt, �10,000 nt,

�20,000 nt) were used as a triage to classify fragments as ‘Coronaviridae’ or ‘not Coronaviridae’. The contigs classified as Coronaviridae for each triage condition were then

identified to the genus level using RF classification. The sensitivity (true positive/true positiveþ false negative) and specificity (true negative/true negativeþ false posi-

tive) for each combined triage and classification method were determined based on the original identity of the input genomes. Panel A. RF classification after triage by

500 nt or larger and CTD or CATD content. Panel B. As in A but with 3,000 nt or larger contigs. Panel C. As in A but with 10,000 nt or larger contigs. Panel D. As in A but

with 20,000 nt or larger contigs. Each colored node represents the outcome of one complete triage/classification cycle, each combined method was repeated five times.
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4. Discussion

Members of the Coronaviridae family of viruses cause health prob-
lems in a variety of animal hosts. MERS-CoV often moves from
camels to humans (Memish et al. 2014; Dudas et al. 2018) and can
spread in health care systems with serious consequences (Assiri
et al. 2013). SARS-CoV moved from civet cats to humans and
caused substantial morbidity and mortality before it was brought
under control (Poon et al. 2004). Several porcine coronaviruses
cause frequent problems including PEDV (Kocherhans et al. 2001)
and swine acute diarrhea syndrome coronavirus (SADS-CoV)
(Zhou et al. 2018). Given the frequent association of Coronaviridae
members with severe diseases, a more comprehensive descrip-
tion of Coronaviridae diversity, especially in animals with fre-
quent human contact, is an important objective.

We describe a Coronaviridae sequence classification strategy
based on the set of protein domains encoded by the genome se-
quence. The classification is not dependent on a single domain,
but rather the composite score of all domains present in the
query sequence. This is a strength of the method that can limit
false positive identifications which might be due for example, to
shorter regions of homology to a bacterial or host or repetitive se-
quence. The requirement for longer sequence contigs is also a
weakness of the method as sufficient query sequence must be
available to encode multiple protein domains. This also limits
the tool to assembled contigs rather than short read data. In
other words, the sensitivity of the classification is directly depen-
dent upon the length of the genomic sequences, that is, higher
sensitivity of genus assignment with longer or complete genome
sequence. The classification tool provides a robust, rapid, and
alignment-free method to classify large sets of more distantly re-
lated sequences. Once a database is generated, the algorithm can
be used in the field or resource-limited settings and the

classification can be performed with typical contig sets within
minutes on a standard laptop. With the availability of the plat-
form independent Docker version of the algorithm (see Section
2), scientists can easily run the analyses on any computing
platform.

Given the large number of genomes available for most of the
Coronaviridae genera, this domain-based classification method can
provide a sensitive measure of genome and annotation quality.
One consideration is that the genus classification may be broad
and the diversity within that genus includes genomes with more
distant variations in the protein domains. An additional consider-
ation is that the genus classification of individual Coronaviridae
genomes in GenBank may not be correct (mis-annotation), that
the genome sequences may include errors (machine errors, PCR
errors, chimeric sequences) or have been assembled incorrectly or
with sequence duplications or deletions (mis-assemblies). The do-
main method described here can help identify these patterns.

Bats have been suggested to harbor great diversity of CoVs and
play a key role in the emergence and transmission of pathogenic
CoVs causing severe diseases in human (Menachery, Graham, and
Baric 2017). Rats, on the other hand, represent the largest order of
mammalian species and are potentially a major zoonotic source of
human infectious diseases (Meerburg, Singleton, and Kijlstra 2009;
Luis et al. 2013). As part of a large-scale zoonotic surveillance in
Vietnam (Rabaa et al. 2015), we applied agnostic deep sequencing
to 177 bat and 391 rat samples from a single location. The sample
collection was from the Dong Thap province in southern Vietnam
where humans and domestic and farm animals live in close prox-
imity. The site is 154 km from Ho Chi Minh City, the largest city in
south of Vietnam. From this modest sample size surveillance,
forty-four complete or nearly complete genomes belonging to
Coronaviridae family were identified, thirty-four of which were
from bat samples belonging to the Alphacorovirus genus and eleven

Figure 6. Identification of Coronaviridae genomes. De novo assembled contigs from rat and bat sample data sets were processed using a triage (contig length> 10,000 nt

and the presence of at least one CTD) followed by RF classification to the Coronaviridae genus level. About forty-five samples contained Alphacoronavirus and

Betacoronavirus sequences with probabilities> 0.5 (darker blue in the heatmap). These sequences were included in the complete set of samples processed for full ge-

nome coronavirus handling. Panel A. Heatmap of predicted Coronaviridae genus probabilities. Panel B. Table of probabilities prediction.
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genomes from ten rat samples belonging to the Betacoronavirus ge-
nus. The bat fecal samples were pooled material from five to ten
individuals, thus the total individual bats samples screened ranged
from 885 to 1,770 and the frequency of full genome identification
was 1.9–4.0 per cent (34/1,770 to 34/855). In comparison, the 391
screened rat samples were derived from individual fecal pellets
and frequency of the coronavirus genome identification was 2.8
per cent (11/391). Given this small sample size, the frequency of
CoVs identified was not strikingly different between bats and rats.

While it is possible to use Blast methods to identify/classify
the putative viral genomes, one advantage of the tool described

here is that it rapidly provides a genus-level classification, which
is not directly obtained from a Blast search. Certainly, one could
use a Blast search to find the closest sequence in a database and
then use this as a classification if (1) the closest homology se-
quence covers 100 per cent of the length of the query sequence,
and (2) the closest entry contains sufficient classification annota-
tion. Finally, we are not presenting this new tool as a replace-
ment for Blast (which is a reliable and highly trusted tool).
Instead, the domain-based classification method described here
provides a rapid, alternative and complementary classification
method that can help organize complex data sets.

Figure 7. Analyses of identified coronavirus genomes. Panel A. Open reading frames and domain content of the three classes of coronavirus identified in this study. All

open reading frames>130 amino acids in length and the Pfam domains are displayed for an example reported genome from each of the lineage 1 and 2 of

Alphacoronavirus, and Betacoronavirus plus the closest known genomes (Alphacoronavirus Scotophilus bat CoV 512, NC_009657 and Betacoronavirus strain HKU24,

NC_026011). Panel B. Maximum-likelihood phylogenetic tree of the spike protein coding sequences from Alphacoronaviruses from this study (highlighted in red) plus se-

lected reference sequences. The tree is mid-point rooted for clarity and only bootstraps �70 per cent are shown. Horizontal branch lengths are drawn to the scale of nu-

cleotide substitutions per site. Panel C. Maximum-likelihood phylogenetic tree of the spike protein coding sequences from Betacoronaviruses plus a collection of spike

coding regions from relevant Betacoronaviruses. The tree is mid-point rooted for clarity and only bootstraps �70 per cent are shown. Horizontal branch lengths are

drawn to the scale of nucleotide substitutions per site.
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Of note, this is the first whole genome characterization of
Alpha- and Betacoronaviruses from rats and bats from southern
Vietnam. Although there are reports in the literature of enhanced
CoV prevalence in various bat species (Anthony et al. 2017), at
least in the current survey, when the same agnostic sequencing
approach was applied to both bat and rat samples, similar virus
frequencies were observed, suggesting that rats and in more gen-
eral rodents may be as important a host for CoVs as bat species.
Indeed surveys using similar agnostic NGS methods have identi-
fied a wide range of virus diversity in rats and other rodents (Li
et al. 2015, 2016; Wang et al. 2015, 2017). The zoonotic potential of
these reported viruses is yet to be defined. Prior to the current
study, only single examples of these viruses were available and
the availability of a larger number of full genomes for these vi-
ruses will facilitate more functional studies.

Sensitive surveillance that is not dependent on known viral
sequences for primer design is important for documenting cir-
culating viruses and for identifying those that might cause
problems in the future. This is particularly of great importance
for virus discovery and to characterize potentially zoonotic vi-
ruses in exotic hosts that have not been described. The bat
Alphacoronaviruses described here had only a single genome
available in GenBank and we have enriched the public database
with thirty-four additional genomes. The rat Betacoronaviruses
also provide description of novel, more distant members of a
recognized but poorly characterized group of CoVs. The disease
potential of these viruses in their normal host and their zoo-
notic potential are yet to determine. Certainly, the reported
sequences would add important information to the growing col-
lection of coronavirus diversity and particular with great rele-
vance in the context of south and east Asia where SARS-CoV
first emerged. We hope they are useful for future studies, for
monitoring disease of unknown origin and for increasing our
understanding of the molecular diversity of these viruses.

Accession numbers

The coronavirus sequences described in this study have been
deposited in GenBank under the accession numbers MH687934–
MH687978.
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