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Imbalanced classification is widespread in the fields of medical diagnosis, biomedicine,
smart city and Internet of Things. The imbalance of data distribution makes traditional
classification methods more biased towards majority classes and ignores the importance
of minority class. It makes the traditional classification methods ineffective in imbalanced
classification. In this paper, a novel imbalance classification method based on deep
learning and fuzzy support vector machine is proposed and named as DFSVM.
DFSVM first uses a deep neural network to obtain an embedding representation of the
data. This deep neural network is trained by using triplet loss to enhance similarities within
classes and differences between classes. To alleviate the effects of imbalanced data
distribution, oversampling is performed in the embedding space of the data. In this paper,
we use an oversampling method based on feature and center distance, which can obtain
more diverse new samples and prevent overfitting. To enhance the impact of minority
class, we use a fuzzy support vector machine (FSVM) based on cost-sensitive learning as
the final classifier. FSVM assigns a higher misclassification cost to minority class samples
to improve the classification quality. Experiments were performed on multiple biological
datasets and real-world datasets. The experimental results show that DFSVM has
achieved promising classification performance.
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INTRODUCTION

In many fields, the distribution of data is imbalanced and the problem of imbalanced datasets occurs
when one class is much larger than the other. For example, in disease diagnosis (Bhattacharya et al.,
2017; Loey et al., 2020), most of the data are healthy, and it is difficult to obtain data on diseases.
Moreover, with the deployment of various monitoring systems, more and more data are collected in
smart cities and the Internet of Things, but there are a lot of data on the normal operation and
abnormal data is rare (Du et al., 2019; Fathy et al., 2020). More specifically, this problem occurs when
one class outnumbers the other class, which are usually referred to as majority and minority class,
respectively (Tao et al., 2020). The majority class samples are more easily available, while the
minority class samples are more difficult to obtain data due to natural frequency of occurrence or
data collection. The imbalanced data distribution also exists in the fields of fraud detection (Li and
Wong, 2015; Jiang et al., 2018), computer security (Wang and Yao, 2013), intrusion detection (Yao
et al., 2018), drift detection (Wang et al., 2021), image recognition (Romani et al., 2018) and defect
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detection (Li et al., 2020). In machine learning, there are many
well-established classification methods, such as decision tree,
logistic regression, support vector machine and extreme
learning machine (Shi et al., 2022), but they are based on the
assumption of uniform data distribution and have over-all
accuracy as the optimization goal. When traditional
classification methods are used to deal with imbalanced
classification, the result are more in favor of the majority class
and ignore the importance of the minority class. Although the
overall accuracy is relatively high, the minority class data with
important information cannot be accurately identified.

Many imbalance classification algorithms have been proposed
in recent decades. These algorithms can be generally divided into
two main types: data-level and algorithm-level (Tao et al., 2020).
The data-level approaches first bring the original imbalanced
dataset to balanced distribution by some sampling processing,
and then classify it by using a traditional classifier. The algorithm-
level approaches attempt to improve existing classification
algorithms by reducing their bias for the majority class data,
and thus adapt to imbalanced data distribution.

In this paper, a novel imbalance classification method
based on deep feature representation is proposed, named
DFSVM. First, from the perspective of data features, a
deep neural network is used to obtain the embedding
space features. Appropriate feature representation can
improve the classification performance of models, and it
also enhances the differentiation of features of different
classes and the similarity of feature areas of the same class.
In addition, it will provide a basis for the effective recognition
of samples. The deep neural network has a complex nonlinear
network structure, which can effectively extract the deep
features of samples. When training the network, a triplet
loss function (Schroff et al., 2015) is used to enable the
network to separate the features of minority class and
majority class. Additionally, Gumbel distribution function
(Cooray, 2010) is applied as an activation function in the
activation layer. This function is continuously differentiable,
and it can be easily used as an activation function in
stochastic gradient descent optimization neural networks.
The original input samples are mapped to the same
embedding space after feature extraction. In the
embedding space, a new minority class sample is randomly
generated based on the distance between the sample and the
center of the class, which makes the data distribution
balanced. After obtaining the embedding features of
samples, a fuzzy support vector machine (FSVM) (Lin and
Wang, 2002) is used to classify. FSVM introduces
membership values (MVs) in the objective function of
traditional support vector machine, and it sets different
misclassification costs for different classes samples. The
misclassification cost of the minority class is higher than
that of the majority class. FSVM is a cost-sensitive learning
strategy that can effectively improve the recognition rate of
the minority class samples. In addition, traditional
classification methods use accuracy as classifier evaluation
metrics, but classifiers with accuracy as evaluation metrics
tend to reduce the classification effectiveness of the minority

class. Moreover, accuracy limits the effect of minority class
samples on classification performance. Therefore, this paper
uses G-mean, F-measure and AUC values to evaluate the
classification results more comprehensively.

The rest of this paper is organized as follows. In Related Work
Section, the related work on imbalance classification is presented.
Proposed Method Section describes DFSVM. In Experiments and
Results and Conclusion Sections, the experimental results and
conclusions are introduced.

RELATED WORK

The imbalance of data distribution and the limitation of
traditional classification algorithms are the main problems that
imbalanced classification faces, therefore, researches on
imbalanced classification can be divided into two levels: data-
level and algorithm-level.

Data-Level
Data resampling is the most representative method of data-level,
which reduces the imbalanced ratio (IR) by changing the data
distribution. The undersampling algorithm reduces the bias of
model to the majority class by reducing the number of samples in
the majority class. Random undersampling is the simplest
approach, it randomly selects and removes part of the
majority class samples. However, random undersampling
easily leads to the deletion of potentially useful information, so
some heuristic methods are proposed.

Neighborhood cleanup rule (NCL) (Laurikkala, 2001) uses
an instance-based approach to reduce larger classes and
considers carefully the quality of the data to be removed.
To reduce the impact of some noisy minority examples on the
performance of classifiers, Kang et al. (2016) proposed a new
undersampling algorithm by introducing a noise filter. The
weighted under-sampling of SVM (WU-SVM) groups
majority samples into some subregions and assigns
different weights based on their Euclidean distance to the
hyper plane to retain the data distribution information of
original dataset (Kang et al., 2017). The other popular
sampling method is oversampling, which is used to balance
the data distribution by increasing the number of minority
class samples. Random oversampling can cause overfitting, so
heuristic methods are also mostly used. The most
representative one is the synthetic minority oversampling
technique (SMOTE, Chawla et al., 2002). SMOTE generates
a new minority sample by interpolating between k nearest
minority neighbors. However, due to the irregular data
distribution, new samples generated by SMOTE may
become noise, which may increase the overlap between
classes and lead to misclassification. In order to generate
more reasonable samples, some variants of SMOTE have
been proposed, such as Bordeline-SMOTE (B-SMOTE)
(Han et al., 2005) and adaptive synthetic sampling
approach (ADASYN) (He et al., 2008). The kernel-based
SMOTE (KSMOTE) algorithm synthesizes minority data
points directly in the feature space of SVM classifier and
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adds new data points by augmenting the original Gram matrix
based on neighborhood information in the feature space
(Mathew et al., 2015). Weighted kernel-based SMOTE
(WK-SMOTE) overcomes the limitations of SMOTE for
nonlinear problems by oversampling in the feature space
and cost-sensitive support vector machine (Mathew et al.,
2018).

Algorithm-Level
Traditional classification methods tend to favor majority class
and ignore minority class samples when dealing with imbalanced
data. To overcome the shortcomings of traditional classification,
researchers have made improvements to the algorithms
themselves. Typical improvements are cost-sensitive and
ensemble learning methods. Fuzzy support vector machine
(FSVM) (Lin and Wang, 2002) is a cost-sensitive algorithm. It
introduces the fuzzy membership values (MVs) of each sample
into the objective function of the support vector machine (SVM)
to distinguish the importance of different samples. FSVM-CIL is
an improved FSVMs for class imbalance learning that can be used
to deal with class imbalances in the presence of outliers and noise,
and its membership calculation is based on the distance in the
original data space (Batuwita and Palade, 2010). Yu et al. (2019)
proposed two relative density-based FSVM, namely, FSVM-WD
based on within-class relative density and FSVM-BD based on
between-class relative density, which use a similar strategy to
calculate the relative density of each training sample based on
K-nearest neighbor probability density estimation (KNN-PDE).
ACFSVM is a FSVM method based on affinity and class
probability, which calculates the affinity of majority class
samples based on the support vector description domain
(SVDD) model, and then identifies possible outliers and some
border samples existing in the majority class (Tao et al., 2020).
The basic idea of ensemble learning is to combine standard
ensemble learning algorithms with existing imbalanced data
classification methods, such as SMOTEBagging (Wang and
Yao, 2009) and SMOTEBoost (Chawla et al., 2003). However,
the training process of ensemble learning for base classifiers is
more complicated and has limitations in handling high-
dimensional data, and there are difficulties in choosing the
type and number of base classifiers.

PROPOSED METHOD

The DFSVMmethod proposed in this paper uses a fuzzy support
vector machine as the base classifier and uses data sampling
method to obtain balanced data distribution. The new samples
generated after oversampling still belong to the minority class,
and the use of FSVM can further improve the model’s focus on
the minority class. In addition, deep neural networks are used to
obtain more discriminative feature information, which make
subsequent classification convenient.

Feature Extraction With Deep Learning
With the significant increase in computer computing power
and the explosive growth of data amount, deep learning has

attracted a lot of attention in academia and industry in recent
years. Deep neural networks (DNNs) have succeeded in
significantly improving the best recognition rate of each
previous problem by increasing the network depth or
changing the structure of the model (Krizhevsky et al.,
2012; He et al., 2016). Deep learning implementations rely
on deep neural networks, which involves a cascade of multiple
layers of nonlinear processing units for feature extraction and
transformation. For example, convolutional neural networks
(CNNs) are one such deep learning architecture that has
achieved breakthrough performance gains in image
classification (Kang et al., 2021). Feature representation is
critical to the classification performance, so this paper
applies the classification method to the embedding space
after feature extraction.

In this paper, a deep neural network (DNN) is used as feature
extractors because it can learn advanced feature representations
from samples (Ng et al., 2016). Once training is complete, the
hidden feature representations can be used as embedding features
to reveal interesting structures in the data. To enhance the
differentiation of features from different classes and reduce the
differentiation of features from samples in the same class, a triplet
loss (Schroff et al., 2015) is used to train the network model, bring
samples in the same class closer, and further separate samples in
different classes. Each sample can be converted into a
differentiated feature space based on the trained model. The
triplet loss uses anchor points, which allows the embedding space
feature to be arbitrarily distorted. It is defined as:

Ltriplet � (Da,min − Da,maj +m)+ (1)

where m is the margin and set to 0.2 in experiments, D is the
distance function, a is the anchor point belonging to the minority
class, min is the minority class samples, and maj is the majority
class samples. (·)+ indicates that the value is taken as loss if it is
greater than 0. If it is less than 0, the loss is 0. The smaller the
margin, the easier the triplet loss converges to 0. Thus, the anchor
point and minority class samples do not need to be pulled too
close together, and the anchor point and majority class samples
do not need to be pulled too far apart to make the loss converge
quickly to 0. However, the smaller margin cannot distinguish the
similar samples well. When the margin is too large, the distance
between the anchor point and the minority class samples needs to
be desperately close, and the distance between the anchor point
and the majority class samples needs to be faraway. If the margin
is set too large, it is likely that the final loss will remain at a large
value, which is difficult to converge to 0, but can distinguish more
similar samples with more certainty.

FIGURE 1 | Optimization result using triple loss function.
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Figure 1 shows the results and geometric significance of
optimization using triple loss. Triplet loss tries to learn an
embedding space in which anchor is closer to the minority
class samples, and the anchor is further away from the
majority class samples. The deep neural network model
with the triplet loss as the training criterion not only takes
the simplicity of metric learning into account, but also has
excellent nonlinear modeling capabilities of neural networks,
which can greatly simplify and control the training process.
When the two inputs are similar, the triplet loss can learn a
better representation for the two input vectors with smaller
differences, and thus perform well in the classification task.

Gumbel distribution (Cooray, 2010) is used as the activation
function in DNN. The Gumbel distribution, also known as
Generalized Extreme Value (GEV) distribution type I, is
widely used to design the distribution of extreme value
samples of various distributions. The cumulative distribution
function (CDF) is defined as:

σ(x) � e−e
−x

(2)

When compared to the Gumbel distribution, the ReLU activation
function shows some drawbacks for the class imbalance problem:
it tends to underestimate the probability of minority nodes when
dealing with the issue of class imbalance. Relative to the ReLU
activation function, the Gumbel distribution function is not
affected by the dying ReLU problem. Moreover, the Gumbel
distribution is asymmetric, so that different penalties can be
applied to the misclassification of both classes. In addition, the
Gumbel distribution function is continuously differentiable, so it
can be easily used as an activation function with optimization in a
neural network. Finally, the whole DNN framework used for
feature extraction is shown in Figure 2. The network used for
feature extraction consists of three hidden layers, and we set the
number of neurons in each layer to have the following
relationship: the number of neurons in the next layer is half of
the number of neurons in the previous layer. In the later
experiments, we only set the number of neurons in the third
layer, i.e., the dimension of the final embedding space, and the
first two layers will make the corresponding changes according to
the above rules. Figure 3 shows two t-SNE plots of the original
Glass1 dataset and the dataset after the network training. It can be
seen that after training, the different classes become easier to
distinguish.

Random Feature Oversampling Based on
Center Distance
After obtaining the embedding space representation of samples,
the data distribution is still imbalanced. The dataset in the
embedding space is X � {x1, x2,/, xn}, n is the total number
of samples, xi � [f1

i , f
2
i ,/, fp

i ] ∈ Rp , i ∈ 1, 2, . . . , n. fj
i is the

value of the sample xi on the j-th dimension feature,
j ∈ 1, 2, . . . , p. For the minority class samples, the set of
features in each dimension is denoted as F � {F1, F2,/, Fp},
where Fj � {fj

1, f
j
2,/, fj

n min}, j ∈ 1, 2, . . . , p. n min is the
number of the minority class samples. Fj is the set of values
of all minority class samples on the j-th dimension feature. The

FIGURE 2 | Deep neural network framework for feature extraction.

FIGURE 3 | t-SNE plots of the original Glass1 dataset and after the network training.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 8027124

Wang et al. Imbalance Classification With DFSVM

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


feature of each dimension of the new synthetic sample is
randomly selected from the corresponding feature set, xsyn �
[f1

syn ∈ F1, f2
syn ∈ F2,/, fp

syn ∈ Fp].
This method of randomly generated features can increase the

diversity of the minority class samples and avoid overfitting.
However, the method generates some outliers and noise, so a
constraint based on class center distance is used to filter the
synthetic samples. As shown in Figure 4, in the embedding space,
the center of the majority class is Cmaj, the center of the minority
class is Cmin, and the center of the whole data is Call. By
calculating the distance between each center and the
synthetic sample to determine whether the following
equation is satisfied:

d(xsyn,Cmaj)> d(xsyn,Call)> d(xsyn,Cmin) (3)

where d(·) is the distance function. If the synthesized sample fits
this condition, it will be kept, otherwise, it will be deleted. In this
paper, the influence of irregular data distribution is avoided by
calculating the class centers in the embedding space. The number
of synthesized samples is set to achieve balanced data
distribution.

Fuzzy Support Vector Machine
In many real-life applications, each sample has a different level of
importance. For imbalanced data problems, the minority class
samples are often more important than the majority class
samples. In order to improve the classification performance,
each sample needs to be assigned to a corresponding weight
according to its importance. In this paper, a fuzzy support vector
machine (FSVM) (Lin andWang, 2002) is used as the classifier to
achieve the assignment of different weights.

The data after sampling as X � {x1, x2,/, xn}, n is the total
number of samples including all synthetic samples, xi ∈ Rp,
i ∈ 1, 2, . . . , n. p is the feature dimension. Assuming that the
dataset is D � {(x1, y1), (x2, y2),/, (xn, yn)}. yi ∈ [1,−1] is the
label of the corresponding sample. FSVM adds an attribute to
each sample to expand the original data set to
D � {(x1, y1, s1), (x2, y2, s2),/, (xn, yn, sn)}, si represents the
fuzzy membership value (MV) corresponding to different

samples. The greater the value of s, the greater the importance
of the sample. In this way, the optimization function of FSVM can
be written as:

min :
1
2
‖w ‖2 + C∑n

i�1
siεi

s.t.yi(w pϕ(xi) + b)≥ 1 − εi

εi ≥ 0

(4)

where w2 represents the margin ratio of the generalization ability
of the learning model. The slack variable εi represents the
acceptable training error degree of the corresponding instance
xi. C> 0 is called the penalty parameter, it is a parameter that
weighs the size of the separation interval and the number of
misclassified points, as well as a trade-off between learning model
accuracy and generalization ability. ϕ(·) is the mapping of high-
dimensional feature space. The fuzzy membership value si can
adjust the punishment degree of the corresponding sample. In
order to solve this optimization problem, firstly, Equation 4 is
transformed into an unconstrained problem using the Lagrangian
function:

L(w, b,α, β) � 1
2
w2 + C∑n

i�1
siεi −∑n

i�1
αi(yi(wpxi + b) − 1 + εi) −∑n

i�1
βiεi (5)

The above formula satisfies the following conditions:

zL(w, b, α, β)
zw

� w −∑n
i�1
αiyixi � 0

zL(w, b, α, β)
zb

� −∑n
i�1
αiyi � 0

zL(w, b, α, β)
zεi

� εiC − αi − βi � 0

(6)

Introduce Equation 6 into Equation 5. The optimization
problem is transformed into the following formula:

min : −∑n
i�1
αi + 1

2
∑n
i�1
∑n
j�1
yiyjαiαjϕ(xi)ϕ(xj)

s.t.∑n
i�1
yiαi � 0,∀i: 0≤ αi ≤ siC

(7)

where αi is the Lagrangian multiplier corresponding to xi, and it
must also meet the KKT condition:

∀i: αi(yi(w pϕ(xi) + b) − 1 + εi) � 0
∀i: (siC − αi)εi � 0

(8)

In this way, the value of αi can be calculated, and w can be
calculated according to the following formula:

w � ∑n
j�1
αiβjϕ(xi) (9)

FIGURE 4 | Validation of the new synthetic feature vector.
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After that, the value of b can be calculated by Equation 8. The
sample of αi > 0 is called a support vector. When 0< αi < siC, the
support vector is located on the boundary of the interval. When
αi � siC, the sample is located between the boundary of the
interval and the separation hyperplane or on the side of the
separation hyperplane that is misclassified. The biggest difference
between traditional SVM and FSVM is that even though two
samples have the same value of αi, the two samples belong to
different types of support vectors due to their different fuzzy
membership values si. Under normal circumstances, a smaller si
is assigned to the majority class to make the decision boundary
more reasonable. Finally, the decision function of the optimal
separating hyperplane can be expressed as:

f (x) � sign(w pϕ(xi) + b) � sign⎛⎝∑n
j�1
αiyiϕ(xi)ϕ(x) + b⎞⎠

(10)

EXPERIMENTS AND RESULTS

Evaluation Metrics and Datasets
In this paper, G-mean, F-measure and AUC values are used to
comprehensively evaluate the classification quality of the
model. In imbalanced classification, the overall accuracy is
not effective in evaluating the classification results. To
evaluate the imbalanced classification effect by accuracy
may cause the model to be biased towards the majority
class, because a high overall accuracy can be obtained by
ensuring only the correct classification of the majority class.
The overall accuracy ignores the important influence of the
minority class.

F-measure is defined based on the metrics of Precision (Pre)
and Sensitivity (Sen), which are defined as:

Pre � TP
TP + FP

(11)

Sen � TP
TP + FN

(12)

where TP (True Positives) denotes the number of positive
observations (minority class) correctly classified as positive, FP
(False Positives) denotes the number of negative observations
(majority class) incorrectly classified as positive, FN (False
Negatives) denotes the number of positive observations
incorrectly classified as negative, and TN denotes the number
of negative observations correctly classified as negative (Ye et al.,
2020). The definition of F-measure is as

F −measure � 2 p Sen pPre/(Sen + Pre) (13)

G-mean is defined based on the metrics of Sensitivity (Sen) and
Specificity (Spe), which are defined as:

Spe � TN
TN + FP

(14)

G −mean � 








Sen p Spe

√
(15)

AUC (AreaUnder Curve) is defined as the area under the ROC curve
and the coordinate axis. The value of this area will not be greater than
1. Among them, the ROC curve is called the receiver operating
characteristic curve. It is based on a series of different binary
classification methods (cutoff value or decision threshold), with
the true positive rate (Sen) as the ordinate, and the false positive
rate (1-Spe) is the curve drawn on the abscissa. The closer the AUC is
to 1.0, the higher the authenticity of the detection method; when it is
equal to 0.5, the authenticity is the lowest and it has no application
value. The algorithm was tested on twelve binary classification
datasets from the Keel database, as shown in Table 1.

Experiment Settings
In data feature processing, a deep neural network with four fully
connected layers is used. When using fuzzy support vector machine
for classification operation, the kernel function is Gaussian kernel
function. For FSVM classifier, penalty constant C and the width of
Gaussian kernel σ are selected by gird search method from the set
{10−3, 10−2, 10−1, 1, 101, 102, 103, 104} and
{2−5, 2−4, 2−3, 2−2, 2−1, 1, 21, 22, 23, 24}. The fuzzy membership
value of the minority samples is set to the imbalanced ratio (IR),
which is the ratio of the number of samples of the majority class to
the number of the minority class in the data.

IR � nummaj

nummin
(16)

where nummin is the number of the minority class samples, and
nummaj is the number of data of the majority class samples. The
fuzzy membership value of the majority class is set to 1. In order
to eliminate the randomness, five cross validation is applied, and
the algorithms are executed for 5 independent runs.

In order to compare the classification performance of the
proposed model, nine methods are used. B-SMOTE (Han et al.,
2005) uses SMOTE (Chawla et al., 2002) to synthesize new
samples for the minority-class samples lying around the
boundary line. SOMO (Douzas and Bacao, 2017) produces a
two-dimensional representation. Then it generates within-cluster
and between-cluster synthetic samples. KmeansSMOTE (Douzas
et al., 2018) uses k-means clustering algorithm and SMOTE to
balance datasets, and only oversampling in safe areas to avoid
noise. FSVM-CEN and FSVM-HYP (Batuwita and Palade, 2010)
use a linear decay function to calculate the MVs based on the

TABLE 1 | Description of the datasets.

Name Attributes Data size Imbalance ratio

Cargood 6 1,728 24.04
Cleveland0vs4 13 177 12.62
Ecoli0147vs2356 7 336 10.59
Ecoli01vs235 7 244 9.17
Ecoli0267vs35 7 224 9.18
Glass1 9 214 1.82
Glass6 9 214 6.38
Pageblocks0 10 5,472 8.79
Vehicle3 18 846 2.99
Yeast1vs7 8 459 14.3
Yeast3 8 1,484 8.1
Yeast6 8 1,484 41.4
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TABLE 2 | Results of different imbalanced classification methods on datasets.

Dataset Cargood Cleveland0vs4

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.851 ± 0.027 0.716 ± 0.021 0.995 ± 0.001 0.373 ± 0.066 0.349 ± 0.063 0.962 ± 0.003
B-SMOTE 0.839 ± 0.007 0.693 ± 0.010 0.994 ± 0.000 0.420 ± 0.001 0.393 ± 0.000 0.963 ± 0.004
SOMO 0.864 ± 0.010 0.649 ± 0.035 0.988 ± 0.002 0.640 ± 0.087 0.553 ± 0.084 0.972 ± 0.012
KmeansSMOTE 0.881 ± 0.015 0.758 ± 0.033 0.993 ± 0.003 0.665 ± 0.169 0.549 ± 0.155 0.967 ± 0.007
FSVM-CEN 0.875 ± 0.023 0.616 ± 0.009 0.991 ± 0.003 0.778 ± 0.087 0.574 ± 0.051 0.982 ± 0.002
FSVM-HYP 0.886 ± 0.033 0.662 ± 0.011 0.991 ± 0.003 0.677 ± 0.058 0.541 ± 0.034 0.973 ± 0.001
FSVM-WD 0.776 ± 0.012 0.586 ± 0.039 0.993 ± 0.000 0.728 ± 0.055 0.615 ± 0.027 0.976 ± 0.002
FSVM-BD 0.848 ± 0.000 0.687 ± 0.000 0.997 ± 0.000 0.743 ± 0.003 0.662 ± 0.015 0.933 ± 0.003
ACFSVM 0.919 ± 0.011 0.774 ± 0.015 0.996 ± 0.001 0.816 ± 0.048 0.819 ± 0.022 0.985 ± 0.003
DFSVM 0.940 ± 0.041 0.834 ± 0.050 0.985 ± 0.019 0.939 ± 0.028 0.824 ± 0.210 0.987 ± 0.005

Dataset Ecoli0147vs2356 Ecoli01vs235

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.607 ± 0.038 0.469 ± 0.062 0.792 ± 0.019 0.834 ± 0.006 0.674 ± 0.020 0.927 ± 0.005
B-SMOTE 0.710 ± 0.005 0.622 ± 0.006 0.856 ± 0.013 0.867 ± 0.011 0.739 ± 0.017 0.963 ± 0.003
SOMO 0.762 ± 0.035 0.676 ± 0.024 0.898 ± 0.032 0.781 ± 0.011 0.690 ± 0.026 0.955 ± 0.009
KmeansSMOTE 0.743 ± 0.043 0.647 ± 0.033 0.914 ± 0.018 0.873 ± 0.008 0.741 ± 0.013 0.963 ± 0.013
FSVM-CEN 0.747 ± 0.029 0.597 ± 0.011 0.845 ± 0.056 0.787 ± 0.028 0.601 ± 0.046 0.932 ± 0.018
FSVM-HYP 0.654 ± 0.055 0.591 ± 0.031 0.829 ± 0.018 0.820 ± 0.004 0.711 ± 0.009 0.952 ± 0.005
FSVM-WD 0.683 ± 0.000 0.463 ± 0.000 0.801 ± 0.005 0.801 ± 0.007 0.634 ± 0.014 0.910 ± 0.011
FSVM-BD 0.686 ± 0.008 0.531 ± 0.011 0.799 ± 0.003 0.825 ± 0.023 0.576 ± 0.049 0.925 ± 0.005
ACFSVM 0.782 ± 0.024 0.533 ± 0.010 0.839 ± 0.013 0.817 ± 0.028 0.654 ± 0.037 0.924 ± 0.008
DFSVM 0.852 ± 0.062 0.716 ± 0.029 0.930 ± 0.052 0.874 ± 0.058 0.809 ± 0.060 0.955 ± 0.044

Dataset Ecoli0267vs35 Glass1

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.807 ± 0.025 0.621 ± 0.024 0.937 ± 0.014 0.682 ± 0.008 0.634 ± 0.010 0.734 ± 0.020
B-SMOTE 0.771 ± 0.028 0.641 ± 0.027 0.915 ± 0.027 0.702 ± 0.008 0.606 ± 0.011 0.790 ± 0.016
SOMO 0.825 ± 0.012 0.735 ± 0.012 0.929 ± 0.021 0.678 ± 0.003 0.612 ± 0.002 0.713 ± 0.010
KmeansSMOTE 0.855 ± 0.021 0.702 ± 0.010 0.949 ± 0.005 0.755 ± 0.012 0.689 ± 0.017 0.759 ± 0.015
FSVM-CEN 0.765 ± 0.037 0.611 ± 0.007 0.906 ± 0.025 0.611 ± 0.011 0.583 ± 0.005 0.707 ± 0.033
FSVM-HYP 0.822 ± 0.004 0.676 ± 0.017 0.922 ± 0.032 0.643 ± 0.016 0.588 ± 0.018 0.708 ± 0.015
FSVM-WD 0.848 ± 0.018 0.615 ± 0.016 0.939 ± 0.005 0.598 ± 0.046 0.575 ± 0.020 0.732 ± 0.009
FSVM-BD 0.836 ± 0.010 0.647 ± 0.020 0.939 ± 0.012 0.638 ± 0.025 0.584 ± 0.030 0.706 ± 0.007
ACFSVM 0.869 ± 0.011 0.711 ± 0.005 0.923 ± 0.029 0.661 ± 0.005 0.636 ± 0.005 0.683 ± 0.015
DFSVM 0.922 ± 0.012 0.764 ± 0.069 0.988 ± 0.004 0.692 ± 0.059 0.629 ± 0.032 0.792 ± 0.026

Dataset Glass6 Pageblocks0

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.901 ± 0.014 0.808 ± 0.025 0.974 ± 0.002 0.890 ± 0.003 0.735 ± 0.011 0.960 ± 0.001
B-SMOTE 0.884 ± 0.033 0.818 ± 0.045 0.983 ± 0.006 0.903 ± 0.001 0.754 ± 0.002 0.963 ± 0.001
SOMO 0.861 ± 0.018 0.747 ± 0.019 0.969 ± 0.003 0.852 ± 0.003 0.746 ± 0.017 0.959 ± 0.005
KmeansSMOTE 0.878 ± 0.021 0.808 ± 0.022 0.967 ± 0.011 0.903 ± 0.009 0.815 ± 0.014 0.971 ± 0.001
FSVM-CEN 0.862 ± 0.017 0.760 ± 0.031 0.971 ± 0.005 0.908 ± 0.004 0.711 ± 0.001 0.960 ± 0.007
FSVM-HYP 0.910 ± 0.012 0.823 ± 0.009 0.982 ± 0.004 0.898 ± 0.001 0.746 ± 0.003 0.975 ± 0.002
FSVM-WD 0.892 ± 0.010 0.810 ± 0.018 0.978 ± 0.001 0.874 ± 0.001 0.485 ± 0.001 0.962 ± 0.002
FSVM-BD 0.891 ± 0.016 0.810 ± 0.006 0.983 ± 0.009 0.916 ± 0.003 0.587 ± 0.004 0.970 ± 0.010
ACFSVM 0.904 ± 0.011 0.777 ± 0.034 0.950 ± 0.007 0.917 ± 0.001 0.782 ± 0.001 0.961 ± 0.001
DFSVM 0.939 ± 0.044 0.831 ± 0.044 0.989 ± 0.009 0.915 ± 0.021 0.805 ± 0.023 0.960 ± 0.016

Dataset Vehicle3 Yeast1vs7

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.741 ± 0.001 0.631 ± 0.001 0.863 ± 0.001 0.418 ± 0.024 0.223 ± 0.013 0.697 ± 0.010
B-SMOTE 0.746 ± 0.016 0.634 ± 0.024 0.865 ± 0.017 0.435 ± 0.005 0.244 ± 0.012 0.717 ± 0.006
SOMO 0.766 ± 0.010 0.676 ± 0.013 0.899 ± 0.008 0.509 ± 0.120 0.433 ± 0.101 0.745 ± 0.010
KmeansSMOTE 0.787 ± 0.005 0.694 ± 0.010 0.903 ± 0.007 0.555 ± 0.054 0.466 ± 0.045 0.748 ± 0.003
FSVM-CEN 0.831 ± 0.007 0.712 ± 0.009 0.906 ± 0.003 0.611 ± 0.042 0.359 ± 0.028 0.817 ± 0.022
FSVM-HYP 0.804 ± 0.004 0.699 ± 0.004 0.904 ± 0.003 0.668 ± 0.041 0.449 ± 0.017 0.816 ± 0.004
FSVM-WD 0.761 ± 0.002 0.622 ± 0.003 0.852 ± 0.003 0.627 ± 0.000 0.258 ± 0.000 0.740 ± 0.000
FSVM-BD 0.774 ± 0.020 0.638 ± 0.018 0.862 ± 0.014 0.662 ± 0.011 0.286 ± 0.007 0.776 ± 0.006

(Continued on following page)
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distance from the own class center or from the actual hyperplane,
and finally use FSVM for classification. FSVM-WD and FSVM-
BD (Yu et al., 2019) adopt a k-nearest neighbors-based
probability density estimation to design a membership
function based on the within-class and between-class relative
density, and then assign weights to different samples. ACFSVM
(Tao et al., 2020) first gives the corresponding formulation of
affinity to calculate different affinities for each sample in the
majority class. Then the class probability of each majority-class
sample is determined using the kernel KNN technique and
combined with its corresponding affinity as MVs. In addition,
note that the parameters that existed in each algorithm adopt the
default ones in each corresponding reference. For DFSVM, the
margin m and the number of neurons in the third hidden layer
of the deep neural network are selected by gird search method
from the set {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and
{2,4,6,8,10,12}.

Comparison of Imbalanced Classification
Performance
To verify the effectiveness of the model on imbalance
classification tasks, DFSVM is compared with nine
representative and state-of-the-art class imbalance algorithms.
Table 2 summarizes the experimental results on part of the
datasets in terms of G-mean, F-measure and AUC, and
highlights the best performing models in boldface. It can be
observed that DFSVM achieves better performance in most cases.
For the Cleveland0vs4 dataset, DFSVM improves 0.123 relative to
ACFSVM under the G-mean metric. Although DFSVM does not
achieve the best results on the AUC metric on the Cargood
dataset, it achieves the best classification results on the G-mean
and F-measure, which indicates that DFSVM has good
recognition for the minority class. On the Pageblocks0 dataset,
the classification performance of DFSVM did not achieve the best
results on all three different evaluation metrics. However, its

classification performance does not differ much from the best
result. For example, for G-mean, it differs from the best by only
0.2%, and F-measure differs by 1%, which indicates that
DFSVM still has a better classification effect. Yeast6 dataset
has the highest imbalance ratio with IR � 41.4 and Glass1
dataset has the lowest imbalance ratio with IR � 1.82. The
proposed method in this paper achieves better classification
results on both Yeast6 and Glass1datasets. The best results were
obtained for all evaluation metrics on the Yeast6 dataset, and
two evaluation metrics for Glass1 dataset. This shows that
DFSVM has good classification results for datasets with
different imbalance ratios and it is robust.

In addition, statistical tests were performed in this paper to
verify the validity and significance of the proposed method.
Under the null hypothesis, all algorithms are equivalent
(i.e., any difference between their mean ranks is only random).
The Friedman statistic

χ2F � 12N
k(k + 1)

⎡⎢⎢⎣∑k
j�1
R2
j −

k(k + 1)2
4

⎤⎥⎥⎦ (17)

TABLE 2 | (Continued) Results of different imbalanced classification methods on datasets.

Dataset Cargood Cleveland0vs4

Measure G-mean F-measure AUC G-mean F-measure AUC

ACFSVM 0.821 ± 0.008 0.725 ± 0.012 0.934 ± 0.004 0.659 ± 0.009 0.333 ± 0.005 0.763 ± 0.012
DFSVM 0.846 ± 0.026 0.737 ± 0.034 0.884 ± 0.026 0.697 ± 0.077 0.476 ± 0.028 0.819 ± 0.074

Dataset Yeast3 Yeast6

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.837 ± 0.004 0.683 ± 0.001 0.933 ± 0.006 0.625 ± 0.001 0.342 ± 0.011 0.880 ± 0.003
B-SMOTE 0.831 ± 0.002 0.672 ± 0.001 0.932 ± 0.002 0.703 ± 0.056 0.529 ± 0.051 0.911 ± 0.001
SOMO 0.851 ± 0.000 0.775 ± 0.001 0.970 ± 0.002 0.593 ± 0.053 0.451 ± 0.047 0.857 ± 0.012
KmeansSMOTE 0.863 ± 0.015 0.749 ± 0.027 0.964 ± 0.004 0.655 ± 0.014 0.443 ± 0.021 0.726 ± 0.015
FSVM-CEN 0.905 ± 0.005 0.720 ± 0.003 0.964 ± 0.003 0.849 ± 0.027 0.374 ± 0.025 0.921 ± 0.002
FSVM-HYP 0.896 ± 0.006 0.720 ± 0.002 0.959 ± 0.001 0.593 ± 0.016 0.365 ± 0.021 0.905 ± 0.004
FSVM-WD 0.891 ± 0.000 0.622 ± 0.000 0.957 ± 0.000 0.813 ± 0.001 0.287 ± 0.000 0.915 ± 0.001
FSVM-BD 0.910 ± 0.001 0.762 ± 0.002 0.974 ± 0.001 0.801 ± 0.072 0.339 ± 0.005 0.922 ± 0.005
ACFSVM 0.901 ± 0.003 0.778 ± 0.005 0.945 ± 0.003 0.805 ± 0.001 0.412 ± 0.007 0.917 ± 0.001
DFSVM 0.917 ± 0.030 0.781 ± 0.040 0.968 ± 0.033 0.856 ± 0.058 0.501 ± 0.059 0.935 ± 0.064

The bold values mean the best results.

TABLE 3 | Average ranking of different methods on G-mean and its ranking
difference with DFSVM.

Method Average rank Difference

SMOTE 7.67 6.34
B-SMOTE 7.00 5.67
SOMO 7.50 6.17
KmeansSMOTE 5.17 3.84
FSVM-CEN 5.50 4.17
FSVM-HYP 5.67 4.34
FSVM-WD 6.75 5.42
FSVM-BD 5.08 3.75
ACFSVM 3.33 2.00
DFSVM 1.33 N/A
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is distributed according to the χ2F distribution with k − 1
degrees of freedom when N and k are large enough. N is
the number of datasets, k is the number of algorithms
performed for comparison, and R is the average ranking of
the algorithms under different datasets. Friedman’s χ2F
statistic is undesirably conservative, so we use a better
statistic

FF � (N − 1)χ2F
N(k − 1) − χ2F

(18)

which is distributed according to the F-distribution with k − 1
and (k − 1)(N − 1) degrees of freedom. We calculated the
average ranking of different algorithms under the G-mean
metric based on the experimental results in Table 2, and

FIGURE 5 | Classification effect of DFSVM under two different activation functions.

TABLE 4 | Classification effect of DFSVM under two different base classifiers.

Evaluation metrics G-mean F-measure AUC

Dataset FSVM SVM FSVM SVM FSVM SVM

Ecoli0147vs2356 0.8260 ± 0.0490 0.8082 ± 0.0748 0.7060 ± 0.0836 0.6868 ± 0.1072 0.9284 ± 0.0502 0.9178 ± 0.0351
Ecoli01vs235 0.8687 ± 0.0950 0.8163 ± 0.1152 0.7628 ± 0.1594 0.5200 ± 0.1618 0.9334 ± 0.0353 0.9545 ± 0.0215
Ecoli0267vs35 0.9187 ± 0.0647 0.7986 ± 0.0883 0.7412 ± 0.1162 0.7270 ± 0.1109 0.9814 ± 0.0191 0.9698 ± 0.0305
Glass1 0.6971 ± 0.0463 0.6667 ± 0.0622 0.6134 ± 0.0591 0.5818 ± 0.0787 0.7699 ± 0.0421 0.7446 ± 0.0544
Yeast1vs7 0.6705 ± 0.0862 0.5029 ± 0.1372 0.4539 ± 0.1453 0.2630 ± 0.1013 0.7508 ± 0.0538 0.6655 ± 0.0921

The bold values mean the best results.

TABLE 5 | The experimental results of different sampling methods.

Dataset Ecoli0147vs2356 Ecoli01vs235

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.7273 ± 0.0456 0.6363 ± 0.1203 0.8354 ± 0.0379 0.8384 ± 0.0461 0.7368 ± 0.0972 0.9321 ± 0.0691
B-SMOTE 0.7323 ± 0.0771 0.5517 ± 0.1605 0.9017 ± 0.0278 0.8752 ± 0.0895 0.6956 ± 0.1396 0.9627 ± 0.0133
SOMO 0.7911 ± 0.1964 0.6823 ± 0.1817 0.9167 ± 0.0336 0.8719 ± 0.0502 0.6778 ± 0.0896 0.9616 ± 0.0216
KmeansSMOTE 0.8129 ± 0.1817 0.6933 ± 0.2175 0.9203 ± 0.0435 0.8913 ± 0.0548 0.7320 ± 0.0861 0.9271 ± 0.0498
DFSVM 0.8260 ± 0.0490 0.7060 ± 0.0836 0.9284 ± 0.0502 0.8687 ± 0.0950 0.7628 ± 0.1594 0.9334 ± 0.0353

Dataset Ecoli0267vs35 Yeast1vs7

Measure G-mean F-measure AUC G-mean F-measure AUC

SMOTE 0.8665 ± 0.0964 0.7125 ± 0.1219 0.9528 ± 0.0366 0.4941 ± 0.1579 0.3363 ± 0.0838 0.6857 ± 0.1466
B-SMOTE 0.8244 ± 0.0994 0.4516 ± 0.1251 0.8029 ± 0.0352 0.5135 ± 0.1213 0.3533 ± 0.1079 0.7308 ± 0.0669
SOMO 0.8620 ± 0.0142 0.6897 ± 0.1330 0.9729 ± 0.0074 0.5811 ± 0.1708 0.4242 ± 0.1174 0.6723 ± 0.0681
KmeansSMOTE 0.8967 ± 0.1108 0.7181 ± 0.1567 0.9611 ± 0.0350 0.5261 ± 0.1961 0.2285 ± 0.0734 0.6652 ± 0.0693
DFSVM 0.9187 ± 0.0647 0.7412 ± 0.1162 0.9814 ± 0.0191 0.6705 ± 0.0862 0.4539 ± 0.1453 0.7508 ± 0.0538

The bold values mean the best results.
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calculated the FF � 8.055. At significance level α � 0.05, the
critical value is 1.976. Since FF under G-mean is greater than
1.976, the null hypothesis is rejected, i.e., the algorithms
compared are not equivalent at α � 0.05. Since the null
hypothesis has been rejected, the Nemenyi post-hoc test is
utilized to complete the performance analysis, and DFSVM is
regarded as the control method. When the difference between the
mean rankings is greater than the critical difference

(CD � qα











k(k + 1)/6N√ � 3.91, where qα � 3.163 in this

paper), they are considered significantly different. The average
ranking of the comparison method and DFSVM and the
differences between them are given in Table 3. As can be seen
from Table 3, DFSVM outperforms the other algorithms.
Although it is not significantly different from KmeansSMOTE,
FSVM-BD and ACFSVM, DFSVM is better than them in terms of
classification effect on different data sets.

FIGURE 6 | Classification results under different margins.

TABLE 6 | Classification results of DFSVM with different number of neurons for G-mean.

Dataset 12 10 8 6 4 2

Ecoli0147vs2356 0.8339 ± 0.0561 0.7289 ± 0.2079 0.8434 ± 0.0691 0.8490 ± 0.0623 0.7968 ± 0.0697 0.7419 ± 0.0807
Ecoli01vs235 0.7964 ± 0.0763 0.8186 ± 0.0688 0.8738 ± 0.0579 0.7892 ± 0.0693 0.8233 ± 0.0610 0.8626 ± 0.0372
Ecoli0267vs35 0.7585 ± 0.0948 0.7370 ± 0.0810 0.9150 ± 0.0119 0.7902 ± 0.0622 0.8626 ± 0.0871 0.7655 ± 0.0882
Yeast1vs7 0.5690 ± 0.0669 0.6145 ± 0.0730 0.6106 ± 0.1270 0.6969 ± 0.0776 0.6026 ± 0.0648 0.6062 ± 0.2919
Yeast3 0.8058 ± 0.0417 0.8378 ± 0.0285 0.8700 ± 0.0291 0.8883 ± 0.0240 0.8977 ± 0.0301 0.8855 ± 0.0272
Yeast6 0.5893 ± 0.0505 0.8022 ± 0.0589 0.6220 ± 0.1238 0.5678 ± 0.0811 0.7785 ± 0.0924 0.6239 ± 0.0877

The bold values mean the best results.
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Influence of Activation Function on the
Performance of the Proposed Method
In this subsection, we compare the effect of the Gumbel activation
function and the ReLU activation function on the experimental
results. We selected five datasets, three of them are Ecoli datasets.
They are different from each other, for example, in the
Ecoli0147vs2356 dataset, positive samples belong to classes 0,
1, 4, 7 and negative samples belong to classes 2, 3, 5, 6; in the
Ecoli01vs235 dataset, positive class samples belong to classes 0, 1
and negative samples belong to classes 2, 3, 5. In the experiments,
the structure of the deep neural network is fixed, the number of
neurons in the third hidden layer is set to 8, and the margin of
triplet loss is set to 0.2. The experimental results are shown by
Figure 5. It can be seen that the classification effect of Gumbel
function is better than ReLU function. In the Ecoli0267vs35
dataset, the Gumbel function showed the most significant
improvement. With the G-mean and F-measure metrics, the
classification effect of the Gumbel function is 6.19 and 7.71%
higher than the ReLU function. On the Glass1 dataset, although
the classification quality of the Gumbel function is not as good as
that of the ReLU function in the G-mean and F-measure metrics,
the Gumbel function achieves better results in the AUC metric.

Influence of Classifier and Sampling
Algorithms on Classification Performance
This subsection compares the classification quality of two
different classifiers, SVM and FSVM. We also selected 5
datasets. In the experiments, the structure of the deep neural
network is fixed, the number of neurons in the third hidden layer
is also set to 8, and the margin of triplet loss is set to 0.2. The
experimental results are shown in Table 4, and highlights the best
performing models in boldface. It can be seen that the
classification quality of FSVM is better than that of SVM. On
the Ecoli01vs235 dataset, the AUC values of FSVM are slightly

lower than those of SVM, but FSVM is 0.0524 and 0.2428 higher
than SVM in G-mean and F-measure metrics. FSVM assigns a
higher misclassification cost to the minority class in the objective
function and therefore has a better imbalance classification effect.

In addition, we compare the center distance based random
feature oversampling method in DFSVM with different sampling
methods, such as SMOTE, B-SMOTE, SOMO and
KmeansSMOTE. In the experiments, we only replace the
different sampling methods and keep the remaining settings
the same. The experiments were conducted on four different
datasets, and the results are shown in Table 5, which shows that
the random feature oversampling method based on the center
distance is better than the other sampling methods. The best
results under each dataset are bolded. Although DFSVM does not
have the best classification results on the G-mean and AUC for
the Ecoli01vs235 dataset, it achieves the best classification results
on the F-measure.

Influence of Network Structure and Margin
on the Performance of the Proposed
Method
This subsection conducts comparative experiments on different
network structures of DFSVM. First, we selected three Ecoli
datasets and one Yeast dataset for experiments on different
margins. In the experiments, the margin of triplet loss is taken
from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and the number of
neurons of the third hidden layer of the deep neural network is set
to 8. The experimental results on the evaluation metrics are
shown in Figure 6. The x-axis represents the values taken for
different margins, and the y-axis represents the experimental
result values for different metrics, such as G-mean, F-measure
and AUC. It can be seen that in the same dataset, different metrics
have the same trend with margin. However, the tendency of
variation is not the same among different datasets. On the

TABLE 8 | Classification results of DFSVM with different number of neurons for AUC.

Dataset 12 10 8 6 4 2

Ecoli0147vs2356 0.8879 ± 0.0641 0.7467 ± 0.1766 0.9003 ± 0.0754 0.9303 ± 0.0521 0.8155 ± 0.0916 0.7442 ± 0.0918
Ecoli01vs235 0.9024 ± 0.0599 0.9467 ± 0.0149 0.9353 ± 0.0440 0.9394 ± 0.0413 0.9370 ± 0.0605 0.9151 ± 0.0446
Ecoli0267vs35 0.9451 ± 0.0290 0.9363 ± 0.0413 0.9855 ± 0.0044 0.9067 ± 0.0508 0.9533 ± 0.0421 0.8874 ± 0.0976
Yeast1vs7 0.6386 ± 0.0884 0.7562 ± 0.0663 0.7298 ± 0.1079 0.7232 ± 0.0987 0.6409 ± 0.1111 0.7362 ± 0.1286
Yeast3 0.8886 ± 0.0414 0.9364 ± 0.0228 0.9429 ± 0.0223 0.9373 ± 0.0220 0.8978 ± 0.0333 0.9461 ± 0.0217
Yeast6 0.7485 ± 0.0454 0.8855 ± 0.0640 0.7555 ± 0.0923 0.6590 ± 0.0688 0.8522 ± 0.0864 0.7045 ± 0.0848

The bold values mean the best results.

TABLE 7 | Classification results of DFSVM with different number of neurons for F-measure.

Dataset 12 10 8 6 4 2

Ecoli0147vs2356 0.7110 ± 0.1244 0.3965 ± 0.1425 0.7116 ± 0.1055 0.4622 ± 0.1293 0.3637 ± 0.1157 0.4010 ± 0.0858
Ecoli01vs235 0.7721 ± 0.0889 0.6922 ± 0.1053 0.8068 ± 0.0603 0.6703 ± 0.0877 0.7139 ± 0.0848 0.7903 ± 0.0886
Ecoli0267vs35 0.7196 ± 0.1114 0.6994 ± 0.1006 0.7271 ± 0.1246 0.6795 ± 0.0836 0.6521 ± 0.1422 0.6118 ± 0.1266
Yeast1vs7 0.2817 ± 0.0769 0.3352 ± 0.0799 0.3037 ± 0.1077 0.2417 ± 0.0775 0.2412 ± 0.0665 0.1067 ± 0.0675
Yeast3 0.6403 ± 0.0580 0.6837 ± 0.0440 0.7000 ± 0.0469 0.6832 ± 0.0394 0.7516 ± 0.0402 0.5284 ± 0.0727
Yeast6 0.3611 ± 0.0415 0.4005 ± 0.0596 0.2980 ± 0.0927 0.3535 ± 0.0668 0.3776 ± 0.0646 0.3295 ± 0.0635

The bold values mean the best results.
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Ecoli0267vs35 dataset, the best classification results are obtained
when the margin is 0.3. However, on the Ecoli01vs235 dataset, the
classification is worse when the margin is 0.3. For all datasets, a
smaller margin gives a better imbalanced classification result.
Smaller margins make it easier for the triplet loss to converge to
zero, but too small margins can make it difficult for the model to
distinguish similar features. We also conducted comparison
experiments on DFSVM with different hidden layer sizes. The
fixed margin size in the experiments is 0.2, and the number of
neurons in the third hidden layer of the neural network is taken
from {2,4,6,8,10,12}. The experimental results under different
evaluation metrics are shown in Tables 6–8. We selected three
Ecoli datasets and three Yeast datasets, and the best results are
bolded. It can be found that for the Ecoli dataset, the better results
are achieved when the number of nodes is 6 and 8. For the Yeast
dataset, better classification quality is achieved at node numbers
of 8 and 10. In addition, it can be seen from Table 2 that the
features extracted by the deep neural network are more beneficial
for classification in comparison with other FSVM-basedmethods.

CONCLUSION

This paper proposes an imbalanced classificationmethod combined
with deep neural networks, DFSVM. In order to obtain features
with intra-class similarity and inter-class discrimination, a deep
neural network is trained using triplet loss function and Gumbel
activation function to obtain the deep feature representation. The
results of the experiments show that the proposed feature extraction
method has good information acquisition ability and can effectively
distinguish different classes. To balance the data distribution, a
random feature sampling algorithm based on the center of class is
used in the minority samples to maintain the diversity of the
minority class samples. Compared with other sampling
algorithms, it can effectively avoid overfitting and improve the
generalization performance of the model. Fuzzy support vector
machine has provided a higher misclassification loss for the
minority class, and it enhanced the classification performance of

the algorithm for the minority class. According to the experimental
results, it can be found that the proposed DFSVM has good
classification results on evaluation metrics: G-means, F-measure,
and AUC. In future work, more efficient network structures and
more robust feature extractors can be used to provide valid
measures for imbalanced classification.
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