
Journal of

Imaging

Article

Efficient FPGA Implementation of Automatic Nuclei
Detection in Histopathology Images

Haonan Zhou, Raju Machupalli and Mrinal Mandal *

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada;
haonan8@ualberta.ca (H.Z.); machupal@ualberta.ca (R.M.)
* Correspondence: mmandal@ualberta.ca

Received: 30 November 2018; Accepted: 11 January 2019; Published: 17 January 2019
����������
�������

Abstract: Accurate and efficient detection of cell nuclei is an important step towards the development
of a pathology-based Computer Aided Diagnosis. Generally, high-resolution histopathology images
are very large, in the order of billion pixels, therefore nuclei detection is a highly compute intensive
task, and software implementation requires a significant amount of processing time. To assist the
doctors in real time, special hardware accelerators, which can reduce the processing time, are required.
In this paper, we propose a Field Programmable Gate Array (FPGA) implementation of automated
nuclei detection algorithm using generalized Laplacian of Gaussian filters. The experimental results
show that the implemented architecture has the potential to provide a significant improvement in
processing time without losing detection accuracy.

Keywords: FPGA implementation; hardware architecture; image processing; histopathology;
generalized Laplacian of Gaussian filter; nuclei detection; mean Shift clustering

1. Introduction

Many diseases are diagnosed based on the cellular structures in their respective tissue specimens
as the cellular structures can provide quantitative information about the diseases and help in the
study of disease progression. For example, the density of cell nuclei in histological images is an
important feature for automatic breast or skin tumor grading [1]. The difference between normal skin
cells and abnormal skin cells can be seen in Figure 1. In human intervened diagnosis procedure,
histopathologists typically examine the tissue under a microscope, and the diagnostic accuracy
depends on the pathologists’ personal experience, which sometimes leads to intra and inter observer
variability [2]. To overcome these limitations, several computer-aided diagnosis (CAD) techniques
have been proposed in the literature for the diagnosis. Due to a wide variety of nuclei appearances
in different organs, and staining procedures, accurate and efficient segmentation of cell nuclei is an
important step in most histopathology-based CAD techniques. The detection of cells in a histology
image may also be the first step towards cell segmentation.

Since cell nuclei typically have circular shapes, they can be considered as blob-like structures
which can be detected efficiently using scale-space theory. Xu et al. [1] proposed an efficient technique
for nuclei detection using directional gLOG (generalized Laplacian of Gaussian) kernels on red channel
image of H&E (Hematoxylin and Eosin) strained color histopathology images. The technique generates
intermediate response maps using directional gLOG kernels. It is possible to obtain more than one point
from different response maps, corresponding to the same nuclei in the input image. Therefore, seeds
from these response maps are merged using mean-shift clustering. It gives a promising performance
in nuclei seeds detection.

J. Imaging 2019, 5, 21; doi:10.3390/jimaging5010021 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
http://www.mdpi.com/2313-433X/5/1/21?type=check_update&version=1
http://dx.doi.org/10.3390/jimaging5010021
http://www.mdpi.com/journal/jimaging

J. Imaging 2019, 5, 21 2 of 13
J. Imaging 2019, 5, x FOR PEER REVIEW 2 of 13

Figure 1. Example of a skin Whole Slide image (WSI), (a) normal skin image, (b) melanoma affected
skin image.

The histological images typically have a large size. For example, a 20 mm2 glass slide tissue
scanned with a resolution of 0.11625 μm/pixel (at 40× magnification) will consist of about 2.96 × 1010
pixels, and will approximately require 80 GB of storage space in an uncompressed color format
(24bits/pixel) [2]. In addition, gLoG kernels generally require significant computation. As a result,
the nuclei detection techniques typically have high computational complexity, and software
implementation on general purpose processors (GPP) requires a significant amount of processing
time. For real-time diagnosis, it would be helpful to develop a hardware accelerator for faster nuclei
detection. With advances in CMOS and fabrication technology, Field Programmable Gate Array
(FPGA) and Graphical Processing Unit (GPU) are being widely used as a High-Performance
Computing (HPC) solution to overcome the GPP limitations. GPUs are efficient for data parallel
applications with high memory bandwidth requirement and are typically programmed using
high-level languages, such as CUDA. On the other hand, FPGAs have more flexibility than GPUs
and are efficient for both data and task parallel applications.

In this paper, we propose an FPGA-based hardware architecture for cell nuclei detection in a
histology image obtained using H&E stain. The proposed architecture uses data parallelism. To
reduce the computation burden and power consumption, floating point arithmetic is implemented
in a fixed-point form without losing much accuracy. The architecture has low latency. The
organization of the rest of the paper is as follows. Section 2 gives details on nuclei detection
algorithm and its implementation. Section 3 presents experimental results and performance
evaluation. Discussion on results is presented in Section 4, followed by conclusion in Section 5.

2. Materials and Methods

The schematic of the proposed accelerator architecture for nuclei detection is shown in Figure 2.
It has been found that [1] the nuclei can be detected efficiently using the red channel of the H&E
stained RGB image. Therefore, the red channel of the histology image is used as the input gray scale
image. The architecture mainly contains six modules: Gaussian filter, gLoG filter, Regional Maxima,
Thresholding, Masking and Mean-shift clustering. The Gaussian filter smooths an input image. The
gLoG filter is then applied to generate response maps corresponding to different scales and
orientation of the gLoG kernels. The Regional Maxima module generates nuclei seed candidates
from the response maps. In order to reduce the number of false positive seeds, a mask is generated
by applying the Thresholding module on the Gaussian filter output and Masking is done on the
nuclei seed candidates generated from Regional Maxima module. Finally, the Mean-shift clustering
module clusters the remaining seed candidates to obtain coordinates of different nuclei centers. The
anticipated results of different modules are also shown in Figure 2. Implementation details of each
module is given in the following sections.

Figure 1. Example of a skin Whole Slide image (WSI), (a) normal skin image, (b) melanoma affected
skin image.

The histological images typically have a large size. For example, a 20 mm2 glass slide
tissue scanned with a resolution of 0.11625 µm/pixel (at 40× magnification) will consist of about
2.96 × 1010 pixels, and will approximately require 80 GB of storage space in an uncompressed color
format (24bits/pixel) [2]. In addition, gLoG kernels generally require significant computation. As a
result, the nuclei detection techniques typically have high computational complexity, and software
implementation on general purpose processors (GPP) requires a significant amount of processing
time. For real-time diagnosis, it would be helpful to develop a hardware accelerator for faster nuclei
detection. With advances in CMOS and fabrication technology, Field Programmable Gate Array (FPGA)
and Graphical Processing Unit (GPU) are being widely used as a High-Performance Computing (HPC)
solution to overcome the GPP limitations. GPUs are efficient for data parallel applications with high
memory bandwidth requirement and are typically programmed using high-level languages, such as
CUDA. On the other hand, FPGAs have more flexibility than GPUs and are efficient for both data and
task parallel applications.

In this paper, we propose an FPGA-based hardware architecture for cell nuclei detection in a
histology image obtained using H&E stain. The proposed architecture uses data parallelism. To reduce
the computation burden and power consumption, floating point arithmetic is implemented in a
fixed-point form without losing much accuracy. The architecture has low latency. The organization
of the rest of the paper is as follows. Section 2 gives details on nuclei detection algorithm and its
implementation. Section 3 presents experimental results and performance evaluation. Discussion on
results is presented in Section 4, followed by conclusion in Section 5.

2. Materials and Methods

The schematic of the proposed accelerator architecture for nuclei detection is shown in Figure 2.
It has been found that [1] the nuclei can be detected efficiently using the red channel of the H&E
stained RGB image. Therefore, the red channel of the histology image is used as the input gray
scale image. The architecture mainly contains six modules: Gaussian filter, gLoG filter, Regional
Maxima, Thresholding, Masking and Mean-shift clustering. The Gaussian filter smooths an input
image. The gLoG filter is then applied to generate response maps corresponding to different scales
and orientation of the gLoG kernels. The Regional Maxima module generates nuclei seed candidates
from the response maps. In order to reduce the number of false positive seeds, a mask is generated by
applying the Thresholding module on the Gaussian filter output and Masking is done on the nuclei
seed candidates generated from Regional Maxima module. Finally, the Mean-shift clustering module
clusters the remaining seed candidates to obtain coordinates of different nuclei centers. The anticipated

J. Imaging 2019, 5, 21 3 of 13

results of different modules are also shown in Figure 2. Implementation details of each module is
given in the following sections.J. Imaging 2019, 5, x FOR PEER REVIEW 3 of 13

Figure 2. Schematic of the proposed nuclei detection technique.

2.1. Gaussian Filter

The architecture for the Gaussian filter is shown in Figure 3, which mainly consists of a
coefficient table, an image register unit, an image window and a convolution module [3]. The
coefficients of the M M Gaussian filter are generated offline. The normalized filter coefficients (in
floating-point data type) are converted into fixed-point data type. In this implementation, 16-bit
fixed-point representation (with fraction length of 14) has been used (without any significant loss of
accuracy). The filter coefficients are stored in ROM IP core on the FPGA board.

Figure 3. Architecture of 2-D Gaussian Filter.

To enable the process of shifting the window of 2-D filter coefficients for a raster scan of the
entire image, M shift register IP cores of length equal to the image width (see Figure 3) are used for
generating a Serial-In-Parallel-Output (SIPO) image register unit [3]. Each shift register stores one
row of image data. Input to this register unit is an 8-bit image pixel data comes at a rate of one pixel

Figure 2. Schematic of the proposed nuclei detection technique.

2.1. Gaussian Filter

The architecture for the Gaussian filter is shown in Figure 3, which mainly consists of a coefficient
table, an image register unit, an image window and a convolution module [3]. The coefficients of the
M×M Gaussian filter are generated offline. The normalized filter coefficients (in floating-point data
type) are converted into fixed-point data type. In this implementation, 16-bit fixed-point representation
(with fraction length of 14) has been used (without any significant loss of accuracy). The filter
coefficients are stored in ROM IP core on the FPGA board.

J. Imaging 2019, 5, x FOR PEER REVIEW 3 of 13

Figure 2. Schematic of the proposed nuclei detection technique.

2.1. Gaussian Filter

The architecture for the Gaussian filter is shown in Figure 3, which mainly consists of a
coefficient table, an image register unit, an image window and a convolution module [3]. The
coefficients of the M M Gaussian filter are generated offline. The normalized filter coefficients (in
floating-point data type) are converted into fixed-point data type. In this implementation, 16-bit
fixed-point representation (with fraction length of 14) has been used (without any significant loss of
accuracy). The filter coefficients are stored in ROM IP core on the FPGA board.

Figure 3. Architecture of 2-D Gaussian Filter.

To enable the process of shifting the window of 2-D filter coefficients for a raster scan of the
entire image, M shift register IP cores of length equal to the image width (see Figure 3) are used for
generating a Serial-In-Parallel-Output (SIPO) image register unit [3]. Each shift register stores one
row of image data. Input to this register unit is an 8-bit image pixel data comes at a rate of one pixel

Figure 3. Architecture of 2-D Gaussian Filter.

J. Imaging 2019, 5, 21 4 of 13

To enable the process of shifting the window of 2-D filter coefficients for a raster scan of the
entire image, M shift register IP cores of length equal to the image width (see Figure 3) are used for
generating a Serial-In-Parallel-Output (SIPO) image register unit [3]. Each shift register stores one row
of image data. Input to this register unit is an 8-bit image pixel data comes at a rate of one pixel per
clock. The M pixels from each shift register are transferred to the image window to access randomly
in convolution.

The architecture of the convolution module is shown in Figure 4. The module uses the image
data r (stored in the image window) and filter coefficients f (stored in the coefficient table) to calculate
the output h. The entire convolution process with M ×M size filter is divided into M cycles. In each
cycle, one column (e.g., ith column) of the image window data r and coefficient table data f pass
through the multiplier array and first stage adder tree, and is then stored in the register queue. In each
subsequent cycle, the register data shifts right by one unit, and the next columns of image data and
filter coefficients go through the module and the output is stored in the register queue. This process
continues for M times. After M cycles, the outputs of every column (stored in register queue) are
added by the second stage adder to calculate the convolution output h (pixel value in the Gaussian
filter output image H). In this work, h is truncated into 8-bit precision and the output image H is stored
in the FPGA block RAM.

J. Imaging 2019, 5, x FOR PEER REVIEW 4 of 13

per clock. The M pixels from each shift register are transferred to the image window to access
randomly in convolution.

The architecture of the convolution module is shown in Figure 4. The module uses the image
data r (stored in the image window) and filter coefficients f (stored in the coefficient table) to
calculate the output h. The entire convolution process with M M size filter is divided into M
cycles. In each cycle, one column (e.g., ith column) of the image window data r and coefficient table
data f pass through the multiplier array and first stage adder tree, and is then stored in the register
queue. In each subsequent cycle, the register data shifts right by one unit, and the next columns of
image data and filter coefficients go through the module and the output is stored in the register
queue. This process continues for M times. After M cycles, the outputs of every column (stored in
register queue) are added by the second stage adder to calculate the convolution output h (pixel
value in the Gaussian filter output image H). In this work, h is truncated into 8-bit precision and the
output image H is stored in the FPGA block RAM.

Figure 4. Convolution module. Multiplication of data and coefficients are shown for Mth column.

2.2. 2-D gLoG Filter

Because the cell nuclei in digital histopathological images typically have circular or elliptical
shapes, the 2-D gLoG filters are used for nuclei detection [1]. The nuclei are detected by convolving
the image H with a 2-D gLoG filter. The gLoG filters are generated from a bank of gLoG kernels

2 (,)G x y as defined below [1]:

2 2
2

2 2

(,) (,)
(,)

G x y G x y
G x y

x y

,

where (,)G x y is a 2-D Gaussian function defined as follows.

2 2-(2)(,) . ax bxy cyG x y e

Note that a, b and c are functions of scale (,)x y and orientation θ of the Gaussian kernels [1,4]. By

changing the scales and the orientation, a set of gLoG kernels can be obtained. In this paper, we
generate gLoG kernels (,)x y with

x y ranging from 6 to 12 insteps of 0.5 and nine

orientations , / 9, 0,1,...,8n n . The nine gLoG filters corresponding to nine orientations are
generated by adding up gLoG kernels of the same orientation, but with different scales. Special
kernels, whose

x y are rotational symmetric and their structures are independent of the

orientation, are summed separately to form a rotationally symmetric gLoG filter. In this paper, 10
gLoG filters are used (see Figure 5), with nine filters of different orientations and one rotationally
symmetric (RS) filter. A total of 10 response maps, with one response map from each gLoG filter, are
generated.

Figure 4. Convolution module. Multiplication of data and coefficients are shown for Mth column.

2.2. 2-D gLoG Filter

Because the cell nuclei in digital histopathological images typically have circular or elliptical
shapes, the 2-D gLoG filters are used for nuclei detection [1]. The nuclei are detected by convolving the
image H with a 2-D gLoG filter. The gLoG filters are generated from a bank of gLoG kernels ∇2G(x, y)
as defined below [1]:

∇2G(x, y) =
∂2G(x, y)

∂x2 +
∂2G(x, y)

∂y2 ,

where G(x, y) is a 2-D Gaussian function defined as follows.

G(x, y) = λ·e−(ax2+2bxy+cy2)

Note that a, b and c are functions of scale (σx, σy) and orientation θ of the Gaussian kernels [1,4].
By changing the scales and the orientation, a set of gLoG kernels can be obtained. In this paper, we
generate gLoG kernels (σx, σy) with σx > σy ranging from 6 to 12 insteps of 0.5 and nine orientations
θ, {θ = nπ/9, n = 0, 1, ..., 8}. The nine gLoG filters corresponding to nine orientations are generated
by adding up gLoG kernels of the same orientation, but with different scales. Special kernels, whose
σx = σy are rotational symmetric and their structures are independent of the orientation, are summed
separately to form a rotationally symmetric gLoG filter. In this paper, 10 gLoG filters are used (see

J. Imaging 2019, 5, 21 5 of 13

Figure 5), with nine filters of different orientations and one rotationally symmetric (RS) filter. A total of
10 response maps, with one response map from each gLoG filter, are generated.J. Imaging 2019, 5, x FOR PEER REVIEW 5 of 12

0 π/9 2π/9 3π/9 4π/9 5π/9 6π/9 7π/9 8π/9 RS

Figure 5. Ten 2-D gLoG filters with different orientations.

For hardware implementation, the architecture of the gLoG filter module is similar to that of the
Gaussian filter described in the previous section, except the filter size and coefficients. In this work,
the size of the gLoG filter is set to 25 × 25 in order to match the size of typical nuclei in the input data.
As the gLoG filter coefficients are independent of the image data, they are calculated offline,
converted into 16-bit precision (with 14-bit fractional value), and stored in ROM IP cores on the
FPGA. The output response map (denoted by I) from each gLoG filter is stored with 8-bit precision
in the block RAM on the FPGA.

2.3. Regional Maxima Calculation

Regional maxima are connected components of pixels with a constant grayscale value, t, whose
external boundary pixels all have a value less than t [5,6]. As the regional maxima in a gLoG filter
response map I are usually around the nuclei centers, they are detected in this module and
considered as candidate pixels to calculate the nuclei centers.

The principle of regional maxima calculation used in this paper is shown in Figure 6. In Figure
6a, the response map I (denoted by dotted lines) is used as the mask image. A marker image 1J I= −
(shown by full lines) is generated and stored in an FPGA block RAM (if J < 0, it is set to 0). A hybrid
grayscale reconstruction algorithm [6], described below, is then performed on the marker image J, and
let the output be denoted by J ′ . After that, I J ′− is calculated, and where the outcome value is 1,
the corresponding pixel is considered as the regional maxima. This is illustrated in Figure 6b.

Figure 6. Principle of regional maxima calculation. (a) dotted lines, I, shows Mask, shaded portion
shows Marker J, (b) J’ indicates the reconstruction of J.

Figure 7 shows the block schematic of the Regional Maxima module, which has 3 parts: Marker
generation, Grayscale Reconstruction and Subtraction. Function of Marker Generation (1J I= −) and
Subtraction ()I J ′− parts are mentioned in the previous paragraph. The Grayscale Reconstruction of

the marker image J is done in 3 steps, Raster scan, Anti-raster scan and Propagation, which are
explained in the following.

Figure 7. Block diagram of regional maxima calculation.

Figure 5. Ten 2-D gLoG filters with different orientations.

For hardware implementation, the architecture of the gLoG filter module is similar to that of the
Gaussian filter described in the previous section, except the filter size and coefficients. In this work,
the size of the gLoG filter is set to 25 × 25 in order to match the size of typical nuclei in the input
data. As the gLoG filter coefficients are independent of the image data, they are calculated offline,
converted into 16-bit precision (with 14-bit fractional value), and stored in ROM IP cores on the FPGA.
The output response map (denoted by I) from each gLoG filter is stored with 8-bit precision in the
block RAM on the FPGA.

2.3. Regional Maxima Calculation

Regional maxima are connected components of pixels with a constant grayscale value, t, whose
external boundary pixels all have a value less than t [5,6]. As the regional maxima in a gLoG filter
response map I are usually around the nuclei centers, they are detected in this module and considered
as candidate pixels to calculate the nuclei centers.

The principle of regional maxima calculation used in this paper is shown in Figure 6. In Figure 6a,
the response map I (denoted by dotted lines) is used as the mask image. A marker image J = I − 1
(shown by full lines) is generated and stored in an FPGA block RAM (if J < 0, it is set to 0). A hybrid
grayscale reconstruction algorithm [6], described below, is then performed on the marker image J, and
let the output be denoted by J′. After that, I − J′ is calculated, and where the outcome value is 1, the
corresponding pixel is considered as the regional maxima. This is illustrated in Figure 6b.

J. Imaging 2019, 5, x FOR PEER REVIEW 5 of 13

0 / 9 2 / 9 3 / 9 4 / 9 5 / 9 6 / 9 7 / 9 8 / 9 RS

Figure 5. Ten 2-D gLoG filters with different orientations.

For hardware implementation, the architecture of the gLoG filter module is similar to that of the
Gaussian filter described in the previous section, except the filter size and coefficients. In this work,
the size of the gLoG filter is set to 25 × 25 in order to match the size of typical nuclei in the input data.
As the gLoG filter coefficients are independent of the image data, they are calculated offline,
converted into 16-bit precision (with 14-bit fractional value), and stored in ROM IP cores on the
FPGA. The output response map (denoted by I) from each gLoG filter is stored with 8-bit precision
in the block RAM on the FPGA.

2.3. Regional Maxima Calculation

Regional maxima are connected components of pixels with a constant grayscale value, t, whose
external boundary pixels all have a value less than t [5,6]. As the regional maxima in a gLoG filter
response map I are usually around the nuclei centers, they are detected in this module and
considered as candidate pixels to calculate the nuclei centers.

The principle of regional maxima calculation used in this paper is shown in Figure 6. In Figure
6a, the response map I (denoted by dotted lines) is used as the mask image. A marker image 1J I
(shown by full lines) is generated and stored in an FPGA block RAM (if J < 0, it is set to 0). A hybrid
grayscale reconstruction algorithm [6], described below, is then performed on the marker image J, and
let the output be denoted by J . After that, I J is calculated, and where the outcome value is 1,
the corresponding pixel is considered as the regional maxima. This is illustrated in Figure 6b.

Figure 6. Principle of regional maxima calculation. (a) dotted lines, I, shows Mask, shaded portion
shows Marker J, (b) J’ indicates the reconstruction of J.

Figure 7 shows the block schematic of the Regional Maxima module, which has 3 parts: Marker
generation, Grayscale Reconstruction and Subtraction. Function of Marker Generation (1J I) and
Subtraction ()I J parts are mentioned in the previous paragraph. The Grayscale Reconstruction of

the marker image J is done in 3 steps, Raster scan, Anti-raster scan and Propagation, which are
explained in the following.

Figure 6. Principle of regional maxima calculation. (a) dotted lines, I, shows Mask, shaded portion
shows Marker J, (b) J’ indicates the reconstruction of J.

Figure 7 shows the block schematic of the Regional Maxima module, which has 3 parts: Marker
generation, Grayscale Reconstruction and Subtraction. Function of Marker Generation (J = I − 1) and
Subtraction (I − J′) parts are mentioned in the previous paragraph. The Grayscale Reconstruction of the
marker image J is done in 3 steps, Raster scan, Anti-raster scan and Propagation, which are explained in
the following.

J. Imaging 2019, 5, 21 6 of 13

J. Imaging 2019, 5, x FOR PEER REVIEW 5 of 13

0 / 9 2 / 9 3 / 9 4 / 9 5 / 9 6 / 9 7 / 9 8 / 9 RS

Figure 5. Ten 2-D gLoG filters with different orientations.

For hardware implementation, the architecture of the gLoG filter module is similar to that of the
Gaussian filter described in the previous section, except the filter size and coefficients. In this work,
the size of the gLoG filter is set to 25 × 25 in order to match the size of typical nuclei in the input data.
As the gLoG filter coefficients are independent of the image data, they are calculated offline,
converted into 16-bit precision (with 14-bit fractional value), and stored in ROM IP cores on the
FPGA. The output response map (denoted by I) from each gLoG filter is stored with 8-bit precision
in the block RAM on the FPGA.

2.3. Regional Maxima Calculation

Regional maxima are connected components of pixels with a constant grayscale value, t, whose
external boundary pixels all have a value less than t [5,6]. As the regional maxima in a gLoG filter
response map I are usually around the nuclei centers, they are detected in this module and
considered as candidate pixels to calculate the nuclei centers.

The principle of regional maxima calculation used in this paper is shown in Figure 6. In Figure
6a, the response map I (denoted by dotted lines) is used as the mask image. A marker image 1J I
(shown by full lines) is generated and stored in an FPGA block RAM (if J < 0, it is set to 0). A hybrid
grayscale reconstruction algorithm [6], described below, is then performed on the marker image J, and
let the output be denoted by J . After that, I J is calculated, and where the outcome value is 1,
the corresponding pixel is considered as the regional maxima. This is illustrated in Figure 6b.

Figure 6. Principle of regional maxima calculation. (a) dotted lines, I, shows Mask, shaded portion
shows Marker J, (b) J’ indicates the reconstruction of J.

Figure 7 shows the block schematic of the Regional Maxima module, which has 3 parts: Marker
generation, Grayscale Reconstruction and Subtraction. Function of Marker Generation (1J I) and
Subtraction ()I J parts are mentioned in the previous paragraph. The Grayscale Reconstruction of

the marker image J is done in 3 steps, Raster scan, Anti-raster scan and Propagation, which are
explained in the following.

Figure 7. Block diagram of regional maxima calculation.

After generating the mask I and the marker J, a raster scan of these two images is performed.
Let p denote pointer of the current pixel in the scanning, and q denote its neighbor’s pixel positions.

The eight neighbors of p are denoted as N(p) (see Figure 8a). The 4 neighbors reached before p in
a scan order are denoted as N+(p) (see Figure 8b). The maximum value of {J(p), J(q), q ∈ N+(p)}
is then calculated and denoted as s. Finally, the J(p) is updated with min{s, I(p)}. After the raster
scan, an anti-raster scan (scanning from the bottom pixel) of I (i.e., the original image) and updated J is
performed in a similar way. This time, it checks if for a pixel p, there exists a pixel q (q ∈ N+(p) such
that J(q) < J(p) and J(q) < I(q), the q value is stored in the FIFO (First In First Out) queue.

J. Imaging 2019, 5, x FOR PEER REVIEW 6 of 13

Figure 7. Block diagram of regional maxima calculation.

After generating the mask I and the marker J, a raster scan of these two images is performed.
Let p denote pointer of the current pixel in the scanning, and q denote its neighbor’s pixel positions.

The eight neighbors of p are denoted as ()N p (see Figure 8a). The 4 neighbors reached before p
in a scan order are denoted as ()N p (see Figure 8b). The maximum value of (), (), ()J p J q q N p is

then calculated and denoted as s. Finally, the ()J p is updated with min{ , ()}s I p . After the raster
scan, an anti-raster scan (scanning from the bottom pixel) of I (i.e., the original image) and updated J
is performed in a similar way. This time, it checks if for a pixel p, there exists a pixel (()q q N p
such that () ()J q J p and () ()J q I q , the q value is stored in the FIFO (First In First Out) queue.

Figure 8. Illustration of neighbors of pixel p. (a) ()N p . (b) ()N p , (c) ()N p .

After the anti-raster scan, the propagation step is performed on the FIFO structure. In the
beginning, the FIFO is checked, if it is empty, the process of grayscale reconstruction is completed; if
it is not, the point which is at the beginning of the FIFO is popped out and denoted as p. The values
of (), (), ()I p J p J q and ()I q , ()q N p are read from images I and J. If there exist any ()q N p ,
such that () ()J q J p and () ()J q I q , the minimum value between ()J p and ()I q is given to

()J q and the q is put into the queue. Then another round of the loop begins. This process continues
until there are no data in the queue. The updated J is the grayscale reconstructed marker image and
is denoted as J .

Finally, a binary response map R I J is calculated for each gLoG output, and stored in the
FPGA RAM, where a binary value of 1 indicates the regional maxima.

2.4. Thresholding

The thresholding module converts the Gaussian lowpass filtered image into a binaryimage of
foreground (i.e., nuclei) and background pixels. The threshold value for an input image can be
calculated using any adaptive threshold methods for more effectiveness in eliminating false regional
maxima in binary response map R. However, in this implementation, a global threshold value is
used for simplicity. The thresholded image T is generated from the lowpass filtered image H as
follows:

1 () (,)
(,)

0 ()

nuclei if H m n
T m n

backg otherwise

,

where (m,n) is a pixel coordinate. The threshold value 𝜏 is calculated offline using Otsu’s method.
Implementation of above the Equation is done using a comparator, and T is stored in FPGA RAM.

2.5. Masking

A response map , 1 10iR i corresponding to 10 response maps may have false regional
maxima, due to noise in the input image. The masking module eliminates the false maxima that are
located outside nuclei masks T generated by the thresholding module. The output M of the module
is calculated as follows:

Figure 8. Illustration of neighbors of pixel p. (a) N(p). (b) N+(p), (c) N−(p).

After the anti-raster scan, the propagation step is performed on the FIFO structure. In the
beginning, the FIFO is checked, if it is empty, the process of grayscale reconstruction is completed; if it
is not, the point which is at the beginning of the FIFO is popped out and denoted as p. The values of
I(p), J(p), J(q) and I(q), q ∈ N(p) are read from images I and J. If there exist any q ∈ N(p), such that
J(q) < J(p) and J(q) 6= I(q), the minimum value between J(p) and I(q) is given to J(q) and the q is
put into the queue. Then another round of the loop begins. This process continues until there are no
data in the queue. The updated J is the grayscale reconstructed marker image and is denoted as J′.

Finally, a binary response map R = I − J′ is calculated for each gLoG output, and stored in the
FPGA RAM, where a binary value of 1 indicates the regional maxima.

2.4. Thresholding

The thresholding module converts the Gaussian lowpass filtered image into a binaryimage of
foreground (i.e., nuclei) and background pixels. The threshold value for an input image can be
calculated using any adaptive threshold methods for more effectiveness in eliminating false regional
maxima in binary response map R. However, in this implementation, a global threshold value is used
for simplicity. The thresholded image T is generated from the lowpass filtered image H as follows:

T(m, n) =

{
1 (nuclei) i f H(m, n) < τ

0 (backg) otherwise
,

where (m,n) is a pixel coordinate. The threshold value τ is calculated offline using Otsu’s method.
Implementation of above the Equation is done using a comparator, and T is stored in FPGA RAM.

J. Imaging 2019, 5, 21 7 of 13

2.5. Masking

A response map Ri, 1 ≤ i ≤ 10 corresponding to 10 response maps may have false regional
maxima, due to noise in the input image. The masking module eliminates the false maxima that are
located outside nuclei masks T generated by the thresholding module. The output M of the module is
calculated as follows:

Mi(m, n) = Ri(m, n)& T(m, n),

where & is a logical AND operation. The pixel locations with Mi(m, n) = 1 correspond to nuclei seed
candidates. The seed candidate locations from all M matrices are combined and stored in the FPGA
RAM. Let the set of candidate nuclei coordinates be denoted by S.

2.6. Mean-Shift Clustering

For one nuclear region, there can be more than one candidate nuclei in S [1]. As the candidates
corresponding to a nucleus are geometrically close, they can be clustered to obtain one center for
each nucleus. In this paper, the nuclei candidates are clustered using a mean-shift (MS) clustering
algorithm [7], and center for each nucleus is obtained by calculating the mean coordinate of members
of the corresponding cluster.

The MS clustering is like a hill climbing algorithm which involves shifting a certain type of kernel
iteratively to a higher density region until convergence. This is illustrated in Figure 9, where the nuclei
candidates are shown with red dots. To start the algorithm, pick any unvisited candidate, let it be
A and place the kernel center at A. Check if any other candidates are within the kernel (of radius r).
In this example, candidate B is within the kernel (see Figure 9b). Calculate the mean of A, B and shift
the kernel center to mean position (see Figure 9c). Now re-check if any new candidate is included
within the kernel. Figure 9c shows that candidate C is within the kernel. The mean of {A, B, C} is
calculated, and the kernel is shifted to the new mean position. The iteration continues until the kernel
is settled and no new candidate is included. After convergence, all candidates within the kernel are
clustered and the center of the kernel is considered as the nucleus for that cluster. The MS clustering
then picks up another unvisited candidate and generates a cluster in a similar manner. The process is
continued until all the candidates are clustered. The overall flowchart of the MS clustering is shown in
Figure 10.

J. Imaging 2019, 5, x FOR PEER REVIEW 7 of 13

(,) (,) & (,)i iM m n R m n T m n ,

where & is a logical AND operation. The pixel locations with (,) 1iM m n correspond to nuclei seed
candidates. The seed candidate locations from all M matrices are combined and stored in the FPGA
RAM. Let the set of candidate nuclei coordinates be denoted by S.

2.6. Mean-Shift Clustering

For one nuclear region, there can be more than one candidate nuclei in S [1]. As the candidates
corresponding to a nucleus are geometrically close, they can be clustered to obtain one center for
each nucleus. In this paper, the nuclei candidates are clustered using a mean-shift (MS) clustering
algorithm [7], and center for each nucleus is obtained by calculating the mean coordinate of
members of the corresponding cluster.

The MS clustering is like a hill climbing algorithm which involves shifting a certain type of
kernel iteratively to a higher density region until convergence. This is illustrated in Figure 9, where
the nuclei candidates are shown with red dots. To start the algorithm, pick any unvisited candidate,
let it be A and place the kernel center at A. Check if any other candidates are within the kernel (of
radius r). In this example, candidate B is within the kernel (see Figure 9b). Calculate the mean of A, B
and shift the kernel center to mean position (see Figure 9c). Now re-check if any new candidate is
included within the kernel. Figure 9c shows that candidate C is within the kernel. The mean of {A, B,
C} is calculated, and the kernel is shifted to the new mean position. The iteration continues until the
kernel is settled and no new candidate is included. After convergence, all candidates within the
kernel are clustered and the center of the kernel is considered as the nucleus for that cluster. The MS
clustering then picks up another unvisited candidate and generates a cluster in a similar manner.
The process is continued until all the candidates are clustered. The overall flowchart of the MS
clustering is shown in Figure 10.

Figure 9. Mean shift clustering principles, (a) candidates in a binary image, (b) Kernel centered at A,
(c) Kernel centered at mean of A and B, (d) kernel centered at mean of A, B and C, (e) kernel centered
at mean of A, B, C and D. Finally, A, B, C and D clustered into one nucleus.

In this paper, the MS kernel is defined as a circle with radius r = 8 pixels. The implemented
architecture of the MS clustering is shown in Figure 11. The architecture has four modules: Flag
operator, Iterator, Merger and Data table. The Data table structure is shown in Table 1, which stores the
seed candidates, four intermediate parameters for each candidate (visit-flag, current-round votes,
maximum votes and cluster number) and identified Nuclei. Visit-Flag identifies candidates that are visited
in the clustering process (flag is set to 1 for visited candidates and 0 for unvisited candidates).
Current-round votes

cV indicate the number of iterations done in current clustering when a candidate
is within the kernel geometry.

cV is set to zero at the beginning of each cluster generation. Maximum
votes

MV store the maximum value of current-round votes a candidate has achieved in all previous
cluster generation and the cluster number (L) denotes the cluster that has obtained maximum votes
for a seed candidate. The table entries are updated at the end of each cluster generation. Identified
nuclei (N) stores the center of each converged cluster.

Figure 9. Mean shift clustering principles, (a) candidates in a binary image, (b) Kernel centered at A,
(c) Kernel centered at mean of A and B, (d) kernel centered at mean of A, B and C, (e) kernel centered
at mean of A, B, C and D. Finally, A, B, C and D clustered into one nucleus.

J. Imaging 2019, 5, 21 8 of 13

J. Imaging 2019, 5, x FOR PEER REVIEW 8 of 13

In the beginning, the flag operator checks the visit-flags table. If there are any unvisited
candidates (whose visit-flag is 0), it picks one of those unvisited candidates randomly (Si) and gives
it to the iterator. The iterator places the kernel center at candidate Si and finds all the candidates
within the kernel geometry (i.e. distance < r). For those candidates (within the kernel), visit flag is set
to 1 and current-round vote value is increased by 1. The iteration is repeated with the center of kernel
shifted to mean position of candidates within the kernel. The process repeats until kernel center is
converged (i.e., no change in mean position). The final converged point

kC is then sent to the Merger
module.

Figure 10. Flowchart of implemented mean-shift (MS) clustering.

The Merger module scans through the Identified nuclei column. If there exists a previously
generated Nuclei ()lC l k whose distance to the current convergent point

kC is smaller than a
threshold (e.g., 16 pixels), then

kC should merge with
lC . The value for the merged nuclei

lC is
changed to the mean coordinate of

lC and
kC . In cluster number column, if ()iL s l , the maximum

votes value for corresponding candidates are changed to () () ()M i M i C iV S V S V S . If there are no
Identified nuclei within the threshold distance to

kC , then
kC becomes a new Nuclei and added to

Identified nuclei column. Finally, the comparison between current round votes and maximum votes are
done. For a candidate

i kS C if () ()M i C iV S V S then ()M iV S is changed to ()C iV S and ()iL S to k
(indicating that candidate Si belongs to the new cluster

kC). Example data format can be seen in
Table 1.

Figure 10. Flowchart of implemented mean-shift (MS) clustering.

In this paper, the MS kernel is defined as a circle with radius r = 8 pixels. The implemented
architecture of the MS clustering is shown in Figure 11. The architecture has four modules: Flag operator,
Iterator, Merger and Data table. The Data table structure is shown in Table 1, which stores the seed
candidates, four intermediate parameters for each candidate (visit-flag, current-round votes, maximum
votes and cluster number) and identified Nuclei. Visit-Flag identifies candidates that are visited in the
clustering process (flag is set to 1 for visited candidates and 0 for unvisited candidates). Current-round
votes Vc indicate the number of iterations done in current clustering when a candidate is within the
kernel geometry. Vc is set to zero at the beginning of each cluster generation. Maximum votes VM store
the maximum value of current-round votes a candidate has achieved in all previous cluster generation
and the cluster number (L) denotes the cluster that has obtained maximum votes for a seed candidate.
The table entries are updated at the end of each cluster generation. Identified nuclei (N) stores the center
of each converged cluster.

In the beginning, the flag operator checks the visit-flags table. If there are any unvisited candidates
(whose visit-flag is 0), it picks one of those unvisited candidates randomly (Si) and gives it to the
iterator. The iterator places the kernel center at candidate Si and finds all the candidates within the
kernel geometry (i.e., distance < r). For those candidates (within the kernel), visit flag is set to 1 and
current-round vote value is increased by 1. The iteration is repeated with the center of kernel shifted to
mean position of candidates within the kernel. The process repeats until kernel center is converged
(i.e., no change in mean position). The final converged point Ck is then sent to the Merger module.

J. Imaging 2019, 5, 21 9 of 13

J. Imaging 2019, 5, x FOR PEER REVIEW 9 of 13

Figure 11. Architecture of MS clustering.

Table 1. Illustration of data table format. Table entry numbers are randomly filled.

Seed
Candidates

Visit-Flag
Current Round

Votes (VC)
Maximum
Votes (VM)

Cluster
Number (L)

Identified
Nuclei (C)

(x1, y1)
(x2, y2)
(x3, y3)

1
1
0

2
2
0

2
3
0

1
2
.

(a1, b1)
(a2, b2)
(a3, b3)

After the operations in the Merger module finished, the Flag operator module scans through the
Visited-flags table to check whether there are any unvisited candidates. If there are unvisited
candidates, the Iterator is enabled again to generate a new cluster, otherwise, the Clustering module is
disabled, and the MS clustering is done. The mean coordinate of the candidates belonging to one
cluster (corresponding to a nucleus) is considered as the seed coordinate of the detected nuclei.

3. Results

The proposed architecture is implemented on DE2i-150 FPGA development board, developed
by Terasic [8]. A simplified schematic of the DE2i-150 development board is shown in Figure 12
(refer to the Terasic site [8] for complete details). The board is an embedded platform with Intel
N2600 Atom Dual core processor (Intel Corporation, Santa Clara, CA, USA) [9] coupled with
Altera’s Cyclone IV GX FPGA (Altera (Acquire by Intel), Santa Clara, CA, USA). The Atom
processor has 64-bit Instruction set, 1M cache running at 1.6 GHz clock speed, and is connected to
external DDR3 memory. The Atom pairs with Intel® NM10 Express Chipset through Direct Media
Interface (DMI) to provide rich I/O capabilities and flexibility via high-bandwidth interfaces, such as
PCI Express, Serial ATA (SATA), mSATA, and Ethernet. Cyclone IV FPGA is connected to Atom
through PCI Express (PCIe) bus and NM10. The FPGA is connected to 128MB SDRAM (32 bits
width), 4MB SSRAM and 64MB Flash memory with 16-bit mode. Both Atom and FPGA has a VGA
connector to interface with monitor. In this paper, the proposed architecture is implemented using
only the FPGA (Atom processor is not used).

Figure 11. Architecture of MS clustering.

Table 1. Illustration of data table format. Table entry numbers are randomly filled.

Seed
Candidates Visit-Flag Current Round

Votes (VC)
Maximum
Votes (VM)

Cluster
Number (L)

Identified
Nuclei (C)

(x1, y1) 1 2 2 1 (a1, b1)
(x2, y2) 1 2 3 2 (a2, b2)
(x3, y3) 0 0 0 . (a3, b3)

The Merger module scans through the Identified nuclei column. If there exists a previously generated
Nuclei Cl(l 6= k) whose distance to the current convergent point Ck is smaller than a threshold (e.g.,
16 pixels), then Ck should merge with Cl . The value for the merged nuclei Cl is changed to the
mean coordinate of Cl and Ck. In cluster number column, if L(si) = l, the maximum votes value for
corresponding candidates are changed to VM(Si) = VM(Si) + VC(Si). If there are no Identified nuclei
within the threshold distance to Ck, then Ck becomes a new Nuclei and added to Identified nuclei column.
Finally, the comparison between current round votes and maximum votes are done. For a candidate
Si ∈ Ck if VM(Si) < VC(Si) then VM(Si) is changed to VC(Si) and L(Si) to k (indicating that candidate
Si belongs to the new cluster Ck). Example data format can be seen in Table 1.

After the operations in the Merger module finished, the Flag operator module scans through the
Visited-flags table to check whether there are any unvisited candidates. If there are unvisited candidates,
the Iterator is enabled again to generate a new cluster, otherwise, the Clustering module is disabled,
and the MS clustering is done. The mean coordinate of the candidates belonging to one cluster
(corresponding to a nucleus) is considered as the seed coordinate of the detected nuclei.

3. Results

The proposed architecture is implemented on DE2i-150 FPGA development board, developed by
Terasic [8]. A simplified schematic of the DE2i-150 development board is shown in Figure 12 (refer to
the Terasic site [8] for complete details). The board is an embedded platform with Intel N2600 Atom
Dual core processor (Intel Corporation, Santa Clara, CA, USA) [9] coupled with Altera’s Cyclone IV
GX FPGA (Altera (Acquire by Intel), Santa Clara, CA, USA). The Atom processor has 64-bit Instruction
set, 1M cache running at 1.6 GHz clock speed, and is connected to external DDR3 memory. The Atom
pairs with Intel®NM10 Express Chipset through Direct Media Interface (DMI) to provide rich I/O
capabilities and flexibility via high-bandwidth interfaces, such as PCI Express, Serial ATA (SATA),
mSATA, and Ethernet. Cyclone IV FPGA is connected to Atom through PCI Express (PCIe) bus and
NM10. The FPGA is connected to 128MB SDRAM (32 bits width), 4MB SSRAM and 64MB Flash
memory with 16-bit mode. Both Atom and FPGA has a VGA connector to interface with monitor.

J. Imaging 2019, 5, 21 10 of 13

In this paper, the proposed architecture is implemented using only the FPGA (Atom processor is
not used).J. Imaging 2019, 5, x FOR PEER REVIEW 10 of 13

Figure 12. Simplified schematic of DE2i-150 FPGA development board Architecture (refer to [8] for
more detailed schematic)

In the implementation, the block RAMs on FPGA are used to store intermediate results instead
of available 128 MB SDRAM. Because, this SDRAM has a latency of four clock cycles, with a
maximum allowed clock frequency of 100 MHz, which can degrade the proposed architectures
performance. Because there is a lot of intermediate date generated and it should be accessible
randomly. But implementing the same architectures (with block RAM replaced by available
memory) on high-end FPGA boards having lower latency and higher clock frequency for memory
can give a similar performance with fewer resources.

Parameter Configuration

A few parameters for the proposed architecture must be defined before generating bit file for
the hardware [1]. The parameters are application dataset dependent. The Gaussian filter size M
depends on the amount of noise in the input image and minimum nuclei size to detect. Filter size
cannot be more than the size of smaller nuclei expect to detect, otherwise it blurs the nucleus. The
rest of the parameters, like gLoG filter size, threshold value, MS clustering bandwidth are to be set
according to possible nuclei size range in application dataset. In this experiment, the parameters are
not fine-tuned to a dataset, but for the same parameter configuration the proposed hardware should
give similar results with software (MATLAB) implementation. To check the proposed hardware
flexibility with parameters across a different dataset, experiments are done on two sets of
parameters. Parameter configuration of two sets are shown in Table 2. The hardware provided
similar results as MATLAB [10] with respect to each set of parameters.

Table 2. Configured parameters table.

Parameter Set 1 Set 2
Gaussian filter size 7 × 7 8 × 8

gLoG size 25 × 25 49 × 49
Threshold 155 150

MS bandwidth 8 6

The architecture performance is evaluated by comparing its execution time and accuracy with
MATLAB for 256 × 256 size images. Before generating the bit-file for the hardware, the parameters
have to be configured according to application and input image data should be initialized into ROM
IP block using .hex/.mif file format. As the input is red channel data (complemented) of H&E stained
images, MATLAB is used to generate the .hex/.mif file with red channel data. The resources utilized
by the architecture for 256 × 256 size image on the FPGA (for set-1 parameters configuration) is
presented in Table 3. MATLAB is running on AMD Athlon II CPU (Advanced Micro Devices, Inc.,
Austin, TX, USA) at 2.90 GHz with 4GB RAM. To compare the results, the detected nuclei

Figure 12. Simplified schematic of DE2i-150 FPGA development board Architecture (refer to [8] for
more detailed schematic).

In the implementation, the block RAMs on FPGA are used to store intermediate results instead of
available 128 MB SDRAM. Because, this SDRAM has a latency of four clock cycles, with a maximum
allowed clock frequency of 100 MHz, which can degrade the proposed architectures performance.
Because there is a lot of intermediate date generated and it should be accessible randomly. But
implementing the same architectures (with block RAM replaced by available memory) on high-end
FPGA boards having lower latency and higher clock frequency for memory can give a similar
performance with fewer resources.

Parameter Configuration

A few parameters for the proposed architecture must be defined before generating bit file for the
hardware [1]. The parameters are application dataset dependent. The Gaussian filter size M depends
on the amount of noise in the input image and minimum nuclei size to detect. Filter size cannot be
more than the size of smaller nuclei expect to detect, otherwise it blurs the nucleus. The rest of the
parameters, like gLoG filter size, threshold value, MS clustering bandwidth are to be set according to
possible nuclei size range in application dataset. In this experiment, the parameters are not fine-tuned to
a dataset, but for the same parameter configuration the proposed hardware should give similar results
with software (MATLAB) implementation. To check the proposed hardware flexibility with parameters
across a different dataset, experiments are done on two sets of parameters. Parameter configuration of
two sets are shown in Table 2. The hardware provided similar results as MATLAB [10] with respect to
each set of parameters.

Table 2. Configured parameters table.

Parameter Set 1 Set 2

Gaussian filter size 7 × 7 8 × 8
gLoG size 25 × 25 49 × 49
Threshold 155 150

MS bandwidth 8 6

The architecture performance is evaluated by comparing its execution time and accuracy with
MATLAB for 256 × 256 size images. Before generating the bit-file for the hardware, the parameters
have to be configured according to application and input image data should be initialized into ROM
IP block using .hex/.mif file format. As the input is red channel data (complemented) of H&E stained

J. Imaging 2019, 5, 21 11 of 13

images, MATLAB is used to generate the .hex/.mif file with red channel data. The resources utilized by
the architecture for 256 × 256 size image on the FPGA (for set-1 parameters configuration) is presented
in Table 3. MATLAB is running on AMD Athlon II CPU (Advanced Micro Devices, Inc., Austin, TX,
USA) at 2.90 GHz with 4GB RAM. To compare the results, the detected nuclei coordinates in the FPGA
are read out and marked on the MATLAB results. Figure 13 shows the nuclei detection results using
both hardware and MATLAB.

Table 3. Resource utilization table.

Resources Utilized

Total Logical elements 34,475
Memory Bits 4,711,338

PLLs 1
Embedded Multipliers 70

J. Imaging 2019, 5, x FOR PEER REVIEW 11 of 13

coordinates in the FPGA are read out and marked on the MATLAB results. Figure 13 shows the
nuclei detection results using both hardware and MATLAB.

Table 3. Resource utilization table.

Resources Utilized
Total Logical elements 34,475

Memory Bits 4,711,338
PLLs 1

Embedded Multipliers 70

The execution time on FPGA measured using counter register, it increments for every
millisecond (i.e. the execution time is in millisecond precision) and final execution time is displayed
through available 15 LEDs on the board. The average execution time over 10 different input images
on both hardware and MATLAB are presented in Table 4.

Table 4. Performance comparison.

Platform Clock Frequency Execution Time (in sec)
MATLAB (on CPU) 2.90 GHz 1.694

Proposed implementation 100 MHz 1.108

Figure 13. Results of Nuclei detection with set 1 parameters configuration on both MATLAB and
hardware, (a) input color image, (b) output detected nuclei indicating on complement red channel
input image, blue color ‘+’ indicates the nuclei detected using hardware, red circle ‘o’ indicates the
nuclei detected using MATLAB.

The accurate detection of nuclei in the input image depends on the parameters mentioned
above. Therefore, in this paper the accuracy of proposed hardware evaluated with respect to the
results from the MATLAB (software) version (2017b, MathWorks, Natick, MA, USA) [10]. It is
observed in Figure 13 that both versions give similar results for the same parameters configuration.
Finding the optimized parameters to compare the accuracy of detection is beyond the scope of this
paper as this paper is focused more on FPGA implementation.

4. Discussion

Figure 13. Results of Nuclei detection with set 1 parameters configuration on both MATLAB and
hardware, (a) input color image, (b) output detected nuclei indicating on complement red channel
input image, blue color ‘+’ indicates the nuclei detected using hardware, red circle ‘o’ indicates the
nuclei detected using MATLAB.

The execution time on FPGA measured using counter register, it increments for every millisecond
(i.e., the execution time is in millisecond precision) and final execution time is displayed through
available 15 LEDs on the board. The average execution time over 10 different input images on both
hardware and MATLAB are presented in Table 4.

Table 4. Performance comparison.

Platform Clock Frequency Execution Time (in sec)

MATLAB (on CPU) 2.90 GHz 1.694
Proposed implementation 100 MHz 1.108

The accurate detection of nuclei in the input image depends on the parameters mentioned above.
Therefore, in this paper the accuracy of proposed hardware evaluated with respect to the results from
the MATLAB (software) version (2017b, MathWorks, Natick, MA, USA) [10]. It is observed in Figure 13
that both versions give similar results for the same parameters configuration. Finding the optimized

J. Imaging 2019, 5, 21 12 of 13

parameters to compare the accuracy of detection is beyond the scope of this paper as this paper is
focused more on FPGA implementation.

4. Discussion

The proposed architecture has been implemented and tested for a small image patch of size
256 × 256. But the architecture can easily be extended to larger image size, as histopathology
images are typically very large in size. The total processing time for a full resolution image, with
a size 20,000 × 20,000, is expected to be in the order of hours in a regular CPU. With optimized
implementation and FPGA boards with higher clock frequency, the overall processing time is expected
to be in the order of minutes.

The proposed architecture shows a modest 34.5% performance improvement compared to a
regular CPU, which is mainly because of the lower clock frequency (100 MHz) of the FPGA board.
The speed-up factor can be improved further by exploiting the data and task parallelism in each sub
module. Empirically, it can be said that smaller modules implemented on FPGA give low performance
(speed up) improvement over the software (on general purpose processor) implementation as the
data parallelism achieved with FPGA can be overshadowed by operating clock frequency. For larger
modules, having possible data parallelism can give significant performance improvement worth of
going for special hardware accelerator. Our larger goal is to design a CAD system for histopathology
for which the nuclei detection is one module. It is expected that the other modules in the CAD system
will have larger speed up resulting in a high overall system performance.

5. Conclusions

A software implementation of the CAD technique requires a significant amount of processing
time. To assist the pathologists in real time, this processing time should be reduced. In this paper,
an FPGA based hardware accelerator for the Nuclei detection has been proposed, and its performance
is evaluated by implementing it on DE2i-150 FPGA development board. The hardware accelerator
shows a significant performance improvement over a MATLAB, even though it is running at a lower
clock frequency. Further performance improvement can be achieved by exploring the data and task
parallelism exists in the algorithm. Once the nuclei are detected on the histopathology images, next
step in the CAD process is to segment the nuclei and perform the diagnosis in real-time. It is the
base model to develop a complete CAD accelerator for many diagnosis processes (processing of large
histopathology images).

Author Contributions: Conceptualization: M.M.; Implementation: H.Z. and R.M.; Validation: R.M.;
Writing—original draft preparation: H.Z.; Writing—review and editing: R.M. and M.M.

Funding: We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada
(NSERC) (funding reference number RGPIN-2014-05215).

Acknowledgments: We acknowledge that Haonan Zhou received Globalink Research Internship from MITACS,
Canada to carry out part of this work. We also thank Hongming Xu for providing some software algorithms for
nuclei detection.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, H.; Lu, C.; Berendt, R.; Jha, N.; Mandal, M. Automatic Nuclei Detection based on Generalized Laplacian
of Gaussian Filters. IEEE J. Biomed. Health Inf. 2017, 21, 826–837. [CrossRef] [PubMed]

2. Lu, C.; Mandal, M. Automated analysis and diagnosis of skin melanoma on whole slide histopathological
images. Pattern Recognit. 2015, 48, 2738–2750. [CrossRef]

3. Al-Jobouri, L. Design of a Convolutional Two-Dimensional Filter in FPGA for Image Processing Applications.
Computers 2017, 6, 19.

4. Kong, H.; Akakin, H.C.; Sarma, S.E. A generalized Laplacian of Gaussian filter for blob detection and its
applications. IEEE Trans. Cybern. 2013, 43, 1719–1733. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/JBHI.2016.2544245
http://www.ncbi.nlm.nih.gov/pubmed/28113876
http://dx.doi.org/10.1016/j.patcog.2015.02.023
http://dx.doi.org/10.1109/TSMCB.2012.2228639
http://www.ncbi.nlm.nih.gov/pubmed/23757570

J. Imaging 2019, 5, 21 13 of 13

5. Soile, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin, Germany, 1999.
6. Vincent, L. Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient

Algorithms. IEEE Trans. Image Process. 1993, 2, 176–201. [CrossRef] [PubMed]
7. Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern

Anal. Mach. Intell. 2002, 24, 603–619. [CrossRef]
8. DE2i-150 FPGA Development Board Specifications and Architecture. Available online: https://www.terasic.

com.tw/ (accessed on 15 January 2019).
9. Intel Corporation. Available online: https://www.intel.com/content/www/us/en/homepage.html

(accessed on 15 January 2019).
10. Mathworks, Inc. Available online: https://www.mathworks.com/ (accessed on 15 January 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/83.217222
http://www.ncbi.nlm.nih.gov/pubmed/18296207
http://dx.doi.org/10.1109/34.1000236
https://www.terasic.com.tw/
https://www.terasic.com.tw/
https://www.intel.com/content/www/us/en/homepage.html
https://www.mathworks.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Gaussian Filter
	2-D gLoG Filter
	Regional Maxima Calculation
	Thresholding
	Masking
	Mean-Shift Clustering

	Results
	Discussion
	Conclusions
	References

