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Background: High frequency oscillations (HFOs) have attracted great interest among

neuroscientists and epileptologists in recent years. Not only has their occurrence

been linked to epileptogenesis, but also to physiologic processes, such as memory

consolidation. There are at least two big challenges for HFO research. First, detection,

when performed manually, is time consuming and prone to rater biases, but when

performed automatically, it is biased by artifacts mimicking HFOs. Second, distinguishing

physiologic from pathologic HFOs in patients with epilepsy is problematic. Here we

automatically and manually detected HFOs in intracranial EEGs (iEEG) of patients with

epilepsy, recorded during a visual memory task in order to assess the feasibility of the

different detection approaches to identify task-related ripples, supporting the physiologic

nature of HFOs in the temporal lobe.

Methods: Ten patients with unclear seizure origin and bilaterally implanted

macroelectrodes took part in a visual memory consolidation task. In addition to

iEEG, scalp EEG, electrooculography (EOG), and facial electromyography (EMG) were

recorded. iEEG channels contralateral to the suspected epileptogenic zone were

inspected visually for HFOs. Furthermore, HFOs were marked automatically using an

RMS detector and a Stockwell classifier. We compared the two detection approaches

and assessed a possible link between task performance and HFO occurrence during

encoding and retrieval trials.

Results: HFO occurrence rates were significantly lower when events were marked

manually. The automatic detection algorithm was greatly biased by filter-artifacts.

Surprisingly, EOG artifacts as seen on scalp electrodes appeared to be linked to many

HFOs in the iEEG. Occurrence rates could not be associated to memory performance,

and we were not able to detect strictly defined “clear” ripples.

Conclusion: Filtered graphoelements in the EEG are known to mimic HFOs and thus

constitute a problem. So far, in invasive EEG recordings mostly technical artifacts and

filtered epileptiform discharges have been considered as sources for these “false” HFOs.
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The data at hand suggests that even ocular artifacts might bias automatic detection in

invasive recordings. Strict guidelines and standards for HFO detection are necessary

in order to identify artifact-derived HFOs, especially in conditions when cognitive tasks

might produce a high amount of artifacts.

Keywords: high-frequency oscillations, visual memory, invasive EEG, electroencephalography, epilepsy

1. INTRODUCTION

High frequency oscillations (HFOs) have gained considerable
interest amongst neurologists and neuroscientists in the last
decade. These relatively new electroencephalographic (EEG)
markers are defined as single events of at least four oscillations
with a frequency above 80 Hz that clearly stand out from the
background EEG (1). Classically, HFOs have further been divided
into two subgroups: ripples (80–250 Hz) and fast ripples (250–
500 Hz; 2). Given these criteria, a high signal-to-noise ratio is
key when attempting to detect HFOs. Hence, the first findings of
HFOs stem from invasive EEG (iEEG) recordings with micro- or
macroelectrodes (2–7).

As these recordings are only performed during presurgical
evaluation in patients with drug resistant epilepsies, their
occurrence has naturally been studied and linked to epilepsy and
many findings indicate a link between HFOs and epileptogenity,
both during ictal (8, 9) and interictal states (10–12). Besides
there association with epilepsy, several studies also suggested
an existence of a second HFO population, reflecting physiologic
processes (3, 13–17). Especially entorhinal and hippocampal
ripples have been associated with memory consolidation in
animals (18, 19) and humans (20–23).

Albeit these numerous investigations, the detection of HFOs
remains a highly debatable subject, and many aspects need to
be considered. Besides technical considerations regarding the
signal-to-noise ratio and data sampling (24–26), choosing the
actual method of detection can be difficult. Considering the
mentioned criteria (1), visual inspection requires enlarging
the signal both in time scale and amplitude in order to
discern these discrete events from the background EEG (27).
Screening the data in such a way is highly time-consuming and
visual detection can further be biased by the raters’ subjective
assessment of what “clearly stands out from the background
EEG” (28, 29).

In contrast, automatic HFO detection is fast and objective. In
facts, there exist a plethora of automatic detection algorithms
for HFOs (30–34). Though considerably minimizing the time
necessary to perform HFO detection, automatic detectors are
prone to biases from signal artifacts (35–39), and they are
seldom accurate on datasets they have not been trained on
(24, 40). Furthermore, automatic detection algorithms are unable
to differentiate between HFOs occurring as single elements and
HFOs that are coupled with epileptiform discharges.

Given its more adaptive and strict results, manual detection
may thus be necessary when dealing with data containing
different (physiologic and pathologic) HFO populations and
artifacts. For instance, when wanting to detect physiologic HFOs
that are evoked by cognitive paradigms in patients with epilepsy.

In the study at hand, we analyzed such a dataset. Using a dataset
described by Axmacher et al. (20), we investigated stimulus-
induced HFOs during encoding and retrieval to demonstrate
possible differences between the two approaches of HFO
detection, as well as to take advantage of the high sensitivity of
automatic detectors and the specificity of a manual review when
trying to link ripple occurrence to memory performance.

For this purpose, we assessed for both detection approaches:
(1) whether ripple occurrence rates during encoding or retrieval
phases differed between correct and incorrect responses in
the memory task; (2) whether the event rates detected during
encoding were predictive for the performance in the subsequent
retrieval trials on a trial level; and (3) whether the amount of
detected events was related to the response times in the memory
task. We hypothesized the results to differ between automatically
detected and manually detected events. Assuming that automatic
detection results in less valid detections, we hypothesized
that event rates revealed no or less of an association with
memory performance as compared to events detected visually.
Confirming our hypothesis would emphasize the importance for
an accurate detection in order to differentiate physiologic, e.g.,
memory-related, from pathologic HFOs.

2. METHODS

2.1. Subjects and Experimental Procedure
Ten patients with pharmacoresistant temporal lobe epilepsies
(five women, mean age = 39.4 years, SD = 10.83), enrolled
in a study that took place at the University Hospital Bonn
between 2004 and 2006, were retrospectively analyzed. All
patients received bilateral intracranial EEG (iEEG) recordings for
presurgical evaluation. Patients enrolled in the study were asked
to perform a visual memory task on a recording day previous
to which no seizures had been experienced for 24 h. Detailed
information on the patient sample may be found in Table 1. The
study was approved by the local ethics committee, and all patients
gave written informed consent before participating.

The visual working memory task contained two encoding as
well as one retrieval phase, intertwined by a nap time. During
encoding, patients were presented with 80 pictures of either
landscapes or houses. Each image was presented for 1,200 ms
with a variable interstimulus interval of 1,800 ± 200 ms. In
order to ensure that patients stayed focused they were asked to
indicate via button press whether they saw an image depicting
a house or landscape. After this initial encoding phase, patients
were asked to rest in a darkened room for 60 min and try to
nap. Following a pause of 15 min after this period of resting there
was another encoding phase with 80 novel images. After another
break of 15 min, patients were presented with all 160 images they
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TABLE 1 | Patient information.

Subject Age

(years)

Gender Structural lesion Seizure type(s) Onset

age

SOZ (iEEG) Further remarks

P1 45 f Hippocampal sclerosis right Focal non-motor impaired

awareness seizures

13 Right

temporo-mesial

P2 34 m Hippocampal sclerosis right Focal non-motor impaired

awareness seizures + ftbTCS

n\a Right

temporo-mesial

P3 54 m Hippocampal sclerosis left Focal aware non-motor seizures

+ focal motor impaired

awareness seizures + ftbTCS

9 Left

temporo-mesial

P4 33 f Hippocampal sclerosis +

hypometabolism (FDG) temporal

left

Focal non-motor impaired

awareness seizures + ftbTCS

n\a Left

temporo-mesial

Left sided speech

dominance (WADA)

P5 44 f MRI negative; hypometabolism

(FDG) temporo-polar left

Focal aware non-motor seizures 18 Left temporo-polar Right handed

P6 46 m Hippocampal sclerosis +

hypometabolism (FDG) temporal

mesial and polar left

Focal motor and non-motor

impaired awareness seizures

11 Left

temporo-mesial

Right handed, bilateral

speech (WADA)

P7 47 m Hippocampal sclerosis right;

discrete hypometabolism (FDG)

temporo-polar left

Focal aware motor seizures +

ftbTCS

n\a Right

temporo-mesial

P8 45 m Hippocampal sclerosis and

hypometabolism (FDG) temporal

right

Focal non-motor impaired

awareness seizures

6 Bitemporal

P9 18 f Hippocampal sclerosis left Focal motor and non-motor

impaired awareness seizures

n\a Most prominently

left

temporo-mesial

Hint of right-sided

hippocampal sclerosis

P10 28 f Hippocampal sclerosis and

temporo-polar dysplasia right

Focal motor impaired awareness

seizures

n\a Right

temporo-mesial

Ictal aphasia

SOZ, seizure onset zone; iEEG, intracranial electroencephalography; f, female; m, male; ftbTCS, focal to bilateral tonic clonic seizures; FDG, fluorodeoxyglucose; MRI, magnetic resonance

imaging.

had learned previously plus an addition of 80 unlearned images.
During this retrieval phase, patients were asked to indicate
whether they recognized the presented images from the encoding
phases before.

2.2. iEEG Recordings and HFO Detection
Invasive EEG recordings were performed via inserted
multicontact depth electrodes (AD-Tech; 10 platinum-iridium
contacts each). Depth electrodes were inserted from a posterior
approach into the hippocampus and rhinal cortex, and electrode
locations were documented via post-implantation MRI scans.
Furthermore, six patients (patients 1, 4, 5, 6, 8, and 10) received
also ECoG (24–102 channels, mean = 45.67) recordings,
covering additional temporal lobe areas. In all of these cases,
strips covered at least the anterior temporal cortex as well as the
lateral temporal cortex. Patients 6 and 10 only received unilateral
depth electrode implantations, but had additional large ECoG
grids over the respective other hemisphere. In patient 10, depth
electrodes were implanted in the left hemisphere and thus could
be included in the analyses. In addition to the described invasive
EEG recordings, 3–7 scalp electrodes, vertical and horizontal eye
movements, an ECG, as well as a facial electromyogram were
recorded in each patient during the experiment. Invasive EEG
channels were recorded at a sampling rate of 1,000 Hz, and a
linked mastoid signal served as reference.

For each patient one encoding and the respective retrieval
session were exported to .edf format and then imported to an in-
house built software called MEEGIPS (41), for HFO detection.
The individual encoding recordings lasted between 305 and 387 s
(mean = 329.3 s), whereas the retrieval phase lasted between
903 and 1,011 s (mean = 927 s). On average, HFO analysis was
performed on 21 min of EEG data for each participant. The
imported EEG data was then analyzed in two ways. First, events
of interest were marked visually by one experienced rater, and
second, another person conducted an automatic HFO detection.

For visual inspection, the EEG data, as well as additional
EMG, ECG, and EOG channels, were prepared in two ways: First,
the data was high-pass filtered at 0.1 Hz, and a FIR multiline
band reject filter was applied in order to filter out the powerline
noise at 50 Hz as well as its respective harmonics. This data was
considered the “raw signal.” Second, the data was filtered between
80 and 250 Hz to extract the ripple-band signal, which will be
referred to hereafter as the “filtered EEG.” For inspection, both
of these signals were displayed next to each other on a screen,
and the time cursor was synchronized. Up to eight iEEG channels
at a time and the additional EMG, ECG, and EOG channels
were visually inspected. In addition to the EEG signals, small
windows for the empirical mode decomposition, the discrete
Fourier transform, the discrete wavelet power density, and
the continuous wavelet transform, calculated from any marked
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segment of the raw signal, were displayed on the right of the
screen. iEEG channels with continuous artifacts corrupting the
signal and channels with a generally poor signal-to-noise ratio
were excluded.

Ripples were then marked according to the following criteria:
(1) consisting of at least four consecutive oscillations both seen
in the filtered signal and in the empirical mode decomposition;
(2) displaying a regular morphology clearly discernable from
the background EEG; (3) revealing an isolated “blob” either
in the discrete wavelet power density (DWPD) or in the
continuous wavelet transformed signal (CWT; 37); (4) showing
a superimposed fast activity in the raw data; and (5) not directly
linked to artifacts observed in the EEG, EMG, ECG or EOG
channels. Based on these criteria three event categories were
identified andmarked: (i) ripples, fulfilling all criteria; (ii) unclear
HFOs (uHFO), events that did not meet all criteria based on
signal quality or unclear evidence of artifacts; and (iii) artifacts,
generating ripples meeting the described criteria except the last
one. All detected ripples and uHFOs were additionally discussed
in the team in order to rigorously exclude all false positive events.

For the automatic detection, the data was decomposed into
empirical mode functions (two intrinsic mode functions with a
maximum of 100 iterations; 42). Events of interest were detected
using an RMS detector with a sliding window size of 10 samples
and 1-s-sized statistics segments. The properties for events of
interest were fixed as follows: minimum duration of ≥12 ms;
RMS transition threshold of 2SD and a peak threshold of 3SD.
Events separated by <30 ms were combined taken into account a
standard deviation square root. The detected events were then
classified based on Stockwell’s S-transformation (43) for the
frequency range of 80–250 Hz, and a Tukey window was applied
to segments 1 s around the center of each event of interest. Events
of interest were classified as ripples (autoR) based on a maximum
power ratio between the trough and the high-frequency peak of
90%, and aminimumhigh-frequency to low-frequency peak ratio
of 20%. The process of automated HFO detection using these
methods has been described in detail by Burnos et al. (44).

2.3. Statistical Analysis
The events, detected automatically and visually, were then
exported together with the experimental markers and analyzed
usingMATLAB (release R2019a, TheMathworks, Massachusetts,
USA). Rates for all autoR, ripples, uHFO, artifacts, as well as all
events detected manually in cumulation were summarized for
each encoding and retrieval trial and for each individual patient.
Trials were defined as segments starting with stimulus onset and
lasting until either patients responded via button press or the next
stimulus was presented. In a next step, retrieval trials were paired
with their respective encoding trials and grouped into trials
with correctly and incorrectly retrieved items (i.e., correct “old”
vs. incorrect “new” decisions for previously presented items).
Finally, the event rates were related to the respective number
of trials and iEEG channels per patient as well as to the lengths
of each trial. Thus, we ended up with relative event rates for
encoding and retrieval trials corrected for the trial lengths in
seconds and for the number of iEEG channels analyzed. For
statistical analysis, only events from temporal sites within the

hemisphere contralateral to the suspected epileptic zone were
considered. In patient 8, we considered the right hemisphere
to contain the epileptogenic zone due to the imaging findings,
despite seizure onset zones observed in both temporal lobes.

The resulting event matrices were imported into R (45).
Statistical analysis aimed at answering three questions to test
the general hypothesis. First, we wanted to investigate whether
there was a general difference between correct and incorrect
trials for the rates of detected events during the retrieval phase.
For this purpose, the mean event rates for correct and incorrect
trials during retrieval for each patient were entered into a rank-
based ANOVA-type test from the package “nparLD” (46) with
the two within-subject factors response accuracy (correct vs.
incorrect) and event type (all manual events, artifacts, uHFOs,
ripples, autoR).

Second, we analyzed whether the rate of events detected
during encoding was predictive for the correctness in the
subsequent retrieval trials on a trial level. For this purpose,
we calculated a generalized linear model with the retrieval trial
accuracy as dependent variable and the event rates as predictive
factor. Patients were considered as a random factor, in order to
take into account variations in baseline events across subjects.
Furthermore, we calculated Kendall’s correlation between the
number of correct trials and the mean event rates per second
and estimated a confidence interval using the bias corrected and
accelerated bootstrap method with 10,000 bootstrap samples to
assess an effect at the group level.

Third, we tested whether the amount of detected events
during encoding or retrieval impacted the response time in
the retrieval phase. For this we calculated Kendall’s correlation
between response times and event occurrence rates for each
patient individually. We then tested the null hypothesis that the
median of these correlations was zero, using a sign test/binomial
test: The fact that under the null hypothesis, the number of
correlations smaller than zero follows a binomial distribution
with probability 0.5 allows for an easy calculation of p-values.
Correcting for multiple comparisons (13 statistically significance
tests) using the Bonferroni method, the adjusted p-threshold was
set at 0.0038, in order to avoid an increased family wise error rate.

3. RESULTS

All event rates per second for both encoding and the
corresponding correct or incorrect retrieval trials are presented
in Table 2. No events fulfilled all five criteria to being marked
as ripples in the channels of interest. We did detect a small
number of unclear HFOs in some of the patients that adhered
to most criteria, but could potentially be connected to non-
cerebral electrophysiological origins. Figure 1 shows such an
uHFO, whereas a clear ripple detected on the ipsilateral site of
the suspected epileptic focus in patient 6 is depicted in Figure 2.
Notably, not all trials could be taken into consideration, as there
were some missing responses during retrieval in patients 1, 2, 5,
and 8.

Regarding possible differences in event occurrence rates
during retrieval, we did not observe a difference between correct
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TABLE 2 | Event rates per second and iEEG channel, detected during encoding and retrieval in correct (top rows) and incorrect (bottom rows) trials.

Subject Chans. Trials Resp. time
Encoding events/sec. Retrieval events/sec.

autoR Man. events Artifact uHFOs autoR Man. events Artifact uHFOs

P1 24
36 1.312 0.657 0.017 0.017 0 0.735 0 0 0

43 1.428 0.657 0.021 0.021 0 0.682 0.018 0.018 0

P2 10
35 1.208 0.353 0.188 0.188 0 0.376 0.071 0.071 0

41 1.2 0.261 0.065 0.065 0 0.258 0 0 0

P3 10
28 0.99 0.544 0.089 0.053 0.035 0.711 0 0 0

28 1.032 0.605 0.051 0.019 0.033 0.696 0.049 0.042 0.007

P4 24
44 0.953 0.535 0.061 0.058 0.004 0.633 0.014 0.014 0

36 0.943 0.668 0.077 0.069 0.009 0.656 0.023 0.023 0

P5 24
47 0.931 0.247 0.032 0.029 0.003 0.531 0.012 0.012 0

32 1.101 0.295 0.011 0.01 0.001 0.498 0.024 0.024 0

P6 40
17 0.915 1.048 0.077 0.055 0.022 0.904 0.127 0.122 0.005

63 0.851 0.992 0.112 0.09 0.023 0.816 0.059 0.057 0.002

P7 10
29 0.965 0.32 0.127 0.127 0 0.55 0.072 0.072 0

27 0.923 0.362 0.191 0.191 0 0.417 0.04 0.04 0

P8 22
2 0.997 0.521 0 0 0 0.365 0.023 0.023 0

42 1.152 0.448 0.077 0.077 0 0.512 0.015 0.015 0

P9 10
30 1.044 0.447 0 0 0 0.444 0 0 0

26 1.082 0.525 0 0 0 0.555 0 0 0

P10 24
17 1.221 0.211 0.124 0.124 0 0.55 0.114 0.144 0

63 1.139 0.239 0.25 0.25 0 0.37 0.071 0.071 0

*Chans., Nr. of channels; Trials, Nr. of trials; Resp. time, mean response time during retrieval; autoR, automatically detected ripples; man. events, all manually detected events; uHFOs,

unclear HFOs.

and incorrect trials (F1,∞ = 0.108, p = 0.743). There was,
however, a main effect for the event type (F1.291,∞ = 81.514, p
< 0.001). As can be seen in Figure 3, automatic ripple detection
resulted in higher rates across all subjects, regardless of trials
being correct or incorrect. Finally, we did not observe an
interaction effect between response type and event type (F1.138,∞
= 0.135, p = 0.746). This difference between event types, to some
degree, possibly stems from artifactual HFO-like events being
marked as ripples. In fact, we have observed plenty of artifacts
to mimic HFOs even in the iEEG channels. Especially eye-
movements often resulted in such artifactual ripples (see Figure 4
for an example).

A higher event rate for automatically detected events was
also observed when looking at event rates during encoding.
Considering single encoding trials in relation to performance in
the corresponding retrieval trials later on, one does not detect
an effect for correct vs. incorrect responses (see Figure 5). As
such, analysis revealed no predictive values for any of the event
types detected during encoding with regards to the later response:
autoR (z = −0.767, p = 0.443), manual events (z = −0.515,
p= 0.607), artifacts (z=−0.475, p= 0.635), uHFOs (z=−0.337,
p = 0.736). Different baseline rates for patients were taken into
account for this analysis, as we expected general differences
across patients (see Figure 6). However, in none of the patients
the event rate during encoding seemed to affect the response in
the respective retrieval trials.

Estimated group correlations between event rates and the
number of correct trials corrected for the overall number of

trials per patient was weak for all event types. Automatically
detected event rates revealed no direction of correlation (τ = 0;
CI: −0.684–0.563). Ripple-mimicking artifacts were, however,
slightly negatively correlated (τ = −0.27; CI: −0.73–0.15),
which also is mirrored in the correlation of all manual events
(τ = −0.18; CI: −0.537–0.373). In contrast, uHFOs did not
reveal a negative correlation with the number of correct trials
(τ = 0.083; CI:−0.462–0.632).

Finally, we analyzed a relationship between response times
and event rates during retrieval trials as well as during the
respective encoding trials. The median correlation coefficients
for each patient are depicted in Figure 7. Probability testing
suggested a trend for retrieval trials with more artifacts and
respectively more overall manual events to be longer (both with
Md τ = 0.094, p = 0.039). Other than that, no relationships
between event rates and response times for any of the event
occurrence rates more extreme than the random binomial
probability of 0.5 have been found.

4. DISCUSSION

In the present study we aimed at assessing a relationship between
the occurrence of stimulus-induced ripples and performance
in a visual memory task in order to evaluate two detection
approaches for HFOs. We incorporated both, automatic and
manual ripple detection and analyzed the iEEG during encoding
and retrieval periods of a task, that had previously been reported
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FIGURE 1 | Event of interest defined as unclear HFO by the team as morphology was not regular. Time frequency analyses revealed no clear blob suggesting the

potential ripple to be nested in an equally high-frequency noise. The raw signal is depicted at the top with the discrete wavelet power density and the continuous

wavelet transformation plotted underneath. At the bottom the signal is filtered between 80 and 250 Hz.

to induce meaningful HFOs in the resting period between the
task phases (20).

Importantly, manual detection did not reveal any events
to occur in the iEEG channels contralateral to the suspected
epileptogenic zone fulfilling all strict criteria defined for ripples.
In contrast, automatic detection revealed significantly higher
numbers of events detected in the chosen segments. This
discrepancy seems to be caused by a high number of artifacts
falsely detected as ripples. In any case, statistical analysis,
did not reveal a relationship between task performance and
event occurrence rates derived from either detection approach.
There was no significant difference between correct and
incorrect trials, and also event occurrence during encoding
was not predictive of the accuracy in the respective retrieval
trials. Furthermore, analyses did not suggest an association
between event rates and the time needed to respond during
retrieval, either.

In the first part of this section we will elaborate on the
incorporated detection strategies, and discuss discrepancies in
the detected ripple rates, taking into account important sources
of falsely detected events. In the second part, we will briefly
discuss physiologic explanations for our findings, especially
the lack of manually detected ripple events. Finally, we will

consider some limitations to this investigation before drawing an
overall conclusion.

4.1. Manual vs. Automatic Detection of
HFOs
Ever since the first examinations of HFOs, the exact way of
detection has left room for debate. The gold standard of visual
data inspection and manual marking by one or more raters
is highly uneconomic in terms of time and resources needed
(12). Furthermore, detecting events that are defined as clearly
discernible from the background EEG is subjective, introducing
a bias that can be well-appreciated when considering the high
variability in events detected by different raters on the same
data (29).

Several automatic detection algorithms have been developed
to overcome these problems (25, 30–34), making it easier than
ever to conduct HFO analyses. However, automatic detection
algorithms are not without flaws in their own respect. First of
all, algorithms are usually developed and trained on specific data
sets, leading to them offering good results in optimal conditions,
i.e., a high signal-to-noise ratio and relatively clean data (24, 40).
Furthermore, for each algorithm there are numerous settings,
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FIGURE 2 | Ripple detected on the epileptogenic site of patient 6. The raw signal is depicted at the top with the discrete wavelet power density, the continuous

wavelet transformation, and an empirical mode decomposition (F0) plotted underneath. At the bottom the signal is filtered between 80 and 250 Hz.

that can be altered, making it difficult to compare findings
derived from the use of different algorithms and settings.

Second, and more importantly, automatic detection is prone
to false-positive detections, resulting from artifacts and sharp
transients, that can mimic HFOs after filtering (24, 36, 37), as
wells as from a high-frequency noise in the data (24, 35, 38, 39).
Even in invasive EEG recordings, which are considered to seldom
contain biological artifacts, automatic HFO detection seems to
produce a (comparably) high number of false positives.

There have been reports of muscle contractions, body
movements and ocular artifacts to corrupt EEG data recorded
from deep in the brain (39, 47). Furthermore, eye movements
have also been shown to elicit artifacts in brain regions close
to extra-ocular muscles (35, 48), appearing as HFO-like events.
In line with these reports, we also found ripple-like events to
coincide with eye-movements and, when filtered, EOG revealed
similar HFO-like derivates as iEEG channels, suggesting eye
movement-related ripples to also appear in the iEEG. Taking
into account additional channels, such as EOG and EMG, highly
increased the number of events defined as artifact-derived HFOs
in our data.

Comparing both detection approaches, manual detection led
to only few events being considered as possible ripples in our
data. Taking into account additional channels, such as EOG and

EMG, highly increased the number of events defined as artifact-
derived HFOs. Considering these additional channels may be
crucial when opting for HFO detection, even in intracranial EEG
data. While the strict visual detection led to a high specificity,
automatic detection appeared to produce a very high number of
false positives. These findings underline the pitfalls of automated
HFO detection. Preprocessing the data with special emphasis on
reducing artifacts or training algorithms to acknowledge artificial
HFOs might prove helpful to increase the specificity of detection
algorithms (49, 50).

Given the lack of visually detected clear ripples, and the
extreme discrepancy between the detection approaches, further
point to a need for a more precise definition of what truly
constitutes an HFO. While a very strict definition, as applied
in our manual detection, leads to very few or even no clear
HFOs to be detected, it may serve as a basis to align detection
strategies between different rater, research groups, and different
detection algorithms. Besides, the methodological and technical
interpretation of our findings, there are also some physiologic
explanations for the lack of manually detected ripples in our data.

4.2. Memory Task-Related HFO Occurrence
Neither of the two incorporated HFO detection approaches
yielded event rates, that could be linked to performance during
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FIGURE 3 | Mean event rates per second during retrieval for all different event types and for correct and incorrect retrieval trials. Each data point corresponds to one

patient.

encoding or retrieval in the visual memory task. It should be
noted, however, that we correlated event rates across all analyzed
channels with memory performance and did not subselect
specific channels. Furthermore, we were unable to manually
detect clear ripples in the data. This finding is notable, given the
numerous notions of spontaneous HFO occurrence in memory-
related brain areas (3, 14, 15, 20). One explanation for the
incompatible findings could be that our manual detection criteria
were extremely strict (maybe too strict) and missed physiologic
ripples that did not conform to the ideal pattern. Another
explanation could lie in the fact, that these studies all investigated
HFOs during periods of rest and sleep.

Sleep has been suggested to offer a unique window into
memory consolidation via hippocampal reactivation (18, 51–
53), and thus might offer an increased probability to record
memory-related HFOs. Especially hippocampal ripples being
nested in sleep spindles have been suggested to be crucial
for long-term potentiation and memory consolidation (22,
54, 55). Furthermore, resting and sleep EEG may provide
data with a higher signal-to-noise ratio. Especially, high
background noise and artifacts, that might have also been
induced by the task, can lead to a number of false-positives for

automatic detectors (24, 56). This would explain the discrepancy
between the automatic and manual detection, as visual
inspection would not have considered events embedded within a
noisy background.

On another note, continuous high frequency activity in the
background EEG has been suggested to reflect physiological
activity distinctive for certain brain regions (57). This is in line
with reports of high gamma band activity (including frequencies
that fall into the ripple band) being related to memory (58, 59).
These studies further point to a weakness in detecting single HFO
events, as ripple band activity might be not only easier to detect
during memory tasks, but also reveal important links to memory
processes. Thus, a shift in focus from single oscillatory events to
frequency band characteristics when studying cognition may be
promising. Distinguishing HFOs from high frequency activity in
this context may have the further benefit of ruling out epilepsy-
related HFOs confounding the events of interest (60, 61).

4.3. Limitations
There are some limitations to the study at hand, some of which
have already been outlined in the discussion. First, performing
a manual detection with one rater only may result in very
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FIGURE 4 | Eye movement-related ripple-like event on the left temporal lobe of patient 1. The raw signal is depicted at the top with the discrete wavelet power density

and the continuous wavelet transformation plotted on the side. At the bottom the signal is filtered between 80 and 250 Hz.

stable event detections across recordings, however multiple raters
might have increased the sensitivity of visual detection. Since
all unclear events and marked ripples were discussed in the
team, specificity would not have changed with multiple raters,
though. Second, differences between the two detection strategies
have to be interpreted with caution, bearing in mind that we
chose two very extreme approaches. The visual detection was
performed strictly, with events of interest only being marked as
ripples in case of no doubt. In contrast, the automatic detection
algorithm’s settings were chosen to increase sensitivity in order to
make the differences between both detection strategies as visible
as possible.

Third, the external reference used (linked mastoids) may have
contributed to the artifact contamination of our iEEG data. The
impact of the reference electrodes have already been described,
and to this end a bipolar montage might have resulted in less
artifactual events (24, 35, 62), which would have impacted the
data for both detection strategies, however. Finally, numbers of
trials between patients differed, especially with respect to correct
and incorrect trials. Thus, the statistical sample was small for
some analyses. This fact in connection with the small number of
events for some types likely led to a low statistical power, which
even carefully selected statistical tests may not have been able
to compensate. Regardless of these limitations, there are some
conclusions that can be drawn from the obtained results.

4.4. Conclusion
Our findings suggest grave differences between automatically
and manually detected events. Our analysis suggests automatic
detection to be highly affected by false ripples derived
not only from technical but also from physiologic artifacts.
Recording additional facial EMG as well as EOG channels
seems beneficial for the identification of false ripples even
in iEEG data. Future automated detection algorithms should
implement artifact matching in these additional channels, in
order to improve specificity. Also developing a preprocessing
pipeline in order to clean the data of artifacts before
automatic algorithms detect HFOs could be a potential
aim for future studies. Until then, guidelines for a more
strict and careful visual inspection are needed to ensure
comparable results, especially when dealing with conditions
that seldom offer ideal data, for instance when performing
cognitive paradigms.

Finally, we were not able to visually detect clear ripples,
and other event types, including automatically detected ripples,
could not be related to memory processes. Therefor, it
remains questionable whether HFOs as single events can be
exclusively identified as physiologic biomarkers. For now high
frequency activity rather than single high frequency events
may present a more suitable surrogate marker for cognition.
Being also less affected by epileptogenity as well as artifacts,
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FIGURE 5 | Event rates per second for each encoding trial in relation to the respective response during the corresponding retrieval trial. NA refers to missed

responses during retrieval.

FIGURE 6 | Mean event rates per second during encoding trials in relation to the respective response during the corresponding retrieval trial for each individual

patient. (A) Shows the results for automatically detected ripples (autoR) and (B) depicts all manually detected events. NA refers to missed responses during retrieval.

Frontiers in Neurology | www.frontiersin.org 10 October 2020 | Volume 11 | Article 563577

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Thomschewski et al. Detection Approaches of Temporal HFOs

FIGURE 7 | Individual correlations for each patients’ event occurrence rates

per second during encoding (A) and retrieval (B) with the response times

during the respective retrieval trials.

it is also less time-consuming to investigate high frequency
band activity, thus offering another promising approach for
future studies.
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