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Abstract

De novo protein design is a rapidly growing field, and there are now many interesting and useful examples of designed proteins in the literature.
However, most designs could be classed as failures when characterised in the lab, usually as a result of low expression, misfolding, aggregation
or lack of function. This high attrition rate makes protein design unreliable and costly. It is possible that some of these failures could be caught
earlier in the design process if it were quick and easy to generate information and a set of high-quality metrics regarding designs, which could
be used to make reproducible and data-driven decisions about which designs to characterise experimentally.
We present DE-STRESS (DEsigned STRucture Evaluation ServiceS), a web application for evaluating structural models of designed and
engineered proteins. DE-STRESS has been designed to be simple, intuitive to use and responsive. It provides a wealth of information regarding
designs, as well as tools to help contextualise the results and formally describe the properties that a design requires to be fit for purpose.
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Introduction

There has been rapid development in the field of de novo
protein design over recent years, with more groups producing
increasingly ambitious designs with complex behaviour, often
applied in cellular environments (Ben-Sasson et al., 2021;
Glasgow et al., 2019; Harrington et al., 2021; Herud-Sikimić
et al., 2021; Pirro et al., 2020; Sesterhenn et al., 2020; Van
Drisse et al., 2021; Pan et al., 2020).

Despite the great promise of de novo protein design, it
remains the domain of highly specialist research groups, as
there are significant barriers blocking broader adoption as
a methodology. One major challenge is that only a fraction
of designs adopt stable, folded structures when expressed
(Huang et al., 2016), and it can be difficult to identify these
models using the metrics calculated during the design process
alone (Radom et al., 2018). This is especially challenging
for designs with complex requirements that are needed for
targeted applications.

Here, we present DE-STRESS (DEsigned STRucture Evalu-
ation ServiceS), a user-friendly web application for evaluating
structural models of designed and engineered proteins. We
aim to provide the user with as much information as possible
about their designs before they select sequences to characterise
experimentally.

Methods and Results

The DE-STRESS application consists of a simple and intu-
itive user-interface, written in Elm/JavaScript, and a back-
end web stack, consisting of Gunicorn/Flask/GraphQL/Post-
greSQL (Fig. 1). The interface has three main sections that the
user can explore: designs, reference sets and specifications.

On the Designs page (Fig. 2A), users can upload models
of proteins (in PDB format) to the DE-STRESS server, where
all the included metrics will be calculated for each design.
Once the metrics have been calculated, an overview of the
whole batch of designs is provided. Detailed information can
be viewed for each design (Fig. 2B), as well as a comparison to
the active Reference Set and Requirement Specification (vide
infra).

On the Reference Sets page, users can define a set of
known protein structures from the PDB (Berman et al., 2003),
which can be used as a basis of comparison for their designs.
We have precalculated the metrics included in DE-STRESS
for the biological units, as defined by the PDBe (http://ftp.e
bi.ac.uk/pub/databases/pdb/data/biounit/), of 82 010 protein
structures. The remaining structures in the PDB either did
not contain protein, contained formatting errors in the PDB
file or, in the case of large structures, failed to return results
within a reasonable timeframe. Similar restrictions have been
placed on models that can be uploaded to the webserver, in
order to ensure server stability. Using these data, the user can
define their own reference sets by submitting a list of PDB
accession codes, enabling them to compare their designs to
relevant structures. Additionally, two default reference sets
are provided as an example, based on high-quality structures
from Top500 (Hobohm and Sander, 1994) and (Wang and
Dunbrack, 2003). Finally, users can also define reference sets
from models that they have uploaded to the server, allowing
the creation of reference sets from unpublished structures.

Once a reference set has been defined, aggregated metrics
are presented alongside the metrics for the user’s designs.
All the data used to generate the reference sets are available
to search and download, programmatically and interactively,
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Fig. 1. Overview of the DE-STRESS application architecture.

through a GraphQL API available at the following url: https://
pragmaticproteindesign.bio.ed.ac.uk/big-structure/graphql.

Reference sets are intended to provide context for the
metrics returned by DE-STRESS, and while we have provided
some example reference sets of high-quality crystal structures,
manually defining a reference set is much more useful. For
example, if you are designing coiled-coil proteins, comparing
your designs to similar structures is likely to be more useful
than a general set of proteins, as the metrics and other
information, such as sequence composition, will be directly
comparable. Furthermore, it is worth noting that designs with
metrics that fall outside of the range observed for known
protein structures may still express, fold and be functional.
In certain instances, the designer may be actively selecting
designs with metrics that fall outside of those observed for
natural proteins; in fact, this is very often the purpose of
designing proteins de novo.

The specifications page allows the user to define ‘Require-
ment Specifications’, which encapsulate the properties their
designs should have in order to be fit for purpose. The user
can define complex rules, such as nested conditional proper-
ties, that can be used to filter designs, alongside associated
metadata. We plan to expand the role of the specifications
in the future, allowing the user to capture more information
about their design intent and export the specification to be
used by other programmes.

A variety of external software packages are used by the
DE-STRESS web server to calculate metrics for uploaded
models (Table 1, supplementary table 1), with detailed and

up-to-date information on the version and command used
to run the software provided in the supplementary material
and glossary page of the application. Basic information is
extracted using ISAMBARD (Wood et al., 2017), such as
the isoelectric point and composition of the sequence, as
well as implementations of metrics from the literature, such
as packing density (Weiss, 2007) and hydrophobic fitness
(Huang et al., 1995). In addition to these metrics, DE-STRESS
applies a range of scoring functions that have either been
developed specifically for protein design or have been applied
to design proteins, such as BUDE FF (McIntosh-Smith et al.,
2012, 2015; Thomson et al., 2014), EvoEF2 (Huang et al.,
2020b, Huang et al., 2020a), Rosetta (Alford et al., 2017; Cao
et al., 2020) and DFIRE2 (Yang and Zhou, 2008; Negron
and Keating, 2014). Finally, we use Aggrescan3D (Kuriata
et al., 2019) to calculate an aggregation propensity score for
protein structures, as aggregation is a common failure mode
for designed and engineered proteins (Marques et al., 2021).
For detailed information regarding the metrics included see
supplementary tables 2-11. These metrics are presented on the
Design Details page, alongside a visualisation of the model,
using the NGL JavaScript library (Rose and Hildebrand,
2015; Rose et al., 2016), and other information such as sec-
ondary structure assignment using DSSP (Kabsch and Sander,
1983; Touw et al., 2015).

A privacy first approach has been taken when implementing
DE-STRESS. No login is required to use the application and
no data regarding the user, or their designs, are stored on
our server. Designs are submitted directly to an in-memory
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Fig. 2. The DE-STRESS user-interface. (A) The ‘Designs’ page allows users to upload designs, obtain information on the whole batch of designs and
download a CSV file containing their results. (B) Detailed information on specific designs is offered on the ‘Design Details’ page.

Table 1. Model evaluation methods included in DE-STRESS

Evaluation method Type Scoring convention Reference

Packing density Geometric analysis +ve (Weiss, 2007)
Hydrophobic fitness −ve (Huang et al., 1995)
BUDE FF All-atom scoring function −ve (McIntosh-Smith et al., 2012,

2015)
EvoEF2 −ve (Huang et al., 2020, 2)
Rosetta −ve (Alford et al., 2017)
DFIRE2 Statistical potential −ve (Yang and Zhou, 2008)
Aggrescan3D Aggregation propensity −ve (Kuriata et al., 2019)
ISAMBARD Basic information N/A (Wood et al., 2017)
DSSP Secondary-structure assignment N/A (Kabsch and Sander, 1983; Touw

et al., 2015)

The scoring convention indicates whether the score is considered more favourable if it is lower (−ve) or higher (+ve).

job queue, with no associated metadata, and the results are
returned directly to the user. All data regarding the user’s
designs are stored locally on the device used to access the
website and can be exported to a CSV file for further analysis.
With this architecture, we aim to give the user confidence in
submitting their designs to the server. However, if they would
like to take further steps to ensure that no one could access
their data, they can run a local instance of the web application,
which we have made as simple as possible by containerising
the application.

We envisage that, for many users, DE-STRESS will be useful
for generating descriptive information and statistics that could
be manually examined to choose designs that meet the needs

of their application. Beyond this, the datasets that DE-STRESS
creates could be useful for automatic identification of high-
quality models using data-driven methods. As a simple exam-
ple of this, we attempted to discern experimentally determined
structures from decoys that are used to benchmark protein-
folding algorithms. The dataset and the associated scripts for
performing this analysis are available on GitHub: https://githu
b.com/wells-wood-research/stam-m-wood-c-de-stress-2021.

Using the DE-STRESS web application, we generated and
exported metrics for a random sample of 9 experimentally-
determined structures, along with 360 decoys (40 per struc-
ture) from a set that was previously generated by 3DRobot.
3DRobot produces structurally diverse and well-packed decoy
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Fig. 3. Principal component analysis of DE-STRESS metrics generated for experimentally determined structures (stars), folding decoys (circles) and
alternative crystallographic structures of the protein (squares).

structures that are difficult to discern from experimentally
determined structures with simple metrics, such as percentage
of secondary structure or radius of gyration, as well as more
complex metrics such as statistical potentials (Deng et al.,
2016). We also included alternative structures for each of
these proteins (supplementary table 14), identified through
the structural similarity search tool on the RSCB PDB, to
ensure that the findings were robust to minor variations in
the structure.

Firstly, before performing PCA, various metrics were
excluded from the data set. Categorical and discrete variables
were excluded as PCA requires continuous variables, and
metrics that were constant for a structure were excluded.
This is because these metrics provided no information
that could be used to distinguish between the decoys and

experimentally determined structures. In addition to this, as
the energy values are dependent on the size of the protein
structure, we normalised for length by dividing all the energy
values by the number of residues in the structure. A full
list of the metrics included in the analysis is shown in
supplementary table 12. Before performing PCA, the metrics
were normalised using min–max normalisation. The first two
principal components, which explained 60% of the variance
in the data, were plotted against each other to explore how
well the DE-STRESS metrics differentiated the experimentally
determined structures from the decoys (Fig. 3). The additional
crystallographic structures were also included in these
plots.

From the plots in Fig. 3, we see that the experimentally
determined structures, shown as stars, are generally distinct
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from the decoys and usually have the largest values for both
principal components 1 and 2. In addition to this, the addi-
tional crystallographic structures, shown as squares, are close
to the experimentally determined structures used to generate
the 3DRobot set. This analysis suggests that the DE-STRESS
metrics are capturing properties of the structural models that
can be used to distinguish ‘native-like’ structures from decoys.

To understand which metrics differentiated the experimen-
tally determined structures from the decoys, we examined
the relative contribution of individual DE-STRESS metrics
to the first two principal components (supplementary table
13). It was found that the major contributors to PC1 were
the short-range and long-range hydrogen bonding terms from
the Rosetta forcefield and the total BUDE forcefield energy
value. The major contributors to PC2 were the average score
of Aggrescan3D, the steric component of the BUDE force-
field and a solvation term from the Rosetta forcefield. Long-
range hydrogen bonding was highlighted by the developers
of 3DRobot as a key differentiating feature between native
structures and decoys, and maintaining this property was key
to creating native-like decoys. However, while analysis per-
formed in the 3DRobot publication shows that their decoys
performed significantly better in this regard than previous
decoy sets (Deng et al., 2016), our results indicate that there
is still some detectable difference between the experimentally
determined structures and the decoys. The fact that Aggres-
can3D is a key contributor to PC2 might indicate that the
surface properties of the decoys are significantly different
from the native structures, and this could indicate a potential
route to improve the process used to create decoy models.

Conclusions

DE-STRESS enables both non-experts and seasoned protein
designers to rapidly evaluate their designs, providing a frame-
work for making reproducible, data-driven decisions about
which designs to take forward for experimental character-
isation. While some protocols and applications have been
developed to meet similar needs as DE-STRESS (Bernhofer
et al., 2021; Guffy et al., 2018; Yallapragada et al., 2020, 2),
none of them have the same breadth of metrics and tools,
all packaged in a user-friendly web application. However,
the metrics included in the initial version of DE-STRESS are
certainly not exhaustive: general methods for assessing the
quality of a protein model (Vriend, 1990; Wang et al., 2019;
Williams et al., 2018; Laskowski et al., 1993), as well as
more specialised methods for assessing design quality, such as
analysis of covariation similarity with homologs (Ollikainen
and Kortemme, 2013; Ó Conchúir et al., 2015; Ludwiczak
et al., 2018), could be useful additions in future releases. We
believe that our analysis of decoy structures demonstrates that
the metrics included in this initial version of DE-STRESS are
useful and can be used to identify high-quality models, but
further experimental work is required to determine whether
this translates into a reduced failure rate of designs taken into
the lab, which would meet our ultimate aim of increasing the
efficiency of the protein-design process and making it more
accessible and reliable as a technique.

Availability

DE-STRESS is available for non-commercial use, without
registration, through the following website: https://pragma

ticproteindesign.bio.ed.ac.uk/de-stress/. Source code for the
application is available on GitHub: https://github.com/wells-
wood-research/de-stress. The data used to generate reference
sets is available through a GraphQL API, with the following
URL: https://pragmaticproteindesign.bio.ed.ac.uk/big-structu
re/graphql.
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