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Deletion of phenylalanine 508 (F508del) in the cystic fibrosis
transmembrane conductance regulator (CFTR) anion channel
is the most common cause of cystic fibrosis. The F508 residue
is located on nucleotide-binding domain 1 (NBD1) in contact
with the cytosolic extensions of the transmembrane helices, in
particular intracellular loop 4 (ICL4). To investigate how
absence of F508 at this interface impacts the CFTR protein, we
carried out a mutagenesis scan of ICL4 by introducing second-
site mutations at 11 positions in cis with F508del. Using an
image-based fluorescence assay, we measured how each mu-
tation affected membrane proximity and ion-channel function.
The scan strongly validated the effectiveness of R1070W at
rescuing F508del defects. Molecular dynamics simulations
highlighted two features characterizing the ICL4/NBD1 inter-
face of F508del/R1070W-CFTR: flexibility, with frequent
transient formation of interdomain hydrogen bonds, and
loosely stacked aromatic sidechains (F1068, R1070W, and
F1074, mimicking F1068, F508, and F1074 in WT CFTR).
F508del-CFTR displayed a distorted aromatic stack, with
F1068 displaced toward the space vacated by F508, while in
F508del/R1070F-CFTR, which largely retained F508del defects,
R1070F could not form hydrogen bonds and the interface was
less flexible. Other ICL4 second-site mutations which partially
rescued F508del-CFTR included F1068M and F1074M.
Methionine side chains allow hydrophobic interactions without
the steric rigidity of aromatic rings, possibly conferring flexi-
bility to accommodate the absence of F508 and retain a dy-
namic interface. These studies highlight how both hydrophobic
interactions and conformational flexibility might be important
at the ICL4/NBD1 interface, suggesting possible structural
underpinnings of F508del-induced dysfunction.

The ATP-binding cassette (ABC) transporter family is a
large superfamily of proteins (1, 2). Within this superfamily,
the cystic fibrosis transmembrane conductance regulator
(CFTR) (3) is the only protein known to function as an ion
channel (4). Nevertheless, CFTR shares structural features
with other ABC transporters. In particular, CFTR’s two
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asymmetric nucleotide-binding domains (NBDs), NBD1 and
NBD2, interact with two transmembrane domains (TMDs)
(TMD1 and TMD2) possessing an almost typical Type IV fold
(5). Interactions between the TMDs and NBDs are mediated
by two pairs of intracellular loops (ICLs). The units formed by
a surface depression in each NBD and the two ICLs that
contact it have been described as ‘ball-and-socket joints’ (6).
While NBD1 forms a relatively shallow socket that interfaces
with ICL1 and ICL4, NBD2 forms a deeper socket which
contacts ICL2 and ICL3. ICL2 and ICL4 cross over to the NBD
linked to the opposite TMD, forming a domain-swapped
arrangement like that found in other Type IV ABC trans-
porters, such as bacterial Sav1866 (7–9), MsbA (10), TM287/
288 (11), mammalian P-glycoprotein (12), human ABCB10
(13), and McjD (14). In CFTR, interactions at the NBD–TMD
interfaces are responsible for coupling ATP binding and hy-
drolysis to channel gating by transmission of conformational
changes from the NBDs to the TMDs, which form the anion-
selective permeation pathway (4).

CFTR plays an important physiological role, controlling
epithelial secretions in several organs, such as the airways,
intestine, pancreas, biliary ducts, sweat glands, and reproduc-
tive tracts (15). Cystic fibrosis (CF), caused by loss of function
mutations in the CFTR gene, is the most common life-limiting
genetic disease in populations of European descent, affecting
one in �2500 to 3000 newborns (16–18). CF-causing muta-
tions are unequally distributed between the two NBD–TMD
interfaces (6): 16 are found at the TMD/NBD1 interface, but
only five at the TMD/NBD2 interface (list of CFTR2 variants
31 July 2020, https://cftr2.org/mutations_history). Possibly the
absence of a short helix in NBD1—present in NBD2 and in the
NBDs of other ABC transporters (19)—is responsible for a
shallower socket and weaker ICL4/NBD1 interactions,
rendering the ICL4/NBD1 interface particularly vulnerable to
harmful mutations. Moreover, a more dynamic NBD1 struc-
ture around the socket might also contribute to causing this
mutation hotspot (20).

By far the most common CF-causing variant is F508del,
which deletes a phenylalanine in NBD1 that contributes mo-
lecular contacts at the ICL4/NBD1 interface (16, 21, 22). Even
though X-ray structures of human F508del NBD1 show that
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F508del-CFTR ion channel rescue by revertant mutations
there are only small local changes in the conformation of the
loop comprising residues 507 to 511 (23), the deletion has
great impact on the biogenesis and function of CFTR. While
WT CFTR becomes complex-glycosylated in the Golgi, the
F508del mutant does not undergo any detectable complex
glycosylation at 37 �C (24–30). Instead, misfolded F508del-
CFTR is trapped in the endoplasmic reticulum, ubiquiti-
nated, and then degraded by the proteasome (31).

The minute amount of F508del-CFTR that escapes to the
plasma membrane has decreased membrane stability (32–34)
and a severe gating impairment. The latter is characterized by
a reduction in open probability (Po) (30, 35–40) caused by a
prolonged closed time interval between bursts. The F508del
mutation does not strongly affect CFTR pore properties such
as single-channel conductance and anion selectivity, although
a reduction in current amplitude can occur once instability
develops (reviewed in (41)).

Small-molecule modulators that interact with CFTR directly
and rescue channel function (potentiators), and/or folding,
processing, and trafficking to the plasma membrane (correc-
tors), have been developed for clinical use (42). In the labo-
ratory, one common strategy to promote F508del-CFTR
trafficking to the plasma membrane involves incubating cells
at low temperature, 26 to 30 �C (30, 34, 43–45). Low tem-
perature provides an energetically favorable F508del-CFTR
folding (30) and proteostasis (44) environment, leading to a
decrease in misfolding and improved trafficking to the plasma
membrane. Moreover, evidence suggests that low temperature
promotes trafficking of immature (core-glycosylated) F508del-
CFTR, via a nonconventional trafficking pathway that bypasses
the Golgi (45, 46).

Another laboratory strategy for F508del-CFTR rescue is to
introduce second-site (revertant) mutations in ciswith F508del.
Identified revertantmutations located inNBD1 include V510D/
E/A (47–49), I539T (50, 51), G550E (50), R553M/Q (52) and
R555K (51, 53). The latter mutations reduce F508del-NBD1
thermodynamic and kinetic instability (54, 55). By contrast,
R1070W, located in ICL4 (54, 56, 57), acts by restoring in-
teractions at the ICL4/NBD1 interface (56, 58).

Here, we investigated F508del-CFTR rescue by second-site
mutations. We systematically scanned positions 1064 to 1074
of ICL4, substituting native amino acids with F, H, M, Q, W,
and Y. In addition, we tested the effects of A141S and R1097T.
These mutations correspond to the revertant mutations F270S
(59) and R1116T (60) identified in F670del-Yor1p, a yeast
homolog of F508del-CFTR in which the deletion of F670
causes defects similar to those of F508del in CFTR (59). The
panel of mutants was studied in live HEK293 cells using a new
high-content assay (61), allowing simultaneous quantification
of CFTR cellular conductance and the amount of CFTR in
close proximity to the plasma membrane. Our screen validates
R1070W as a particularly effective F508del-CFTR revertant.

To investigate how the tryptophan substitution improves
biogenesis and ion-channel function so effectively, molecular
dynamics (MD) simulations were run using systems repre-
senting the F508del-CFTR mutant, the F508del/R1070W-
CFTR revertant, and the much less effective F508del/
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R1070F-CFTR revertant. The simulations were compared to
those obtained with a WT CFTR system (62). Our results
reveal how the R1070W revertant mutation might restore
transient interactions between ICL4 and the F508del-NBD1
loop, including a network of hydrophobic interactions be-
tween aromatic residues at the ICL4/NBD1 interface, as seen
in WT CFTR. Our mutagenesis scan results, together with the
altered dynamics at the ICL4/NBD1 interface in silico, suggest
hypotheses to explain the molecular basis of the F508del-
CFTR defects and how they might be repaired.

Results

To assess how second-site mutations in cis with F508del
affect the CFTR anion channel, yellow fluorescent protein
(YFP)(H148Q/I152L)-CFTR fluorescence quenching in
response to extracellular Iˉ addition was quantified following
expression in HEK293 cells. A 24 h incubation at 28 �C was
carried out to minimize misfolding and optimize trafficking,
and the low temperature was maintained throughout image
acquisition. Whole-cell conductance (G) and membrane po-
tential (Vm) at steady state, immediately preceding Iˉ addition,
were estimated by fitting of a mathematical model to the
quenching time course. Moreover, we simultaneously
measured CFTR membrane proximity by quantifying the
YFP(H148Q/I152L)-CFTR fluorescence located at the border
of cells, using mCherry fluorescence as an internal standard for
comparison (61). Table S1 summarizes the assay readouts.

Whole-cell conductance

In the control (dimethyl sulfoxide [DMSO]) condition,
mutants with the F508del background typically had an average
G estimate of around 1 nS (M = 0.97 nS, SD = 1.29, N = 64),
consistent with a small anion permeability reflecting endoge-
nous, non-CFTR–mediated conductance and minimal basal
phosphorylation of CFTR. Following CFTR activation
(through the cAMP pathway) by 10 μM forskolin (Fig. 1A), the
anion conductance of WT CFTR increased significantly (for-
skolin: Mdn = 117.70 nS, N = 17; DMSO: Mdn = 2.35 nS, N =
20; see one-tailed Wilcoxon ranking tests in Table S2). For
F508del-CFTR too, there was a modest, albeit significant, in-
crease in G after addition of forskolin (Mdn = 5.7 nS, N = 18)
compared to the control condition (Mdn = 0.86 nS, N = 19).
An increased conductance after addition of forskolin
compared to DMSO was observed in 24 of 61 mutants with
second-site mutations in cis with F508del at the ICL4/NBD1
interface (Fig. 1A and Table S2). Fluorescence quenching
timelines are shown in Figure S3.

Table S4 demonstrates that many second-site mutations
further impaired F508del-CFTR function—especially sub-
stitutions at sites T1064, L1065, R1066, A1067, G1069, and
Q1071. By contrast, eight mutations significantly increased the
F508del-CFTR–mediated, forskolin-stimulated conductance
(Wilcoxon Rank Sum tests, Table S4). Among these, R1070W
was particularly effective, increasing F508del-CFTR conduc-
tance to 42% of the value measured for WT CFTR (Mdn =
49.76 nS, N = 5). As a comparison, chronic treatment of



Figure 1. Effects of second-site mutations in cis with F508del on CFTR conductance, membrane potential, and CFTR membrane proximity. A, CFTR
conductance (G in nS, upper panel) and membrane potential (Vm in mV, lower panel), measured in HEK293 cells expressing WT CFTR, F508del-CFTR, or
F508del-CFTR with second-site mutations. The dashed reference lines indicate the median conductance (upper panel) and membrane potential (lower panel)
after steady-state activation with forskolin of WT CFTR (blue) and F508del-CFTR (red). Asterisks show results of one-tailed Wilcoxon ranking tests used to
compare G and Vm after addition of DMSO (control; gray boxes) versus 10 μM forskolin (colored boxes). B, measurements of CFTR membrane proximity (ρ)
obtained from the same CFTR-expressing HEK293 cells described in A. Dashed reference lines indicate the average CFTR membrane proximity for cells
expressing WT CFTR (blue) and F508del-CFTR (red). Mean log10ρ values were paired per plate, and paired t-tests were performed on the mean log10ρ
measurements of cells expressing F508del-CFTR with (colored bars) versus without (gray bars) second-site mutation. CFTR, cystic fibrosis transmembrane
conductance regulator; G, whole-cell conductance.

F508del-CFTR ion channel rescue by revertant mutations
F508del-CFTR expressing HEK293 cells with the clinically
approved CFTR corrector lumacaftor (3 μM VX-809 for 24 h
at 28 �C) resulted in a G of only 12% of that measured for WT
CFTR (Mdn = 13.73 nS, N = 7, data not shown). After
R1070W, the most successful revertant mutations were
F1068M and F1074M, followed by A141S and R1097T. Finally,
R1070Q, F1068Q, and R1070F mutations all gave smaller, but
still significant, improvements in G (Table S4).

Membrane potential

More than half of the HEK293 cells expressing second-site
mutations resulted in a significantly depolarized Vm after
steady-state activation with 10 μM forskolin when compared
to those expressing F508del-CFTR (Wilcoxon Rank Sum tests,
Table S4). However, for most of these cells, a relatively
depolarized Vm was also present under control conditions. A
significant depolarization of Vm resulting from activation of
CFTR with forskolin was seen only for WT CFTR, F508del/
R1070W, F508del/R1070Y, and F508del/F1068M (one-tailed
Wilcoxon ranking tests (Table S2).

Membrane proximity

Watershed-based image segmentation on the mCherry im-
ages allowed us to approximate the location of the plasma
membrane without relying on efficient YFP(H148Q/I152L)-
CFTR membrane trafficking. For each cell, the amount of
CFTR in proximity to the membrane, denoted as ρ, was
defined as the ratio of the average normalized YFP(H148Q/
I152L)-CFTR fluorescence intensity within the membrane
proximal zone (a �1 μm wide band adjacent to the cell
J. Biol. Chem. (2022) 298(3) 101615 3
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boundary) to the average normalized mCherry fluorescence
intensity throughout the entire cell (ρ = fYFP membrane/
fmCherry cell). This metric informs about first, trafficking (the
fraction of YFP(H148Q/I152L)-CFTR reaching the membrane,
fYFP membrane/fYFP cell) and second, the fusion protein’s meta-
bolic stability with respect to mCherry’s (quantified by the
ratio fYFP cell/fmCherry cell), a function of overall rates of
biosynthesis and degradation. The ρ measurements approxi-
mated a lognormal distribution and were log10 transformed
before determining plate means for each mutation. To evaluate
the effects of second-site mutations on F508del-CFTR delivery
to the plasma membrane, we compared the mean log10ρ
measurements of cells expressing F508del-CFTR in the
absence and presence of second-site mutations (Fig. 1B and
Table S5). Only R1070W, R1070M, and F1074M significantly
increased F508del-CFTR membrane proximity, whereas it was
significantly reduced by 25 substitutions (Fig. 1B and
Table S5).
Figure 2. Plate matched G-ρ measurements. G was plotted as a function
of membrane proximity (ρ, obtained by back transformation of mean
log10ρ). The panels show G-ρ plots for F508del-CFTR in the absence and
presence of second-site mutations at residues F1068 (A), R1070 (B), F1074
(C) and identified in the Yor1p screen (A141S and R1097T, D). Markers and
error bars represent the mean G ± SEM (y-axis) and back transformed mean
ρ ± upper and lower limits of the SEM (x-axis). CFTR, cystic fibrosis trans-
membrane conductance regulator; G, whole-cell conductance.
Gating and conduction properties

CFTR conductance increases approximately linearly with
membrane proximity (61), consistent with the ρ metric being
proportional to the number of channels at the plasma mem-
brane. Because G is the product of the number of channels at
the membrane (N), open probability (Po), and single-channel
conductance (γ), our two assay readouts allow evaluation of
the gating and conduction properties (Po∙γ) of CFTR channels
located at the plasma membrane (see (61)). The dotted lines in
Figure 2 describe conductance as a function of membrane
proximity assuming single-channel properties (Po∙γ) of WT
CFTR after steady-state activation with forskolin, with the
specific experimental conditions used (see Fig. S6). Data points
falling above or below the line are suggestive of single-channel
activity higher or lower, respectively, than those of WT CFTR.

F1068M (orange five-point star, Fig. 2A) improves the G of
F508del-CFTR. The rightward (nonsignificant) shift on the ρ-
axis positions the point on the regression line, suggesting that
Po∙γ characteristics of F508del/F1068M-CFTR might be close
to those of WT CFTR. F508del/R1070M (orange five-point
star, Fig. 2B) is significantly shifted to the right compared to
F508del-CFTR, suggestive of improved biogenesis, trafficking,
and/or membrane stability. However, the mutant falls far
below the regression line, suggesting that even though the
number of channels at the plasma membrane has increased,
Po∙γ is still much lower than that of WT CFTR. By contrast,
F508del/R1070W (red circle, Fig. 2B) falls above the regression
line, consistent with published single-channel recordings
demonstrating rescue of Po to WT values (while γ is un-
changed in both F508del-CFTR and F508del/R1070W, (63)).
All substitutions at site F1074, except for methionine (M; or-
ange 5-point star, Fig. 2C), decreased conductance, such that
the forskolin-dependent increase in G after activation seen in
F508del-CFTR is lost (Table S2). By contrast, the F1074M
substitution not only significantly increased conductance but
also was one of the three mutants that significantly increased
the membrane proximity of F508del-CFTR. Part of the
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increase in G is thus due to an increase in the number of
channels at the plasma membrane. F508del/A141S (green
cross) and F508del/R1097T (pink diamond) (Fig. 2D) both
increase conductance relative to F508del-CFTR. However,
neither mutation improves membrane proximity, suggesting a
G increase dependent on improved channel function.
MD simulations

We used MD simulations to investigate whether efficacy of
rescue was correlated with restoration of the interactions be-
tween ICL4 and NBD1 found in WT CFTR. For comparison to
WT CFTR, we used previously published simulations of the
WT zebrafish CFTR (zCFTR) (62), whose sequences at the
ICL4/NBD1 interface differ from those of human CFTR
(hCFTR) at only six positions in the NBD1 loop including F508
(positions 495–512, human numbering) and eight in ICL4
(positions 1050–1080, Table S7). In subsequent sections, we
use the numbering of residues in hCFTR to refer to the po-
sitions of residues in both hCFTR and zCFTR (e.g., zR1070
indicates the zCFTR residue corresponding to R1070 in
hCFTR, i.e., R1078, see Table S7 and Fig. S8). We selected for
analysis two ICL4 second-site mutations, which rescue
F508del-CFTR with different efficacy: R1070W that improved
markedly both biogenesis and conductance and R1070F, which
has only minor effects on conductance.

We constructed a model for the F508del-CFTR system by
replacing NBD1 in the ATP-bound structure of hCFTR (64)
with the experimental structure of F508del-NBD1 (65). The
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resulting system is hereafter termed F508del/R1070. We then
generated two additional F508del systems by replacing R1070
with (i) a tryptophan residue (F508del/R1070W) and (ii) a
phenylalanine residue (F508del/R1070F). Each system was
embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-
phocholine (POPC) lipid bilayer and simulated for 2 μs. The
ICL4/F508del-NBD1 interfaces were compared with the ICL2/
NBD2 interface of the same systems, as well as with previously
published, ATP-bound and ATP-free simulations of the WT
zCFTR (6, 62, 66).

In our MD simulations, we assume that the conformations
sampled by the mutant proteins, which reach the plasma
membrane are not grossly different from those adopted by WT
CFTR. Although mutation effects during biogenesis might
result in proteins that fold differently, these effects are mini-
mized by low temperature incubation. Moreover, the signifi-
cant increase in conductance following stimulation by
forskolin (Table S2) for these three mutants suggests that a
large proportion of the mutant channels at the plasma mem-
brane retain regulation of gating by cAMP-dependent
phosphorylation.

RMSD-based cluster analysis

First, we investigated whether the presence of aromatic
residues at the R1070 position alters the structure of the
F508del-NBD1 loop. To address this aim, we analyzed the
conformation of the F508del-NBD1 loop by means of a
RMSD-based cluster analysis of the ICL4/NBD1 interface
(ICL4 residues 1050–1080 and F508del-NBD1 loop residues
495–512). With a RMSD cut-off of 0.1 nm, we detected (i) 39
clusters for the F508del/R1070 system, with the first cluster
and the top three clusters (Fig. 3, A–C) representing
Figure 3. Dynamics of the ICL4/F508del-NBD1 interface. Results of the clust
F508del/R1070W system; G, the F508del/R1070F system; H, ATP-bound; I, ATP
F508del/R1070W systems, the three most populated clusters are shown, while
cluster, the left panel is the front view of the interface, with the members of the
cluster center as cartoon and the side chains of F1068 (black), R1070X (gray), F1
CFTR, cystic fibrosis transmembrane conductance regulator; ICL4, intracellular
approximately 43% and 69%, respectively, of the total struc-
tures; (ii) 35 clusters for the F508del/R1070W system, with the
first cluster and top three clusters (Fig. 3, D–F) representing
approximately 48% and 73%, respectively, of the total struc-
tures; and (iii) nine clusters for the F508del/R1070F system,
with the first cluster alone representing approximately 89% of
the total structures (Fig. 3G). The same analysis was performed
on datasets from simulations on WT zCFTR (Fig. 3, H and I),
with cluster 1 representing 93% and 74% of the total structures
from the ATP-bound and ATP-free simulations, respectively.
Figure 3 demonstrates that the NBD1 loop in the F508del/
R1070 and F508del/R1070W mutants explored more extended
conformations following the helical part (residues 502–507) of
the loop. This can be seen for cluster 1 of the F508del/R1070
system (Fig. 3A) and for the first two clusters of the F508del/
R1070W system (Fig. 3, D and E). More compact conforma-
tions, similar to the WT hCFTR NBD1 loop conformation
(Fig. S8), were retrieved for (i) clusters 2 and 3 of the F508del/
R1070 system (Fig. 3, B and C); (ii) cluster 3 of the F508del/
R1070W system (Fig. 3F), and (iii) the F508del/R1070F system
(Fig. 3G). These folded conformations were also retrieved in
the most populated cluster of the ATP-bound and ATP-free
zCFTR systems (Fig. 3, H and I).

Aromatic residue side chain orientations

The interface between ICL4 and the NBD1 loop near R1070
is characterized by the presence of several aromatic residues,
including F1068 and F1074 from ICL4 and F508 from NBD1.
Figure 3, A–G shows the side chain orientation of F1068 (dark
gray), R1070X (light gray), and F1074 (light blue) of all the
members of a given cluster. We considered the orientation of
these interfacial residues by measuring the first rotamer (χ1) of
er analysis for the following: A–C, F508del/R1070 simulation system; D–F, the
-free zCFTR systems previously simulated (62). For the F508del/R1070 and
for F508del/R1070F and WT zCFTR, only the first cluster is shown. For each
cluster shown in transparent cartoons. The middle and right panels show the
074 (light blue), and F508 (yellow) of all the members of the cluster, as lines.
loop 4; NBD1, nucleotide-binding domain 1; zCFTR, zebrafish CFTR.

J. Biol. Chem. (2022) 298(3) 101615 5
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their side chains over the entire simulation time (Fig. 4, A and
C). χ1 for F1068 shows a peak near 300�, corresponding to the
side chain orientation of the most populated clusters for
F508del/R1070F, F508del/R1070W, and WT zCFTR, (“down-
wards” side chain orientation shown in Fig. 3, D–I). By
contrast, for the F508del/R1070 system, the main peak is at
180�, reflecting the “upwards” movement of the side chain
toward the NBD1 loop, as for the most populated clusters in
Figure 3, A–C. For the aromatic residues at the 1070 position,
R1070W shows a bimodal distribution (middle panel, Fig. 4A),
with the major peak near 280 to 300� and a smaller one at
approximately 200 to 210�. The major peak corresponds to the
side chain orientation shown in Figure 3, D and F and is shared
with R1070F (Fig. 3G), while the smaller peak corresponds
primarily to structures that form the second most populated
cluster of F508del/R1070W, with the tryptophan side chain
flipped upwards (Fig. 3E). No significant differences were
retrieved across the three F508del and the two WT zCFTR
systems for the χ1 distribution of F1074. At the ICL2/NBD2
interface, Y275 corresponds to the F1068 position in ICL4
(Table S7), and its χ1 distribution is centered near 300� (Fig. 4,
B and D), similar to F1068 in F508del/R1070W and F508del/
R1070F and WT zCFTR. W277 at the ICL2/NBD2 interface
corresponds to R1070 in ICL4 (Table S7), and its χ1 distri-
bution shows a peak near 300� in all simulation systems, as for
R1070F and the major peak of R1070W.

In summary, with the exception of F1068 in F508del/R1070,
the χ1 angle of the selected residues at the interface corre-
sponds to the distributions obtained from previous simulations
(62) on the WT zCFTR structure (Fig. 4, A and B versus Fig. 4,
C and D).

We also analyzed two other residues, W496 of the NBD1
loop and Y1073 in ICL4, that contribute to the aromatic nature
Figure 4. Aromatic side chain orientations at TMD/NBD interfaces. Probabi
R1070X, and F1074 from ICL4 in the F508del simulation systems; B, Y275 and
(equivalent to F1076 and F1082, zebrafish numbering) from ICL4 in the WT zC
the WT zCFTR simulation systems (62). CFTR, cystic fibrosis transmembrane con
nucleotide-binding domain; TMD, transmembrane domain.
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of the interface and are located in proximity to the amino acids
discussed above (Fig. S9). In the three F508del systems, the
W496 side chain is oriented upwards and not toward the
residues at positions 1068, 1070, and 1074 (Fig. S9, A–C), with
its χ1 distribution centered at 180� (Fig. S9F). This orientation
is shared with the WT zCFTR systems (Fig. S9, D–E and G). In
the WT zCFTR systems, the W496 side chain is more dynamic
and can adopt an alternative conformation, corresponding to
the additional peak centered at approximately 75�, especially in
the ATP-bound system (Fig. S9G). This orientation corre-
sponds to a side chain pointing toward zF508. However, this
alternative conformation of W496 does not affect the orien-
tation of the residues at positions zF1068 and zF1074, as
shown by their χ1 distribution (Fig. 4C). Y1073 is located next
to F1074 and above the residue at position 1070, and its side
chain adopts similar conformations in the F508del and the WT
zCFTR systems, pointing toward the water environment
(Fig. S9, A–G).
Spatial overlap between F508 in WT CFTR and side chains at
position 1070

To test for overlap of R1070F and R1070W with the region
occupied by F508 in WT hCFTR, the ICL4/NBD1 interface
from the hCFTR structure was superimposed on the center of
cluster 1 for the F508del/R1070F system (Fig. S10A) and those
of the three most populated clusters of the F508del/R1070W
system (Fig. S10, B–D). While R1070F projected toward the
space vacated by F508 (Fig. S10A), the overlap was greater for
the F508del/R1070W system, particularly cluster 1 (Fig. S10B).
We also compared the orientation of R1070F and R1070W
with that of W277 at the ICL2/NBD2 interface (Fig. S10, E–H).
Similar results were obtained with this comparison; a higher
lity density of the χ1 dihedral angle for selected aromatic residues. A, F1068,
W277 from ICL2 in the F508del simulation systems; C, zF1068 and zF1074
FTR simulation systems; D, zY275 and zW277 (Y276 and W278) from ICL2 in
ductance regulator; ICL2, intracellular loop 2; ICL4, intracellular loop 4; NBD,
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degree of overlap was achieved with the R1070W mutant
(Fig. S10F versus Fig. S10E).

Hydrogen-bond interactions at the ICL4/F508del-NBD1 interface

In our previous WT zCFTR simulations (62), we observed
that zR1070 was highly dynamic, oriented both toward and
away from the interface, and forming transient interactions
with zF508 and other residues of the NBD1 loop (Fig. 5A
and Table S7). We therefore investigated whether equivalent
interactions were present in the F508del systems. We found
that R1070 and R1070W formed hydrogen bonds with res-
idues E504, I507, and G509 of the NBD1 loop. Interactions
also occurred between Y1073 and E504 (Fig. 5B). Overall,
hydrogen-bond interactions in the F508del systems, while
not lasting for the entire simulation time, were more
frequent and persistent than those in the WT zCFTR
system.

Discussion

Our systematic, empirical scan of ICL4, seeking mutations
capable of repairing F508del defects, highlighted a number of
second-site revertant mutations. The replacement of R1070
with a tryptophan (54, 56, 57) was found to be most effective at
increasing plasma membrane levels and function of F508del-
CFTR. This confirms patch-clamp recordings, which show
how the R1070W mutation restores F508del-CFTR plasma
membrane stability and gating kinetics to levels measured for
WT CFTR (63). Using MD simulations, the structural basis of
this revertant mutation’s action was investigated. Our sys-
tematic scan also identified a small number of new revertant
Figure 5. Hydrogen bonds between ICL4 and NBD1 residues. Hydrogen b
residues at the ICL4/NBD1 interface. A, interactions at the ICL4/NBD1 interface i
zCFTR simulation of the ATP-bound and ATP-free structures, respectively. B, int
systems studied. CFTR, cystic fibrosis transmembrane conductance regulator; IC
CFTR.
mutations, which mitigated the defects of F508del to some
degree. Taken together, our results underscore the impor-
tance, for CFTR biogenesis and function, of a dynamic ICL4/
NBD1 interface characterized by multiple transient hydro-
phobic and hydrogen-bond contacts.
F670del-Yor1p revertants

We introduced CFTR equivalents of the F670del-Yor1p
revertant mutations F270S (67) and R1116T (60) into
F508del-CFTR. In hCFTR, the corresponding revertant mu-
tations are A141S (in transmembrane helix 2, TM2) and
R1097T (in TM11), respectively. Both revertant mutations,
situated on adjacent TMs at the same horizontal plane within
the membrane-embedded portion of the protein, significantly
rescued F508del-CFTR activity. Structurally, the two residues
are coupled to the TMD/NBD1 ball-and-socket joint, through
helical portions of TM2 (linking to ICL1) and TM11 (linking
to ICL4) (68). F270S only rescued the folding and trafficking of
F670del-Yor1p in combination with another revertant muta-
tion, R1168M, in TM12 (67). By contrast, A141S, by itself,
significantly rescued the conductance of F508del-CFTR, albeit
it was without effect on its membrane proximity, suggesting an
effect on Po and/or γ. Unlike F270S, R1116T, by itself,
increased F670del-Yor1p function. Our data show that
R1097T too increased F508del-CFTR conductance by
improving its gating and/or conduction properties. While we
cannot completely rule out an effect on conduction, residues
in TM2 and TM11 do not play a major role in lining the inner
vestibule of the pore (69) (but note (70)), suggesting effects on
Po are more likely. It is possible that in F670del-Yor1p, as in
ond interactions were detected as a function of time for selected pairs of
n the WT zCFTR simulations (62), zWT wATP, and zWT noATP indicate the WT
eractions detected at the ICL4/F508del-NBD1 interface in the three F508del
L4, intracellular loop 4; NBD1, nucleotide-binding domain 1; zCTFR, zebrafish
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F508del-CFTR, the enzymatic cycle time is greatly prolonged
by a slow transition from the inward-facing to outward-facing
conformation (corresponding to opening in CFTR, (71–73)).
R1116 and R1097 are linked, via TM11, to the TMD/NBD1
interface altered by the phenylalanine deletion. The threonine
substitutions might facilitate coupling of NBD dimerization to
the TMD rearrangement resulting in an outward-facing
conformation. Further studies are required to better under-
stand the mechanistic details of this rescue.

Why is R1070W such an effective revertant mutation?

Introducing the R1070W mutation into the F508del-CFTR
background greatly increased the CFTR-mediated anion
conductance. In an attempt to identify the structural basis of
this remarkably efficient rescue, we compared three different
MD simulations of F508del systems (F508del/R1070, F508del/
R1070W, and F508del/R1070F) with simulations previously
performed on the WT zCFTR systems (62). While other MD
simulations have analyzed the NBD dimer interface (74), we
focused on the ICL4/NBD1 interface. Two potentially impor-
tant features of protein dynamics emerged, suggesting that
both the indole nitrogen and the aromatic ring in R1070W
play important roles (Fig. 6).

F508del/R1070W restores ICL4/NBD1 aromatic interactions

In WT CFTR, the interface between ICL4 and NBD1 is
characterized by the presence of several aromatic residues. In
MD simulations of WT zCFTR, we found that the side chains
of zF1068, zF508, and zF1074 loosely stack in an alternating
fashion (Fig. 3, H and I). In the MD simulation of F508del/
R1070, the arrangement of aromatic side chains at the ICL4/
NBD1 interface deviated noticeably from this pattern, due to
the upward movement of F1068 toward the region vacated by
the deletion of F508. Our MD simulations of F508del/R1070W
and F508del/R1070F showed that both R1070W and R1070F
side chains occupy the region of space sampled by F508 in WT
Figure 6. Schematic overview of the R1070Wmutation introduced in cis
with F508del. In the F508del/R1070W mutant, the tryptophan at site 1070
might provide appropriately positioned (i) hydrogen-bond donor (the
indole nitrogen atom) and (ii) aromatic ring, restoring hydrophilic and hy-
drophobic contacts lost by deletion of F508 and replacement of R1070
(F508 and R1070 in WT CFTR shown in light gray). CFTR, cystic fibrosis
transmembrane conductance regulator.
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zCFTR (Fig. 3, D–G). As a result, the loose stacking of aro-
matic residues in WT zCFTR and hCFTR is restored. The
bulkier side chain of R1070W permitted better overlap with
the region occupied by F508, particularly for the most popu-
lated cluster of F508del/R1070W, comprising 48% of the total
structures (Fig. S10). It is interesting to note that at the ho-
mologous ICL2/NBD2 interface, a tryptophan, W277 (ICL2),
corresponds to R1070 and projects its side chain toward the
NBD2 loop (positions 1303–1309), where a proline (P1306) is
present at a position equivalent to F508. A tryptophan–proline
pair is completely conserved at these positions at the ICL2/
NBD2 interface among a set of asymmetric ABC transporter
sequences (75). Similarly, an aromatic side chain is completely
conserved at a position equivalent to F508 at the ICL4/NBD1
interface. However, a basic side chain at a position equivalent
to R1070 is much less conserved (75).

F508del/R1070W restores ICL4/NBD1 hydrogen-bond interactions,
allowing flexibility of the NBD1 loop

In WT zCFTR, the NBD1 loop mostly adopts a compact,
folded structure, but several residues in ICL4, including
zR1070, are highly dynamic and form transient hydrogen
bonds with residues in the NBD1 loop, including zF508
(Fig. 5A, see also (22, 76, 77)). Our MD simulations of the three
F508del systems highlighted a clear dichotomy. F508del/R1070
and F508del/R1070W had a more flexible NBD1 loop, sam-
pling more extended conformations and forming transient
hydrogen bonds with residues of ICL4. By contrast, F508del/
R1070F adopted a more rigid interface, with no groups at the
1070 position capable of establishing ICL4/NBD1 hydrogen
bonds (Fig. 5B). R1070W orientated toward the interface
occupying the region sampled by zR1070 in WT zCFTR,
formed similar hydrogen bond contacts, albeit more frequently
(Fig. 5A versus Fig. 5B). R1070F adopted a similar orientation.
However, because hydrophilic contacts are not possible for the
phenylalanine side chain, the ICL4/NBD1 interface in this
mutant is fixed and cannot sample alternative conformations
with similar stability. This is demonstrated by the absence of
significant changes in the NBD1-loop conformation
throughout the simulation (the top cluster, Fig. 3G, includes
89% of all structures). Functionally, a dynamic ICL4/NBD1
interface is crucial for CFTR gating, as demonstrated by the
rapid and reversible interruption of channel activity that oc-
curs upon formation of covalent cross-links between F508C
and F1068C in a cys-less CFTR background (21). In addition,
recent studies suggest that a frequent “uncoupling” of NBD1 is
an integral feature of WT CFTR gating (20, 78). A tryptophan
side chain at position R1070, capable of both hydrogen
bonding and hydrophobic contacts, would allow the protein to
adopt conformations in which the interface is alternatively
buried or more solvent exposed.

Methionine substitutions at positions F1068 and F1074

Following R1070W, the most effective F508del-CFTR rever-
tant mutations are F1068M and F1074M. These results are
consistent with a crucial role played by the aromatic cluster at
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the core of the ICL4/NBD1 interface (including F1068, F508,
and F1074) highlighted by our MD simulations and analysis
(Figs. 3 and 4). Methionine-aromatic interactions can occur at
longer distances and are potentially more robust compared to
purely hydrophobic contacts or salt bridges (79). The linear
(nonbranched) aliphatic chain that includes a sulfur atom gives
more flexibility than any other hydrophobic side chain (80),
possibly allowing strong interactions with the aromatic cluster,
despite the distortions caused by the absence of F508.

In addition, F1068M and F1074M might allow transient
polar interactions (81, 82). Strikingly, one of the critical phe-
nylalanines coordinating permeating anions in the Fluc-Ec2
channel can only be functionally replaced by methionine
(83). We speculate that rescue by the introduced methionines
in CFTR might rely on a dynamic switching between relatively
strong hydrophobic interactions and interactions with polar
residues of the NBD1 loop or with the solvent.

Potential translational impact of this study

The results of the mutagenic scan presented here advance
our understanding of the defect caused by absence of
phenylalanine 508, the variant carried by most people with CF
of European descent. As our understanding of the structure
and MD of the CFTR protein improves, information on the
detailed impact of the deletion will inform efforts to design
future therapies capable of optimizing the rescue of CFTR
biogenesis and function.

The strong validation our data provides of the effectiveness
of the revertant mutation R1070W might invigorate efforts to
design novel gene therapy treatments for CF. Partial restora-
tion of function might be achieved by cytosine base editing
(transforming the arginine-encoding codon CGG to the
tryptophan-encoding TGG). Base editing is more efficient and
less prone to error than homology-directed repair ((84, 85) and
PT Harrison, personal communication). In addition, R1070W
rescue of F508del-CFTR channels is likely to have synergistic
effects with Class I and Class III correctors (58, 86) potentially
allowing a simplification of modulator therapy. Thus, base-
editing gene therapy might lead to benefits for F508del ho-
mozygous patients, in the interim, while the homology-
directed repair gene therapy technology is advanced.

Experimental procedures

Plasmid and site-directed mutagenesis

Mutations were introduced in the pIRES2-mCherry-
YFPCFTR plasmid (see (61)) with help of complementary
primers containing mutations (Eurofins MWG Operon) using
the QuikChange protocol for site-directed mutagenesis (Stra-
tagene). Sanger sequencing either outsourced to SourceBio-
science or by the UCL Sequencing Facility with a 3100-Avant
Genetic Analyzer (Applied Biosystems) was used to confirm
the introduced mutations.

Cell culture, transfection, and incubations

HEK293 cells were maintained at 37 �C in Dulbecco’s
modified Eagle’s medium, supplemented with 2 mM L-
glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin,
and 10% fetal bovine serum (all from Life Technologies, Inc).
Cells were seeded in black-walled 96-well plates (Costar, Fisher
Scientific) coated with poly-D-lysine and transiently trans-
fected with the pIRES2-mCherry-YFPCFTR plasmid using
Lipofectamine 2000 (Life Technologies), following the manu-
facturer’s instructions. After transfection, cell plates were
incubated at 37 �C for 24 h, then at 28 �C for a further 24 h to
minimize misfolding (30). Before imaging, cells were washed
twice in 100 μl of standard buffer (140 mM NaCl, 4.7 mM KCl,
1.2 mM MgCl2, 5 mM Hepes, 2.5 mM CaCl2, and 1 mM
glucose, pH 7.4).

Image acquisition

The ImageXpress Micro XLS (Molecular Devices), an
automated inverted wide-field fluorescence microscope with
a temperature-controlled chamber (set to 28 �C), was used
for image acquisition. Protocols for automated imaging and
fluid additions were created using MetaXpress software
(Molecular Devices). A 20 × objective was used to take 16 bit
images of both mCherry (excitation/emission filters at 531 ±
20/592 ± 20 nm) and YFP-CFTR (excitation/emission filters
at 472 ± 30/520 ± 35 nm). To evaluate CFTR activity at
steady state, images of mCherry and YFP fluorescence
were taken every 2 s. After following the baseline for
20 s, CFTR was activated by the addition of 50 μl of
standard buffer containing forskolin (10 μM final concen-
tration) or DMSO (control, 0.05 %). After a further 230 s,
when CFTR is expected to be gating at steady state, 50 μl of
Iˉ buffer (as standard buffer with 400 mM NaI instead of
140 mM NaCl) were added to achieve the extracellular Iˉ
concentration of 100 mM. Further, forskolin/DMSO were
added so that their concentration was not altered by the
second fluid addition. After this, image acquisition continued
for another 40 s.

Image analysis

Images were analyzed using MATLAB mathematical
computing software (MathWorks) as described (61). In brief,
to estimate CFTR membrane proximity, a watershed
transform-based segmentation was performed on binarized
mCherry images after noise was removed. Cells were removed
from analysis if they had (i) an area of <108 μm2 or
>5400 μm2, (ii) a major axis length of >32.4 μm, (iii) if the
area over the perimeter was <25 or >300 μm, or (iv) if they
were touching the image border. The membrane-proximal
zone was defined as a 1.08 μm band within the border of
each cell. After background correction, YFP and mCherry
fluorescence intensity were normalized to the median YFP and
mCherry fluorescence intensities of cells expressing WT CFTR
on the same plate. Cells were removed from analysis if their
average normalized fluorescence intensity fell below 0. For
each cell, the CFTR membrane proximity (ρ) was defined as
the average normalized YFP fluorescence intensity within the
membrane-proximal zone over the average normalized
mCherry fluorescence within the entire cell.
J. Biol. Chem. (2022) 298(3) 101615 9
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A separate image analysis protocol was used to assess CFTR
activity. CFTR was activated with 10 μM forskolin and allowed
to reach steady state, after which 100 mM extracellular Iˉ was
added. Images were corrected for background noise with help
of a cell selection mask created using binarized mCherry im-
ages taken at the first and last timepoints. A mathematical
model was then fitted to the cell YFP fluorescence time course
(see below).

mCherry fluorescence quality control

The mCherry fluorescence is related to the amount of
bicistronic mRNA transcribed from the plasmid. The
normalized mCherry fluorescence was quantified using images
collected with the steady-state activity and membrane prox-
imity protocols (see Fig. S11 and Table S12). In both datasets,
mCherry fluorescence intensity of cells expressing F508del/
Q1071F-CFTR was significantly lower compared to other
variants. This difference persisted using a new DNA prepara-
tion of the plasmid. For this reason, the F508del/Q1071F
mutant was not studied further and removed from the dataset.

Mathematical model

The steady-state membrane potential (Vm in mV) and the
CFTR-mediated whole-cell Clˉ conductance (G in nS) in the
presence of 140 mM symmetrical [Clˉ] can be estimated by
fitting a mathematical model, with the experimental details
defining initial conditions in the modeled system, to the
fluorescence quenching time course (see (87)). A description
of the model is provided in Text S13 and Fig. S14 shows the
YFP(H148Q/I152L) quenching traces (solid red circles),
together with the time course of several modeled variables,
including the proportion of anion-free YFP(H148Q/I152L).
Because, in our system, YFP(H148Q/I152L) fluorescence is
completely quenched by anion binding (88), fitting the
observed fluorescence time course to the predicted time
course of the anion-free fluorophore allows parameter esti-
mation. To account for variations in transfection efficiency, the
mean mCherry fluorescence intensity within the cells was then
used to normalize the G obtained by fitting.

At 28 �C, the estimated transient endogenous anion
conductance (Gtrans) under control (DMSO) conditions
decayed more slowly than previous estimates at 37 �C (87). We
first ran the model with four free parameters (Vm, G, Gtrans,
and τtrans; see Text S13). However at 28 �C, there was more
overlap between the transient and CFTR-mediated currents
making it harder to reliably estimate the values of parameters
describing the transient current. For this reason, we con-
strained Gtrans and τtrans to the average values obtained from
the negative (DMSO) controls (9 nS and 11.4 s, respectively)
and ran all the fits estimating only Vm, and G.

MD simulations

System setup

To build a starting structure for F508del-CFTR, we aligned
one F508del-NBD1 from the hCFTR F508del NBD1 dimer
(PDB ID 2PZF; (65)) to the NBD1 of full-length ATP-bound,
10 J. Biol. Chem. (2022) 298(3) 101615
hCFTR (PDB ID 6MSM; (64)). This alignment was made based
on the α-carbon atoms and gave a RMSD of 0.8 Å. A chimera
model was then built by replacing the WT NBD1 with the
F508del-NBD1 from PDB ID 2PZF. This system is referred to
as F508del/R1070. ATP molecules and Mg2+ ions were
included at the binding sites. We used this structure to prepare
two additional simulation systems, namely F508del/R1070F
and F508del/R1070W, by replacing the arginine at position
1070 with a phenylalanine and a tryptophan, respectively. This
in silico mutagenesis was performed using PyMOL (PyMOL
Molecular Graphics System, Version 2.5, Schrödinger, LLC.),
and for each mutation, the rotamer with the least overlap with
nearby residues was chosen.

System preparation for MD simulations was performed
using CHARMM-GUI (89–91) as follows: Each F508del sys-
tem was inserted in a POPC lipid bilayer using a simulation
box of approximately 13, 13, and 18 nm in x, y, and z di-
rections, respectively. This resulted in a total of 444 POPC
lipids per system. Potassium and chloride ions were added at a
concentration of 0.15 M. The simulations were performed with
GROMACS 2019.3 (92, 93), using the CHARMM36 force field
with the TIP3P water model, as implemented in GROMACS
(94). Each system was minimized with position restraints on
the backbone and side chain atoms using a force constant of
4000 and 2000 kJ mol−1 nm−2, respectively, followed by mul-
tiple small equilibration steps to gradually decrease the force
constant on the backbone atoms from 4000 to 0 kJ mol−1 nm−2

and from 2000 to 0 kJ mol−1 nm−2 for the side chain atoms, as
recommended by the CHARMM-GUI protocol. The last stage
of the equilibration was 20 ns long, with position restraints
only on the backbone atoms using a force constant of
50 kJ mol−1 nm−2. Production runs, with no position restraints
applied, lasted 2 μs with a time step of 2 fs. The temperature
was maintained at 303.15 K using the Nosé–Hoover algorithm
(95, 96) and a relaxation time of 1 ps. Semi-isotropic pressure
coupling was applied with the Parrinello–Rahman barostat
(97) with a relaxation time of 12 ps to maintain the pressure at
1 bar. The LINCS algorithm (98) was employed to constrain
H-atom bonds. Neighbor searching was made with the Verlet
cutoff scheme, with van der Waals interactions switched to
0 between 1 and 1.2 nm. The long-range electrostatic in-
teractions were treated using the Particle Mesh Ewald (PME)
algorithm (99, 100).
Analyses

The cluster analysis was performed using the tool gmx
cluster in GROMACS 2019.6. For this analysis, for each
simulation system, we extracted a trajectory containing only
the atoms of the interface between ICL4 (residues 1050–1080
in hCFTR) and the F508del-NBD1 loop (residues 495–512 in
hCFTR), with frames saved every 500 ps. The clustering was
made with the Daura algorithm (101) using a cutoff of
0.1 nm. For the RMSD calculation, the alignment was per-
formed on the backbone (N, αC, C) atoms of all the residues
at the interface. The distribution of the χ1 dihedral angle
(N-Cα-Cβ-Cγ) for selected aromatic residues at the interface
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was calculated using the gmx angle tool in GROMACS2019.6
and plotted using Matplotlib libraries (102). The probability
density was calculated over 2 μs-long trajectories for the
F508del systems and over 1 μs-long trajectories for the pre-
viously published zCFTR systems (62). For clarity, although
the ATP-bound protein is a Walker B glutamate E1372Q
(corresponding to E1371Q in hCFTR) mutant, we refer to it
here as “WT” to contrast it to the F508del mutants (note that
the 6MSM hCFTR used to generate the F508del systems
carries the same glutamate to glutamine mutation). The
number of hydrogen bonds at the interface was estimated as
a function of time based on a hydrogen–donor–acceptor
angle cutoff of 30 � and on a donor–acceptor distance cutoff
of 0.35 nm, as implemented in the gmx hbond tool in
GROMACS2019.6. Plots were made using Matplotlib li-
braries (102). Figures with snapshots from simulations or
experimental structures were generated with either
VMD1.9.3 (103) or PyMOL 2.0.6 (The PyMOL Molecular
Graphics System, Schrödinger, LLC).
Data and statistical analysis

Statistical analysis was carried out in MATLAB (Math-
Works) using the MATLAB Statistics Toolbox. Before statis-
tical tests were performed, distributions were examined to
assess whether they approximated normal distributions and
whether there was homogeneity of variances. If the normality
and homogeneity assumptions for parametric testing were not
met, data were either transformed to meet the assumptions or
analyzed using nonparametric tests. When post hoc tests
consisted of all possible pairwise comparisons between groups,
the Tukey–Kramer procedure was applied (using the mult-
compare function in Matlab) to prevent inflation of the type I
error rate. By contrast, when comparisons were planned, the
Benjamini–Hochberg procedure with a false discovery rate of
10% was applied to control the family-wise error rate. To
describe the data, the following common statistical abbrevia-
tions were used: M (mean), Mdn (median), SD (standard de-
viation), SEM (standard error of the mean), N (number of
measurements in the sample), and df (degrees of freedom).
Statistical tests were performed two-sided unless otherwise
specified. Data in the boxplots represent median, quartiles,
range, and outliers, and data in other graphs represent mean ±
SEM. The significance level was prespecified as α = 0.05. *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
Data availability

Most data are presented in the figures of the article. In
addition, supporting information is available, which includes a
description of the mathematical model used for fitting the
quenching traces, tables detailing the statistical analyses per-
formed, and additional figures illustrating the scan and MD
simulations.
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