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Background. Breast invasive carcinoma (BRCA) is not a single disease as each subtype has a distinct morphology structure.
Although several computational methods have been proposed to conduct breast cancer subtype identification, the specific
interaction mechanisms of genes involved in the subtypes are still incomplete. To identify and explore the corresponding in-
teraction mechanisms of genes for each subtype of breast cancer can impose an important impact on the personalized treatment
for different patients. Methods. We integrate the biological importance of genes from the gene regulatory networks to the
differential expression analysis and then obtain the weighted differentially expressed genes (weighted DEGs). A gene with a high
weight means it regulates more target genes and thus holds more biological importance. Besides, we constructed gene coex-
pression networks for control and experiment groups, and the significantly differentially interacting structures encouraged us to
design the corresponding Gene Ontology (GO) enrichment based on gene coexpression networks (GOEGCN). .e GOEGCN
considers the two-side distinction analysis between gene coexpression networks for control and experiment groups. .e method
allows us to study how themodulated coexpressed gene couples impact biological functions at a GO level. Results. Wemodeled the
binary classification with weighted DEGs for each subtype. .e binary classifier could make a good prediction for an unseen
sample, and the experimental results validated the effectiveness of our proposed approaches. .e novel enriched GO terms based
on GOEGCN for control and experiment groups of each subtype explain the specific biological function changes according to the
two-side distinction of coexpression network structures to some extent. Conclusion. .e weighted DEGs contain biological
importance derived from the gene regulatory network. Based on the weighted DEGs, five binary classifiers were learned and
showed good performance concerning the “Sensitivity,” “Specificity,” “Accuracy,” “F1,” and “AUC” metrics. .e GOEGCN with
weighted DEGs for control and experiment groups presented a novel GO enrichment analysis results and the novel enriched GO
terms would further unveil the changes of specific biological functions among all the BRCA subtypes to some extent..e R code in
this research is available at https://github.com/yxchspring/GOEGCN_BRCA_Subtypes.

1. Introduction

.e breast invasive carcinoma (BRCA) is regarded as a
heterogeneous disease which is difficult to define under the
definition of the conventional histopathology [1]. BRCA
spans multiple subtypes, each with dissimilar morphology
structures and clinical upshots [2]. It is generally accepted
that BRCA covers five kinds of intrinsic subtypes at the
molecular level, namely, Basal-like, Her2 overexpression
(Her2), Luminal A (LumA), Luminal B (LumB), and Nor-
mal-like [2]. Sørlie et al. developed a “molecular portrait”

method to classify the tumors into five subtypes (i.e., Basal-
like, Her2, LumA, LumB, and Normal-like) according to the
distinctive gene expression patterns [3]. Hu et al. chose 306
genes with significant differential expression to split cancer
into the same five subtypes [4]. Parker et al. also found the
same five intrinsic subtypes by utilizing 50 genes (PAM50)
and it showed great value for clinical prognosis and pre-
diction [5]. .is division can be mapped to the subtypes
defined by IHC markers (i.e., ER, PR, and Her2), except for
the Normal-like which shares similar IHC description with
LumA [2]. However, the existence of the Normal-like
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subtype is disbelieved by some researchers, owing to the
indetermination of its clinical significance..erefore, several
studies only focused on the four kinds of BRCA subtypes
other than the Normal-like [1, 6]. Other studies adopted the
unsupervised methods to cluster the tumor samples into the
different groups and each group represented an individual
subtype [7, 8]. In addition, many researcher have proposed
different machine learning approaches to carry out cancer
subtyping and classification. Dass et al. [9] proposed an
improved decision tree for lung cancer subtypes. More
importantly, the decision rules discovered in this research
can provide reference guidelines for diagnosis and drug
development of lung cancer subtypes. Flynn et al. [10] have
studied several machine learning approaches, including
KNN, random forest, and SVM, using gene expression data
to determine the molecular subtypes of cancer. Hijazi and
Chan [11] proposed a classification framework for cancer
subtypes based on gene expression data. .is work studied
several different machine learning methods including de-
cision trees, random forests, and SVM for subtype classi-
fication. Bazila Banu et al. [12] focused on the performance
of the Naive Bayes classifiers in breast cancer classification.
Kharya and Soni [13] proposed a weighted Naive Bayes
approach for breast cancer classification.

Function enrichment analysis was conducted to acquire
the enriched GO terms based on the corresponding DEGs
for each subtype [1, 7]. In this research, we focus on the
identification of the five subtypes of BRCA (i.e., Basal-like,
Her2, LumA, LumB, and Normal-like) using gene expres-
sion values based on RNA-Seq data. For the DEGs selection
step, we conducted statistical analysis between each subtype
compared with the remaining subtypes similar to [14].
Different from the abovementioned method, we strive to
utilize the biological importance information of the genes.
Hua et al. [15] proposed to construct the miRNA-mRNA
dysregulated network to identify breast cancer subtypes
based on miRNA expression. Xu et al. [7] proposed the gene
regulatory networks namedmiRNA-TF-mRNAwhich could
reveal the interaction relationship between molecules. In-
spired by this method, we integrated the regulatory infor-
mation to the selection of DEGs. .at is to say, we selected
the topM genes with high weights after we get the DEGs..e
weighted DEGs utilize the interaction information derived
from the gene regulatory network and thus reveal the bi-
ological importance related to the corresponding regulatory
mechanism for different subtypes. Machine learning-based
approaches are being applied to conduct feature selection
[16], protein-protein interactions prediction [17, 18], and
cancer classification [16, 19, 20] and show powerful per-
formance in bioinformatics. In order to validate the effec-
tiveness and discrimination of the weighted DEGs, we
constructed a machine learning-based classification model
for each subtype, and a binary classifier between control
(e.g., non-Basal-like) and experiment (e.g., Basal-like)
groups is learned to separate the different groups of data into
the actual classes.

We believe that the different groups will certainly hold
distinct molecular interaction mechanisms, so we con-
structed the gene coexpression networks with weighted

DEGs based on Pearson correlation coefficients (PCC) for
control and experiment groups, respectively. .ere is a lot of
work [21–23] that can use Pearson correlation coefficients to
build a coexpression network based on high-throughput
FPKM data from TCGA database. In addition, in order to
meet the requirements of the normal distribution, we per-
formed some data preprocessing operations, such as log2
transformation. .e significantly differential structures not
only demonstrate the different interaction relationship
among coexpressed gene couples for control and experiment
groups, but also encourage us to propose a novel enrichment
analysis approach called GO enrichment based on gene
coexpression network (GOEGCN).

For GO enrichment analysis, we consider the two-side
distinction between gene coexpression networks for control
and experiment groups [24]. .is means that the coex-
pressed gene couples which appear in the experiment group
instead of the control group can imply that their coex-
pression is activated (similar to the upregulated expression),
and conversely, the ones appearing in control instead of
experiment group infer that their coexpression is inhibited
(similar to the downregulated expression). .is analysis
method is different from previous studies [1, 7, 14]. Finally,
we recalculated the p values using the hypergeometric test
[25] and obtained the final enriched GO terms list for each
subtype after reordering those GO terms according to the
adjusted p values.

2. Materials and Methods

2.1. Data. .e RNA-Seq-based gene expression data of
BRCA was downloaded from the TCGA database. .e
FPKM values were adopted in this research.When the tumor
data of BRCA are obtained, we filtered out the genes whose
mean values are less than 0.2 and variations are less than 2
across the tumor samples. We divided all the tumor samples
into five subtypes, Basal-like, Her2, LumA, LumB, and
Normal-like, according to the description of BRCA clinical
data. .e specific tumor sample size for each subtype is
demonstrated in Table 1. Five binary classifiers for each
subtype were learned to validate the effectiveness and dis-
crimination of the weighted DEGs andmake a prediction for
the unseen sample. .e gene expression profiles for Basal-
like (experiment) and non-Basal-like (control) groups are
shown in Figure 1. .e heatmaps for the other four kinds of
subtypes are presented in Figures S1–S4. .e data was
normalized using log2 transformation and inputted into the
binary classifier for each subtype.

2.2. Statistical Analysis. .e counts data of control and
experiment groups were inputted into the voom [26] and
limma [27] package to get the DEGs for each subtype. .e
genes with absolute log fold change ≥0.5 and adjusted p

value ≤0.01 were kept and regarded as the initial DEGs. In
order to explore the biological importance of the DEGs,
we utilized the gene regulatory networks proposed by Xu
et al. to retrieve the genes with higher weights, i.e., genes
that participate in the regulation of more target genes. Let
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S � g1, g2, gN􏼈 􏼉 denote the gene set, where N is the total
number of genes, and the weights of gi and gj with
gi⟶ gj are calculated with the following equation:

W gi( 􏼁 �
1 − d

N
+ d 􏽘

gj∈T gi( )

W gj􏼐 􏼑

L gj􏼐 􏼑
, (1)

where d (0< d< 1) denotes the damping factor, T (gj) is the
target genes set that gi regulates, and L (gj) is the total
number of regulator genes which regulate gj. .en the top
1,000 genes with high weights were selected from the
miRNA-TF-mRNA gene regulatory networks [7]. .e rea-
sons why we select the 1,000 genes with high weights are as
follows. Firstly, the required quantity for constructing

machine learning classifiers can be satisfied to a certain
extent. Too many genes will result in the overfitting issue,
when the sample size is too small. Besides, we think that
choosing the specific quantity is a more direct method. .e
weighted DEGs for classification were obtained by taking the
intersection between the initial DEGs and the top 1,000
mRNA with high weights (ranks). .e number of weighted
DEGs for classification of each BRCA subtype is illustrated
in Table 2 and detailed gene information is shown in
Supplementary S1 in Supplementary materials When we
conducted the GO enrichment analysis, the top 3,000 genes
with high weights were chosen to perform the intersection
with the initial DEGs and then we would get the final
weighted DEGs for GO enrichment analysis. S2 in
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Figure 1: Heatmap for Basal-like and non-Basal-like groups. .e left group 1 represents the Basal-like group and the right group 2 denotes
the non-Basal-like group.

Table 1: .e tumor sample number for each subtype of BRCA.

Subtypes Basal-like Her2 LumA LumB Normal-like
Number 192 82 564 207 40
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Supplementary Materials File presents the detailed infor-
mation of weighted DEGs of each BRCA subtype for GO
enrichment analysis.

2.3. Construct Gene Coexpression Network with Weighted
DEGs. In order to explore the different interaction struc-
tures between the control and experiment groups for each
subtype, the gene coexpression networks were constructed
by PCC with weighted DEGs for the experiment (e.g., Basal-
like) and control (e.g., non-Basal-like) groups. .e two gene
coexpression networks will carry different interaction in-
formation and distinct network structures. When we ac-
quired the gene coexpression networks for control and
experiment groups, the edges with low values of PCC were
pruned and the edges with higher PCCwere retained.We set
PCC≥ 0 : 3 as the threshold in this research. Besides, we
utilized the symmetric matrix forms to represent the pruned
gene coexpression networks with weighted DEGs. Finally,
we removed the shared network structures between the
control and experiment groups and then just focused on the
differential structures of the upper triangular matrix. .e
detailed information is illustrated in Figure 2.

2.4. GO Enrichment Analysis. Based on the discovery of the
significantly differential interaction network structures, we
were driven to design a novel GO enrichment analysis called
GOEGCN. For the GO enrichment analysis, we considered
the two-side distinction analysis between gene coexpression
networks for control and experiment groups [24]. Firstly, the
GO terms [28–30] with adjusted p value ≤0.05 were col-
lected utilizing the weighted DEGs for each subtype. Sec-
ondly, the distribution of coexpressed gene couples in the
upper triangular matrix was regarded as the background for
control and experiment groups, respectively. .e subupper
triangular matrix of the “geneID” for each GO term was
further obtained by scanning the background (upper tri-
angular matrix) of control and experiment groups, re-
spectively. Finally, the hypergeometric test [25] was used to
recalculate the p values, and the terms whose adjusted p

values were not greater than 0.05 were retained. After
collecting and reordering the results, the novel enriched GO
terms were acquired for the control and experiment groups
of each subtype, respectively.

3. Results

.e algorithm framework we propose mainly includes two
steps, Firstly, the initial GO terms based on the final DEGs
are obtained by using Yu’s method. Secondly, compared
with the DEGs, the difference between coexpression network
structures can well show the difference between the control
and experiment groups, as shown in Figure 2. Based on this

finding, we propose a new GOEGCN method which adopts
the hypergeometric test to explore the differences between
coexpression network structures, thereby further obtaining
the final GO enrichment analysis results. Finally, it is noted
that the GOEGCN method still obtains the new GO en-
richment results based on the initial GO terms. However,
because our proposed method can better show the difference
between the control and the experiment groups, the GO
enrichment results obtained are more reasonable. .e whole
process of our proposed algorithm is illustrated in Figure 3.

3.1. BRCA Subtypes Classification Using Weighted DEGs.
Five kinds of binary classification models were learned on
the control (regarded as the negative class) and experiment
(regarded as the positive class) groups with weighted DEGs
for each subtype. Each binary classifier can make a pre-
diction for an unseen sample (tissue). .ree kinds of well-
known machine learning approaches (i.e., Naive Bayes,
Random Forest, and svmRadial [31]) were applied to train
the model, and the sampling method SMOTE [32] was
adopted to deal with the imbalanced sample size. .e final
classification results using 5-fold cross-validation with 100
repeats were used to measure the robustness of our proposed
method. Among them, “Sensitivity,” “Specificity,” “Accu-
racy,” “F1,” and “AUC” metrics were used to evaluate the
performance of the binary classifiers. Finally, a very im-
portant point is that these classification results are to a
certain extent to test the validity of the DEGs. So the
classification approaches are only a verification one, and the
GO enrichment analysis between control and experiment
groups is our goal.

.e specific classification results are reported in Table 3
and the corresponding confusion matrix is shown in Table 4.
.ree kinds of approaches including “Naive Bayes (nb),”
“Random Forest (rf ),” and “svmRadial” (SVM with radial
basis kernel) were adopted to train the models. Among
them, the ROC curves of each subtype of the three kinds of
machine learning approaches are shown in Figure 4. It was
worth noting that the high “sensitivity” for the positive class
(e.g., the Basal-like) showed that the binary classifier could
give a good prediction for the class with a smaller sample
size. At the same time, the other four metrics (specificity,
accuracy, F1, and AUC) all illustrated good performances.
But for the “Normal-like” one, only the “Naive Bayes” and
“Random Forest” gave good “sensitivity” values and the “F1”
values were relatively low for all the machine learning ap-
proaches. .e possible explanations are that (1) the “Nor-
mal-like” subtype shares a similar IHC status with the
“LumA” [2] and (2) some studies reveal that the clinical
significance of “Normal-like” subtype is still undetermined
and even have a suspect of the existence concerning this kind
of subtype [33].

Table 2: .e number of weighted DEGs of each BRCA subtype for classification.

Subtypes Basal-like Her2 LumA LumB Normal-like
Weighted DEGs 376 157 249 206 249
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3.2. GO Enrichment Analysis for the BRCA Subtypes Using
GOEGCN with Weighted DEGs. .e weighted DEGs for
conducting GO enrichment analysis are described in File
S2 in Supplementary Materials. .e original method to
conduct the differential expression analysis for each

subtype is firstly to find DEGs between each subtype and
normal data and then use the GO terms [28–30] to dis-
cover the corresponding significant GO terms. In this
paper, we propose conducting two gene coexpression
networks by PCC for control (e.g., non-Basal-like) and
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Figure 2: Flowchart to discover the interaction networks structures for control and experiment groups. (a) Construct the gene coexpression
networks by PCC. .e bold edges denote the higher PCC, and the thin edges represent the lower PCC. (b) Conduct the pruning operation
and remove the edges whose PCC values are less than the cutoff. (c) .e symmetric matrix forms compared with step (b). (d) Remove the
shared network structures between control and experiment groups, and just focus on the specific structures of the upper triangular matrix
from control and experiment groups owing to the symmetry.
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Figure 3: Framework of our proposed algorithm.
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experiment (e.g., Basal-like) groups. We have validated
that the gene coexpression network structures are sig-
nificantly different. .is discovery drives us to propose the
GOEGCN method. .is method has two advantages. (1) It

can differentiate structures attached to the experiment
and control groups. (2) More importantly, the changes in
interaction information between control and experiment
groups can be explored. In other words, the interaction

Table 4: .e confusion matrix of the classification results corresponding to Table 3, where “P” represents a certain subtype (e.g., Basal-like)
and “N” represents the remaining four subtypes (e.g., Her2, LumA, LumB, and Normal-like)..e columns of the confusionmatrix represent
the reference (i.e., true) class labels, and the rows represent the prediction class labels.

Subtypes Nb rf svmRadial

Basal-like
Pred\Ref P N Pred\Ref P N Pred\Ref P N

P 74 15 P 73 3 P 74 10
N 2 342 N 3 354 N 2 347

Her2
Pred\Ref P N Pred\Ref P N Pred\Ref P N

P 29 46 P 25 16 P 28 19
N 3 355 N 7 385 N 4 382

LumA
Pred\Ref P N Pred\Ref P N Pred\Ref P N

P 204 38 P 195 24 P 204 32
N 21 170 N 30 184 N 21 176

LumB
Pred\Ref P N Pred\Ref P N Pred\Ref P N

P 69 57 P 67 25 P 45 16
N 13 294 N 15 326 N 37 335

Normal-like
Pred\Ref P N Pred\Ref P N Pred\Ref P N

P 356 3 P 397 4 P 411 8
N 62 13 N 21 12 N 7 8

Table 3: RNA-Seq-based BRCA subtypes classification using 5-fold cross-validation with 100 repeats. .e first column denotes the five
kinds of subtypes, and we built a binary classifier for each subtype by splitting the data into control and experiment groups. .e sample size
of two groups was imbalanced, so the “SMOTE” samplingmethod in the second columnwas utilized to lessen the interference of imbalanced
data..e “LumA” subtype was an exception because it had sufficient samples..e third column denotes the five kinds of metrics used in this
experiment, and the remaining columns are the three kinds of machine learning approaches adopted in this research, where the “svmRadial”
represents the svm with radial basis kernel.

Subtypes Sampling Metrics nb rf svmRadial

Basal-like SMOTE

Sensitivity 0.9737 0.9605 0.9737
Specificity 0.9580 0.9916 0.9720
Accuracy 0.9607 0.9861 0.9723

F1 0.8970 0.9605 0.9250
AUC 0.9847 0.9976 0.9968

Her2 SMOTE

Sensitivity 0.9063 0.7813 0.8750
Specificity 0.8853 0.9601 0.9526
Accuracy 0.8868 0.9469 0.9469

F1 0.5421 0.6849 0.7089
AUC 0.9562 0.9797 0.9798

LumA None

Sensitivity 0.9067 0.8667 0.9067
Specificity 0.8173 0.8846 0.8462
Accuracy 0.8637 0.8753 0.8776

F1 0.8737 0.8784 0.8850
AUC 0.9134 0.9952 0.9481

LumB SMOTE

Sensitivity 0.8415 0.8171 0.5488
Specificity 0.8376 0.9288 0.9544
Accuracy 0.8383 0.9076 0.8776

F1 0.6635 0.7701 0.6294
AUC 0.9075 0.9494 0.9043

Normal-like SMOTE

Sensitivity 0.8125 0.7500 0.5000
Specificity 0.8517 0.9498 0.9833
Accuracy 0.8502 0.9424 0.9654

F1 0.9163 0.9695 0.9821
AUC 0.9125 0.9600 0.9640
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Figure 4: Continued.
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information attached to experiment group but not to
control group reveals that some biological functions are
activated; vice versa, the corresponding biological func-
tions are inhibited. .e specific process for conducting the
GOEGCN analysis using weighted DEGs is shown in
Figure 5. Equations (2) and (3) are adopted to recalculate
the p values for control and experiment groups,
respectively.

P X � k
c

( 􏼁 �

K
c

k
c

⎛⎝ ⎞⎠
N

c
− K

c

n
c

− k
c
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n
c

⎛⎝ ⎞⎠

, (2)

where Nc denotes the scatter of background (upper trian-
gular matrix of gene coexpression network) for the control
group, and nc represents the scatter of subupper triangular
matrix for each GO term. Kc denotes the scatter of inhibited
coexpressed gene couples in background for the control
group, and kc represents then scatter of inhibited coex-
pressed gene couples in subupper triangular matrix.
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e
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e

⎛⎝ ⎞⎠

, (3)

where Ne denotes the scatter of background (upper trian-
gular matrix of gene coexpression network) for the exper-
iment group, and ne represents the scatter of subupper
triangular matrix for each GO term. Ke denotes the scatter of
activated coexpressed gene couples in background for ex-
periment group, and kc represents the scatter of activated
coexpressed gene couples in subupper triangular matrix.

We conducted pathway enrichment analysis using the
PEGCNwith weighted DEGs for the control and experiment
groups of each subtype, and the top 10 enriched pathways
for Basal-like are shown in Table 5. .e detailed enriched
pathway results for all subtypes are shown in Files S3–S7 in
Supplementary Materials.

4. Discussion

Although several computational approaches have been
proposed to identify the subtypes of BRCA, no compre-
hensive explanation was given on the molecular regula-
tory mechanisms of the distinguished subtypes. To well
explore the interaction network for each subtype will
contribute to providing personalized treatments for dif-
ferent patients. In this research, the weighted DEGs that
carry the regulatory information derived from the gene
regulatory networks are adopted to conduct the classifi-
cation tasks between different groups of subtypes. Based
on the weighted DEGs, we aim to explore the interaction
mechanisms for each BRCA subtype using gene expres-
sion values based on RNA-Seq data.
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Figure 4: ROC curves of each subtype using three kinds of machine learning approaches..e Area Under Curve (AUC) is used to assess the
performance of the binary classifier. (a) .e ROC curves of Basal-like using three kinds of machine learning approaches (i.e., nb, rf, and
svmRadial). (b).e ROC curves of Her2 using three kinds of machine learning approaches. (c) .e ROC curves of LumA using three kinds
of machine learning approaches. (d) .e ROC curves of LumB using three kinds of machine learning approaches. (e) .e ROC curves of
Normal-like using three kinds of machine learning approaches.
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Figure 5: Flowchart for conducting the GOEGCN analysis using weighted DEGs. (a) First of all, the initial enriched GO terms are obtained
using GO enrichment analysis. .en a sub symmetric coexpression matrix of “geneID” from each GO term for control or experiment group
is constructed, and the interaction network structures of original symmetric coexpression matrix for control or experiment group are
regarded as the background. (b) Adopt equations (2) and (3) to recalculate the p values for control and experiment groups, respectively. (c)
Collect and reorder the results of enriched GO terms which are recalculated and form the final enriched GO terms list for control and
experiment groups, respectively.

Table 5: Top 10 enriched GO terms for Basal-like subtype of BRCA, where the “p.adjust” means the p values are adjusted by the BH
approach.

Basal-like Top 10 enriched GO terms p adjust

Control group

Morphogenesis of an epithelium 0
Response to lipopolysaccharide 0

Response to molecule of bacterial origin 0
Positive regulation of cell adhesion 0
Regulation of cell-cell adhesion 0

Gliogenesis 0
Peptidyl-tyrosine phosphorylation 0
Peptidyl-tyrosine modification 0

Wnt signaling pathway 0

Experiment
group

Adaptive immune response based on somatic recombination of immune receptors built from
immunoglobulin superfamily domains 0

Phospholipase C-activating G protein-coupled receptor signaling pathway 2.18E− 09
Protein-DNA complex subunit organization 1.33E− 08

Regulation of cellular response to growth factor stimulus 4.06E− 08
RNA catabolic process 1.33E− 07

Regulation of gene silencing by miRNA 1.81E− 07
Skeletal system morphogenesis 8.43E− 07
Regulation of gene silencing 9.87E− 07

Regulation of interferon-gamma production 1.21E− 06

Common

Extracellular structure organization 0
Lymphocyte differentiation 0

Regulation of inflammatory response 2.99E− 12
I-kappaB kinase/NF-kappaB signaling 6.03E− 12

T cell activation 1.03E− 11
B cell activation 7.85E− 11

Positive regulation of response to external stimulus 6.35E− 10
Ribonucleoprotein complex biogenesis 1.33E− 08

Formation of primary germ layer 1.29E− 07
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.e heatmap figures (e.g., Figure 1) can show the dif-
ferential gene expression profiles based on the weighted
DEGs. Also, the machine learning-based approaches are
adopted to train the binary classifier for each subtype. .ree
kinds of approaches, “Naive Bayes (nb),” “Random Forest
(rf ),” and “svmRadial,” were adopted to train themodels and
five kinds of metrics, “sensitivity,” “specificity,” “Accuracy,”
“F1,” and “AUC,” were adopted to evaluate the performance
of the five binary classifiers. .e high metric values verify the
robustness and effectiveness of our proposed method.

We also explored the interaction mechanisms derived
from the gene coexpression networks of control and ex-
periment groups, and the significantly differential structures
of gene coexpression networks validate the different inter-
action relationships among coexpressed gene couples. More
importantly, this discovery inspires us to further investigate
the biological function changes using the proposed
GOEGCN method. .e novel enriched GO terms are ob-
tained according to whether the interaction mechanisms of
coexpressed gene couples are activated or inhibited. .e
two-side enriched GO terms will provide more information
for GO enrichment analysis.

.e specific analysis of enriched GO terms for each
subtype using GOEGCN is as follows.

(1) For Basal-like subtype, this kind of subtype has low
or no expression for the hormone receptors and
Her2 receptor (i.e., ER-PR-Her2-), while it holds the
high expression of basal markers and high expression
of genes related to proliferation [2]. .e basal
markers comprise keratins 5, keratins 6, keratins 14,
keratins 17, and the epidermal growth factor re-
ceptor (EGFR) [2, 34]. .eir expression profiles are
similar to the ones of basal epithelial cells and the
ones of normal breast myoepithelial cells [2, 34].
Besides, the low BRCA1 expression, as well as TP53
mutation, tends to exist in the Basal-like tumors with
basal cytokeratin expression [2, 3, 35].
As shown in Table 5 and File S3 in Supplementary
Materials, the enriched GO terms for the control
group are based on the coexpressed gene couples
which are inhibited in the corresponding gene
coexpression network. .e enriched GO terms for
the experiment group are based on the coexpressed
gene couples which are activated in the corre-
sponding gene coexpression network. .e common
group holds the enriched GO terms which are shared
between the control and experiment groups. .e
enriched GO terms of the control group are related
to the “epithelium,” “cell adhesion,” “epithelial cell
proliferation,” “epithelial cell migration,” etc. .e
ones of the experiment group are concentrated in
“immune response,” “protein signal transduction,”
“growth factor,” “cell proliferation,” “catabolic
process,” “cell cycle” etc., and one possible reason is
that the Basal-like subtype is likely to belong to
Grade 3 tumor, so the immune response will work
during this phase. .e “lymphocyte,” “inflamma-
tory,” “cell proliferation,” “immune response,” etc.

are discovered in the common group..ese enriched
GO terms are consistent with the high expression of
basal markers and high expression of genes related to
proliferation to some extent.

(2) .e Her2 overexpression subtype has low or no
expression for hormone receptors and high ex-
pression of the Her2 receptor (i.e., ER-PR-Her2+).
.e Her2 is responsible for encoding the Her2 re-
ceptor [33]. .is subtype is also characterized by
overexpression of genes related to Her2 amplicon
(e.g., GRB7 [34] and PGAP3 [36])..is subtype has a
high proliferation rate, 75% of Her2 has high his-
tological grade and nuclear grade, and 40%–80% of
Her2 has TP53 mutation resided in this subtype
[2, 33, 37]. .e Her2 is likely to belong to Grade 3
tumor [2] and carries a poor prognosis [3, 8, 38]. .e
more aggressive behaviors in biological and clinical
areas are also one of features of this subtype [33].
As shown in File S4 in Supplementary Materials, the
enriched GO terms for control group are related to
“chromosome segregation,” “cell cycle phase transi-
tion,” “nuclear division,” “cell cycle,” “epithelial cell
proliferation,” “steroid hormone,” etc.; the enriched
GO terms for experiment group are related to “cal-
cium ion,” “leukocyte migration,” “lymphocyte dif-
ferentiation,” “endothelial cell proliferation,” etc.; and
there are no shared enriched GO terms in common
group. .ese enriched GO terms are associated with
the low expression of hormone receptors and high
expression of Her2 receptor to some extent.

(3) .e LumA subtype is ER or PR positive and Her2
negative, while the LumB subtype is ER or PR
positive and Her2 positive [2]. Compared with the
LumB subtype, ER-related genes have higher ex-
pression and proliferative genes have lower ex-
pression in LumA [2, 33]. .e expression of luminal
epithelial cytokeratins (CK8 and CK18) and the ER1
luminal associated markers, as well as the genes
related to ER activation (e.g., BCL2, LIV1, FOXA1,
XBP1, GATA3, CCND1, erbB3, and erbB4
[8, 34, 39]) is the main characteristic of LumA [2, 33].
As shown in File S5 in Supplementary Materials, the
enriched GO terms of control group are associated
with “gland development,” “epithelium develop-
ment,” “steroid hormone,” “branching structure,”
“T cell differentiation,” “immune response,” “cell
cycle,” etc., the ones for the experiment group are
involved in “acid chemical,” “epithelial cell prolif-
eration,” “ERK1 and ERK2 cascade,” “calcium ion,”
“peptidyl-tyrosine modification,” “epithelial cell
migration,” etc., and the ones for the common group
are “response to acid chemical,” “neuron projection
development,” “metabolic process,” “response to
peptide,” “protein kinase B,” etc.
Compared with LumA, LumB tends to have a worse
prognosis and more aggressive phenotypes as well as
higher histological grade [33]. Besides, the

10 Computational Intelligence and Neuroscience



proliferation-related genes (e.g., v-MYB, GGH,
LAPTMB4, NSEP1, and CCNE1) have an increased
expression, and the genes of growth receptor sig-
naling [40] also present an increased expression in
LumB [33].
As shown in File S6 in Supplementary Materials, the
enriched GO terms of the control group are asso-
ciated with “gland development,” “epithelial cell
development,” “gland epithelium development,”
“ERK1 and ERK2 cascade,” “cell cycle,” “phos-
phorylation,” etc., and the ones for experiment group
are involved in “extracellular matrix,” “growth fac-
tor,” “phospholipase activity,” “cell growth,” “cell
adhesion,” “angiogenesis,” etc., and the common
group are “epithelial cell proliferation,” “steroid
hormone,” “branching epithelium,” “muscle cell
proliferation,” etc. .ese enriched GO terms are
consistent with the increased expression of prolif-
eration-related genes and growth receptor signaling
to some extent.

(4) .e Normal-like subtype is ER negative and/or PR
negative with a low level of Ki-67 protein. Few studies
have been conducted to this subtype and its specific
clinical significance is still undetermined [33]. .e
adipose tissue expression is one of its characteristics,
and this subtype has the intermediate prognosis be-
tween Basal-like subtype and luminal subtypes.

As shown in File S7 in Supplementary Materials, the
enriched GO terms of the control group are associated with
“morphogenesis of an epithelium,” “vasculature develop-
ment,” “angiogenesis,” “gland morphogenesis,” “steroid
hormone,” “cell adhesion,” “leukocyte migration,” “lym-
phocyte activation,” etc., the ones for the experiment group
are involved in “cellular protein localization,” “biosynthetic
process,” “phosphatidylinositol metabolic,” “chromatin as-
sembly,” “nucleosome assembly,” etc., and the one for the
common group is “kidney epithelium development.”

Although our proposed approaches show good perfor-
mance, we also admit that some limitations still exist.

(1) Only the single-omics mRNA data (i.e., gene ex-
pression data) was used to train the binary classifiers
for each subtype. .is main purpose is to ensure the
consistency with the subsequent enrichment analysis
which is only available for the mRNA molecules. In
spite of this, our binary classifiers still perform well.

(2) .e interaction networks between control and ex-
periment groups are derived from the gene coex-
pression networks. However, the effective fusion
between the gene coexpression networks and gene
regulatory networks will show powerful interaction
information, and this will be our follow-up work.

5. Conclusion

In this paper, we proposed attaching the biological im-
portance of regulatory information to the differential ex-
pression analysis. Based on the weighted DEGs, the binary

classifier for each subtype was learned. .e experimental
results validated the effectiveness of the weighted DEGs and
each binary classifier for each subtype could make a good
prediction for an unseen sample. More importantly, we
constructed the gene coexpression networks for control and
experiment groups using weighted DEGs, respectively, and
we further explored the interaction mechanisms between
these two groups. .e significantly differential structures
drove us to develop the GOEGCN to conduct GO enrich-
ment analysis based on whether the coexpressed gene
couples were activated or inhibited. .e novel p values were
recalculated using the hypergeometric test and after reor-
dering the adjusted p values, the novel enriched GO terms
were acquired for control and experiment groups, respec-
tively. .e novel enriched GO terms could give some ex-
planation for the biological function changes of each BRCA
subtype to some degree. In the future, we will explore the
effective fusion between gene coexpression networks and
gene regulatory networks. Based on the novel network
structures, we will further investigate the specific interaction
mechanisms and reveal the detailed changes of biological
functions across BRCA subtypes.
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the LumA group and the right group 2 denotes the non-
LumA group. Figure S3: heatmap for LumB and non-
LumB groups. .e left group 1 represents the LumB group
and the right group 2 denotes the non-LumB group.
Figure S4: heatmap for Normal-like and non-Normal-like
groups. .e left group 1 represents the Normal-like group
and the right group 2 denotes the non-Normal-like group.
S1 File: the detailed information of weighted DEGs for
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detailed enriched GO terms results for Basal-like subtype.
S4 File: the detailed enriched GO terms results for Her2
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