
Vol.:(0123456789)1 3

Molecular Biotechnology (2021) 63:863–884 
https://doi.org/10.1007/s12033-021-00349-0

REVIEW

Reviewing Challenges of Predicting Protein Melting Temperature 
Change Upon Mutation Through the Full Analysis of a Highly Detailed 
Dataset with High‑Resolution Structures

Benjamin B. V. Louis1 · Luciano A. Abriata2,3 

Received: 7 April 2021 / Accepted: 1 June 2021 / Published online: 8 June 2021 
© The Author(s) 2021

Abstract
Predicting the effects of mutations on protein stability is a key problem in fundamental and applied biology, still unsolved 
even for the relatively simple case of small, soluble, globular, monomeric, two-state-folder proteins. Many articles discuss 
the limitations of prediction methods and of the datasets used to train them, which result in low reliability for actual appli-
cations despite globally capturing trends. Here, we review these and other issues by analyzing one of the most detailed, 
carefully curated datasets of melting temperature change (ΔTm) upon mutation for proteins with high-resolution structures. 
After examining the composition of this dataset to discuss imbalances and biases, we inspect several of its entries assisted 
by an online app for data navigation and structure display and aided by a neural network that predicts ΔTm with accuracy 
close to that of programs available to this end. We pose that the ΔTm predictions of our network, and also likely those of 
other programs, account only for a baseline-like general effect of each type of amino acid substitution which then requires 
substantial corrections to reproduce the actual stability changes. The corrections are very different for each specific case and 
arise from fine structural details which are not well represented in the dataset and which, despite appearing reasonable upon 
visual inspection of the structures, are hard to encode and parametrize. Based on these observations, additional analyses, 
and a review of recent literature, we propose recommendations for developers of stability prediction methods and for efforts 
aimed at improving the datasets used for training. We leave our interactive interface for analysis available online at http://​lucia​
noabr​iata.​alter​vista.​org/​paper​sdata/​prote​insta​bilit​y2021/​s1626​navig​ation.​html so that users can further explore the dataset 
and baseline predictions, possibly serving as a tool useful in the context of structural biology and protein biotechnology 
research and as material for education in protein biophysics.
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Introduction

Quantitative prediction of the effects of mutations on protein 
stability is a yet unsolved problem of key relevance in struc-
tural biology, molecular evolution, and protein biotechnol-
ogy [1–8] and part of the larger problem of predicting the 
phenotypic effects of genomic variation [2, 9, 10]. Develop-
ing such predictive models requires sufficiently large training 
datasets describing the quantitative effects of mutations on 
protein stability. Although it is not clear how large is enough, 
datasets likely need to properly represent all possible amino 
acid substitutions and cover a vast range of structural scenar-
ios. Many groups have, thus, compiled over the years data-
sets of experimentally determined stability changes upon 
mutation, where the effect is quantified mainly as the change 
in thermodynamic stability, i.e., in (un)folding free energy 
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(ΔΔGu) or as the change in melting temperature (ΔTm). 
These datasets typically contain full records for only one of 
either ΔΔGu or ΔTm, which is not a minor issue because 
ΔΔGu and ΔTm are not necessarily correlated and, thus, 
cannot always be exchanged for modeling purposes [11]. 
And to date, datasets are dominated by ΔΔGu data rather 
than the easier-to-interpret ΔTm, pragmatically more useful 
in structural biology and protein biotechnology.

The most important datasets of protein stability effects 
upon mutation, combining both ΔTm and ΔΔGu data, have 
been derived by curation and literature-based completion of 
the ProTherm [12] and ThermoMut [13] databases, which 
are quite extensive but also heterogeneous and incomplete 
in many records relevant to the problem of predicting Tm 
changes upon mutation. For example, for certain proteins 
only, the wild-type versions have stability data available; 
in other cases, the parameters for wild type and mutants 
were obtained in quite different conditions. Besides, some 
records lack connections to structures, thus, being useful 
only for sequence-based predictions, naturally less accurate 
than structure-based estimations. A very recent review by 
Mazurenko [14] pinpoints other problems in ProTherm,1 
discussing also the most important datasets available as of 
2020 and putting forward a new dataset. Another excellent 
review by Sanavia et al. also discusses ProTherm-derived 
datasets as well as several popular predictors of mutational 
effects on protein stability [1].

A recurrent problem in the field of mutant stability pre-
diction is that even though every new program or server 
claims superiority over others reporting good correlation 
coefficients and low mean-square errors between predicted 
and known ΔΔGu or ΔTm, subsequent tests by third groups 
always reveal poorer performances. The latest such evalu-
ations [1, 15–18] conclude that (i) training datasets are too 
small and unbalanced, biased towards destabilizing muta-
tions and not smoothly covering all possible amino acid 
replacements, (ii) they are quite redundant and dominated 
by few protein families, thus, possibly biased to certain types 
of proteins, (iii) the stability parameters are available in quite 
diverse conditions, and (iv) many models seem to be overfit, 
introducing biases on the predictions to the extreme that they 
even fail to predict those mutations that are reversed relative 
to what is available in the training dataset (i.e., backwards 
mutant-to-wild-type predictions). These works show that, on 
large testing datasets, most methods do show some correla-
tions between experimental and predicted values, and that 
the distribution of predicted stability changes does follow 
the shape of natural distributions, thus, turning out useful 
for large-scale analyses where only trends are relevant, as 

in coarse modeling of protein evolution [19]. However, the 
works also show that specific predictions or even predic-
tions for large datasets of mutations on proteins under-rep-
resented in the training dataset are still too off for practical 
applications. Just to mention two recent cases, the reader is 
referred to the works on guanylate Kinase by McGuinness 
et al. [17] and β-glucosidase by Huang et al.[20].2 Notably, 
a detailed study on haloalkane dehalogenase by Beerens 
et al. [21] showed that even in the few cases where muta-
tions designed to stabilize a protein were successful, they 
largely optimized enthalpy but not entropic contributions, 
which are as important tuners of protein stability in natural 
protein variants, thus, pointing to yet another shortcoming 
of the methods for stability prediction. Another important 
problem is that given the larger number of destabilizing over 
stabilizing mutations in all datasets, most methods are biased 
to destabilization and, thus, do not reproduce the expected 
symmetry for forwards and backward mutations. Recently, 
interesting ways to treat this problem on ΔΔGu predictions, 
possibly adaptable to ΔTm predictions, have been proposed 
[16, 22, 23].

While oligomerization, membrane integration or associa-
tion, disordered regions, and other features naturally compli-
cate protein stability predictions, the works mentioned above 
show that the problem of stability change prediction is still 
far from solved even for small, soluble, monomeric, well-
folded proteins. Beyond the pitfalls in the training datasets 
and in the methods themselves as summarized above and 
discussed in many works, in this review, we focus mainly 
on the structural subtleties that lead to special situations of 
strong stabilization and destabilization as judged by ΔTm 
and based on high-resolution structures. We pose that these 
structural subtleties likely confuse the otherwise clear trends 
that can be modeled with simple physicochemical descrip-
tors of the amino acid substitutions which is what most 
methods and programs do. Analysis of such situations in 
turn highlights very important aspects of having complete 
datasets well-balanced over all possible amino acid substi-
tutions and structural situations. These analyses shall be of 
special interest to method developers, to protein design-
ers, and structural biologists in general, to efforts aimed at 
improving datasets for training stability predictors, and pos-
sibly also for educational purposes.

We base our review on one of the most complete, care-
fully curated datasets of Tm change upon mutation, pub-
lished by Pucci, Bourgeas, and Rooman in 2016 [11]. 
Although more datasets became available afterwards, this is, 
in our view, the most complete and carefully curated dataset 

1  One was lack of maintenance since 2013; however, a new version 
of ProTherm just came out in 2020 as presented by Nikam et al.

2  We note that Huang et  al. did find that some programs are good 
enough to at least tell strongly stabilizing from strongly destabilizing 
mutations.
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containing high-structural information and full ΔTm data 
to date, with other advantages as discussed below. We first 
dissect the dataset in the context of other works and reviews 
to highlight its value and identify its limitations especially 
its coverage and imbalances. We then navigate the dataset 
through an online web app that resolves instances of each of 
the 20 × 19 possible substitutions against structural param-
eters aided by structure views and predictions of a neural 
network that performs similar to published methods for ΔTm 
prediction, serving as a baseline for the identification of 
interesting cases that deviate strongly from the general pre-
diction. We, thus, identify and discuss several such cases in 
structural detail, building up the idea of global vs. structure-
specific contributions to stability changes upon mutation and 
developing the sense that the general effects caused by each 
kind of mutation are relatively easy to capture but the effects 
of case-specific local structural features that induce strong 
(de)stabilization are not, and not even well represented in 
the dataset. Knowing the Tm changes induced by mutations 
in these examples, we can qualitatively explain them quite 
well in terms of protein structure considerations; however, 
they are very hard to be effectively predicted a priori, prob-
ably even harder for automated methods. Along the way and 
especially by the end of the review, we also elaborate on 
possible routes for future improvements of methods for sta-
bility prediction upon mutation and, of key relevance, of the 
datasets used to train them.

The “S1626” Dataset of Small, Soluble, 
Monomeric, Globular Proteins by Pucci et al.

The dataset by Pucci et al. contains full ΔTm data for 1626 
mutations (hence “S1626”) from experimental measure-
ments in 90 globular proteins of structure known at high 
resolution, all compact, globular, monomeric in solution at 
least in their wild-type forms, and known two-state fold-
ers. This, as opposed to other larger datasets that include 
oligomeric and transmembrane proteins, or that lack high-
resolution structures or even lack structures at all, or con-
tain only ΔΔGu data, etc., which might be useful too but 
do not provide a sufficiently clear basis for our analyses. 
Each entry of S1626 contains Tm and ∆Tm relative to 
wild type, flagged with the experimental techniques and 
conditions used to measure them, and in many cases also 
extended parameters that further describe the impact of the 
mutations on protein stability such as changes in folding 
free energy, enthalpy, entropy, and heat capacity. Stability 
measurements as close to neutral pH as possible were cho-
sen upon construction by Pucci et al. when multiple options 
were available; in practice, 50% of the entries are at pH 6–8, 
13% above pH 8, and 37% below pH 6 including some 20% 
of the total at pH 3.5 or lower (Fig. 1A). Mesostable and 

thermostable proteins were included, the latter showing a 
somewhat larger fraction of destabilizing mutations accord-
ing to the authors of the dataset. On analyzing this through 
the distribution of Tm values (Fig. 1B), there is a group in 
the range from 40 to 64 °C that accounts for ~ 50% of the 
mutation entries. The other 50% spans the contiguous range 
up to 100 °C but displays very large numbers of cases around 
64-65 °C, clear as a peak in the distribution in the plot. This 
peak arises from 182 entries for PDB 1L63 (Tm = 65.1 °C), 
104 for PDB 2LZM (Tm = 65.1 °C), and 129 for PDB 1LZ1 
(Tm = 64.9 °C). These 3 structures are of T4 lysozyme and 
together account for around 25% of the dataset. The first 
two are actually the same lysozyme, from the T4 bacterio-
phage, differing by only 2 non-synonymous mutations and 
superimposing within 0.16 Å all-atom RMSD, accounting 
for 18% of the dataset. Meanwhile, PDB 1LZ1 corresponds 
to human lysozyme which has a very different sequence and 
could, thus, be regarded as a genuinely different system. 
Overall, lysozyme accounts for almost 30% of the dataset, 
followed by ribonuclease at almost 13% and Staphylococcus 
nuclease at 8%. This dominance of one particular protein 
type and Tm values pose a potential bias, present in most 
databases that compromises the quality of the dataset and its 
usefulness to train predictive models of mutational effects 
on protein stability. In principle, however, a sufficiently gen-
eral model should not be very sensitive to this problem, as 
long as it is developed only for prediction on small, soluble, 
well-folded monomeric proteins with good structures avail-
able. However, as discussed in the works commented in the 
Introduction, in practice, this has not been much the case, 
with predictions failing importantly on proteins that were 
not part of the training and validation sets used to train the 
different methods, only somewhat useful to capture some of 
the strongly stabilizing and destabilizing mutations.

By design, the S1626 dataset is limited to mutations 
that induce |∆Tm|< 20 °C, as the authors state that muta-
tions inducing larger Tm changes “are likely to induce 
important structural modifications”. One could wonder 
whether such structural perturbations could occur also at 
lower values of |∆Tm|, say 10 or 15 °C, and we indeed 
report in subsequent sections examples from the S1626 
dataset where structural perturbations are very likely. Con-
veniently, however, the number of ∆Tm observations in 
the range from -20 to 20 °C drops smoothly towards both 
extremes of positive and negative ∆Tm, with very few 
cases at the ends: only 3 cases between -20 and -19 °C, 
6 between -19 and -18 °C, and 3 above + 15 °C. The full 
distribution of ∆Tm values (Fig. 1C) shows that around 
47% are < − 2 °C implying clear destabilization, while 
only 11.8% are > 2 °C implying clear stabilization, leav-
ing around 41% of nearly neutral mutations (and nearly 
25% of the total are within ± 1 °C).
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Each entry in the dataset also reports the techniques used 
to measure Tm. This is dominated by circular dichroism 
spectroscopy (CD, 46%) followed by differential scanning 
calorimetry (DSC, 29%) and fluorescence (FL, 18%), with 
the rest measured through enzymatic activities, absorbance, 
and other methods (Fig. 1E). The dominance of CD-based 
measurements is linked to the dominance of lysozyme in the 
dataset, as all the entries for PDBs 1L63 and 2LZM used this 
technique. A possible caveat with this variety of techniques 
is that they are sensitive to different features affected during 
unfolding; for example, far-UV CD is essentially exclusively 
sensitive to secondary structure, but fluorescence is rather 
sensitive to tertiary packing, whereas enzymatic activity 
can be very sensitive to very local effects such as dynamics 
around the active site without any effects on folding [24, 
25]. We would, however, expect the experimental technique 
to impact on the raw Tm values but not much on ∆Tm from 
the wild type, if both wild type and mutant Tm are measured 
using the same technique as is the case of the entries in this 
dataset. The distributions of ∆Tm values obtained by CD, 
DSC, and fluorescence do indeed look similar (Fig. 1F), but 

anyway, the issue should probably be considered more care-
fully in future studies and data compilation efforts.

Learning from the Dataset

Analysis of their dataset allowed Pucci et al. to draw some 
interesting conclusions. First, that most mutations are desta-
bilizing, which are already well documented in literature 
but are quite quantitatively defined by their data as detailed 
above. Second, that the fraction of destabilizing mutations 
seems higher for thermostable proteins compared to mes-
ostable proteins, which is reasonable because thermostable 
proteins have likely naturally optimized their sequences. In 
fact, for very stable proteins of the dataset (Tm > 85 °C), 
the ∆Tm values are all < 5 °C (Fig. 1D). Another finding by 
Pucci et al., also known but clearly quantified by them, is 
that mutations at buried residues are in average more desta-
bilizing than mutations at exposed sites, with average ∆Tm 
of  −  4.3 °C for buried residues (relative solvent accessibility 
(RSA) < 0.15) and − 1.1 °C for solvent-accessible residues 

Fig. 1   Description of the S1626 dataset of ∆Tm upon mutation com-
piled by Pucci et al. (A) Distribution of pH conditions at which ∆Tm 
were measured. (B) Distribution of reference Tm values, i.e., before 
mutation (“wild type”). (C) Distribution of ∆Tm and |∆Tm| values. 
(D) ∆Tm and |∆Tm| resolved against reference Tm. (E) Representa-

tion of each technique used to track protein unfolding (Abs = absorp-
tion, CD = circular dichroism, DSC = differential scanning calorim-
etry, FL = fluorescence). (F) Distribution of Tm and ∆Tm values 
measured with each technique
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(RSA > 0.5) [11]. A very interesting point here is that the 
distribution of ∆Tm values is very sharp for exposed resi-
dues, most being just neutral to only slightly destabilizing, 
but quite broad for buried residues as a good fraction of the 
mutations are very destabilizing and some actually stabiliz-
ing. Their paper shows that the distribution width at half of 
maximum is ~ 4 °C for very exposed residues but ~ 10 °C 
for buried residues (which represent, respectively, 25% and 
45% of the dataset, appropriate to focus the development 
of predictive models on the buried residues, typically more 
difficult). That trend is even clearer in Fig. 2A below, which 
shows increasingly larger stander deviation and lower aver-
age |∆Tm| for increasingly buried residues.

McGuinness et al. also reported that, in S1626, residues 
in beta conformation are more sensitive to mutation com-
pared to other secondary structures, having a more negative 
average ∆Tm, and that ∆Tm values for residues in coils 
display a large number of outliers at both positive and nega-
tive extremes [17]. A closer analysis based on the detailed 

secondary structures computed by DSSP does not provide 
clearer insights (Fig. 2D). But exploring the average B-factor 
of all C, N, and O atoms of the residues as a proxy for struc-
turing (as less structured residues are more flexible hence 
have higher atomic B-factors), we find that mutations at 
more rigid sites are in average more destabilizing than muta-
tions at flexible sites (Fig. 2B), possibly because they are 
harder to accommodate given the restrained mobility (note 
that B-factor correlates only weakly with RSA, Fig. 2C).

It is clear from its authors and from the analysis by 
McGuiness et al. that the S1626 dataset does not smoothly 
cover all possible amino acid substitutions. We have ana-
lyzed this in some more detail in Fig. 3, further comple-
mented by the subsequent sections. We found that 80% of 
the 20 × 19 = 380 possible amino acid substitutions are rep-
resented by at least one entry in the dataset, and 40% of 
wild type–mutant pairs’ count with at least 3 entries. For 
the latter, we present ∆Tm average and standard deviation 
in Fig. 3. We can easily identify mutations that show up 

Fig. 2   Dependence of ∆Tm entries of the S1626 dataset on protein 
structural parameters. (A) ∆Tm plotted against the RSA of each resi-
due (raw ∆Tm and average ± standard deviation in bins built with 
similar numbers of entries, the latter shown more clearly in the inset 
with a logarithmic scale on RSA). (B) ∆Tm plotted against the aver-
age B-factor of C, N, and O atoms of each residue (raw ∆Tm and 

average ± standard deviation in bins built with similar numbers of 
entries, the latter shown more clearly in the inset). (C) The Pearson 
correlation coefficient between RSA and average B-factor is r = 0.3. 
(D) ∆Tm average ± standard deviation for each type of secondary 
structure identified by DSSP
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most often destabilizing even if we consider the dispersion 
of the listed ∆Tm values: mutations from Ile, Leu, and Tyr 
to Ala all have very negative average ∆Tm, while Phe to 
Ala also has very negative average ∆Tm although with a 
standard deviation as large as the average due to one entry 
with ∆Tm = 9.5 °C (Phe7Ala in PDB 451C, discussed later). 
Other clear destabilizing effects even considering data dis-
persion are for example those from Gly to Phe, from Ile, 
Thr and Val to Gly, from Ile to Thr, from Val to Ser, and 
from Phe to Val and to Trp. Likewise, we can identify a few 
mutations that are listed most often as stabilizing from Asp 
to Ile and Leu (4 entries neutral and 5 stabilizing), from 
Glu to Leu (2 neutral and 2 very stabilizing), from Lys to 
Asn (2 neutral and 2 stabilizing), Asp to Lys (4 neutral, 2 
slightly stabilizing and 3 very stabilizing), and Asp to His 
(with only one case of negative ∆Tm among 2 neutral and 4 
quite stabilizing cases). Note that as we discuss later, many 
of these cases may not represent the real, general trends for 
these mutations. Last, a few substitutions seem to be quite 
neutral in average, such as those from Gln to Glu which lists 
3 neutral cases and one slightly destabilizing case, although 
the reverse Glu-to-Gln mutation appears quite less neutral. 
Also substitutions from Gln to Leu and from Gly to Gln 

result in mild or no impact, while their reverses count few 
cases so they are difficult to compare. These last observa-
tions and other cases involving Gln pose it as a relative inert 
amino acid regarding stability effects, either if it is mutated 
or used for substitution; however, it is one of the least cov-
ered residues of the dataset so more data are needed to test 
this proposition.

A Simple Neural Network Predicts ∆Tm 
Similarly to Other More Complex Methods, 
Providing a Baseline that Helps to Separate 
Global from Structure‑Specific Contributions 
to (de)Stabilization

Using their dataset, Pucci et al. developed two methods to 
directly predict ∆Tm upon mutation, which is more directly 
interpretable and practical than ΔΔGu predicted by most 
other methods. Their (Tm-)HoTMuSiC models [26] combine 
information about the amino acid substitution, structural fea-
tures of the wild-type protein, and the wild-type Tm when 
available, into statistical potentials that are treated by a neu-
ral network trained on S1626 with cross-validation, resulting 

Fig. 3   Coverage of all possible wild type- > mutant combinations in 
the S1626 dataset, and average effects on stability. The matrix shows 
the average ± standard deviation in ΔTm for amino acid substitutions 
with more than 3 entries in the dataset, also coded in each cell’s color 
(from red for destabilizing to green for stabilizing). The number on 

the top right of each cell counts the number of observations for the 
corresponding mutation (no number means 0 instances). Below the 
matrix and on its right, the number of total replacements to and from 
each amino acid, respectively
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in root–mean-square error (RMSE) between predicted and 
experimental ΔTm values of 4.2 °C (or 2.9 °C when outli-
ers are removed). We found that a simple neural network 
(Fig. 4A) which takes as inputs solely physicochemical 
descriptors of the amino acid substitutions and the wild-type 
amino acid, the RSA of the wild-type residue, its local sec-
ondary structure, and its flexibility as reflected by the aver-
age B-factor of its sidechains, achieves upon training with 

balanced subsets of S1626 (60% for training, 30% to guide 
early training stop, and 10% for final evaluation, attempted 
in 20 different splits that give similar results, Fig. 4B) ∆Tm 
predictions with RMSE of 3.2 °C and Pearson correlation 
(r) of 0.6 on the 10% separate testing subset (Fig. 4C). These 
metrics are very similar to those achieved by HoTMuSiC, 
both better than other tools for ∆Tm prediction [27–29]. 
Although these metrics seem to imply reasonably good 

Fig. 4   A simple neural network for ΔTm prediction. (A) We trained 
a neural network made of 19 input neurons, 64 neurons in the hid-
den layer, and 1 output neuron for ΔTm. The inputs are 16 descriptors 
of the physicochemical changes from wild type to mutant amino acid 
and their wild-type values taken from the PsychoProt server [40], 
plus 3 descriptors computed for each residue from the PDB structures 
(RSA, average B-factor of C, N, and O atoms, and DSSP secondary 
structure simplified to helical, coil, or sheet). RSA and secondary 
structures were obtained with DSSP [41]. The inputs were normal-
ized to 0 mean and 1 standard deviation, except for secondary struc-
ture that was coded as − 1, 0, and 1 (− 1 for sheet: B, E, S; + 1 for 
helix helix: H, G, I; 0 for T and others) and charge that was coded as 
− 1, 0, or 1. The neural network was implemented in TensorFlow 2.5 

for Python. (B) We trained 20 networks using each time a different 
random split of the dataset in 60% entries for training, 30% to drive 
early stop, and 10% for independent testing of the finally selected net-
work. Our whole dataset from which these sets were derived consists 
in all S1626 entries extended with zeros from 15 randomly sampled 
mock mutations from wild type to wild type for each protein (which 
we saw improved results). We used the mean-square error between 
predicted and experimental ΔTm values as the loss function for train-
ing the network. All 20 trained networks yielded similar correlation 
coefficients (r) and root-mean-square errors (RMSE) between pre-
dicted and experimental values. (C) We cherry-picked network 11 as 
our final predictive model. The panel shows correlation plot, correla-
tion coefficient and RMSE for the 3 data subsets, for the final network
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predictions by our network and other methods, detailed 
inspection highlights a varying range of deviations. The 
main issue is that not only our testing RMSE of 3.2 °C on 
the whole dataset includes 56% cases of very high accuracy 
with absolute differences < 1 °C between experimental and 
predicted ∆Tm, but also a substantial fraction of larger devi-
ations: 28% of the entries display differences of up to 4 °C, 
10% show differences above 5 °C, and 1% show differences 
from 10 °C to as much as 16 °C. This bias is barely analyzed 
in other works, but likely present too, given their similar 
performance as compared to our network. Also like in other 
tools, our neural network produces “dampened” predictions 
where destabilizing mutations are estimated less negative 
than in the experimental data and stabilizing mutations are 
predicted less positive, even negative.

We also evaluated our neural network against the “prospec-
tive” data on guanylate kinase by McGuiness et al., to find that, 
just like with the models they evaluated, the network has rather 
limited predictive power for individual mutations (Fig. 5A). It 
achieves on this data an RMSE of 8 °C and r of 0.39 between 
experimental and predicted ΔTm, with differences of at least 
5 °C for two thirds of the dataset and a quarter of predictions 
off by more than 10 °C. Notably, as also found by McGuiness 
et al. for several stability prediction methods, the network pre-
dicts several neutral-to-stabilizing mutations that are actually 
destabilizing. In the case of our network, these predictions 
of stabilizing mutations entail the largest differences with the 
experimental values, and interestingly, they are dominated by 
mutations from Lys (Fig. 5B). Mutations from this residue 
are not well represented in the S1626 dataset (except for those 
to Ala and Phe, see Fig. 3), which probably hampers proper 
learning by the network. Moreover, mutations from Arg, which 

could have helped the network to learn by similarity, are also 
scarce in the dataset. Further complicating the training, the 
few instances of mutations from Lys to amino acids like Asp 
and Asn include cases of stabilization which, if arising from 
specific structural effects, would confuse learning of the actual 
general trends. And in fact, the strongest deviation in the gua-
nylate kinase predictions is for a mutation from Lys to Asp 
predicted to be stabilizing by 6.3 °C but actually destabilizing 
by 9.36 °C (first row in Fig. 5B). The S1626 dataset contains 
only one case of such mutation, which is quite positive, hence, 
probably makes the network learn that Lys-to-Asp mutations 
are in general quite stabilizing. On inspection of this single 
entry, Lys49Asp in PDB 1POH, we find that Lys49’s sidechain 
is involved in a hydrogen bond to nearby Ser that requires an 
unfavorable rotamer (Fig. 5D, left). Replacement of this Lys by 
Asp results in a stronger hydrogen bond achieved by a favora-
ble rotamer, plus an additional hydrogen bond with a nearby 
backbone N (Fig. 5D, right). The other stabilizing predictions 
of the network are dominated by mutations from Lys to Asn, 
which presents only 4 cases in S1626 (Fig. 3), two of which are 
nearly neutral and two stabilizing, one actually by 10.7 °C but 
for which we cannot find any reasonable explanation. What-
ever the exact case, more instances of mutations from Lys are 
required to better model the impact of this apparently impor-
tant player in tuning stability.

Fig. 5   Evaluation of the neural network against the “prospective” 
data on Guanylate Kinase mutants by McGuiness et  al. PLoS One 
2018. To predict the Tm changes upon mutations, we needed a 3D 
model, as there is no structure of this protein available in the PDB, 
from which we could estimate RSA and secondary structures, while 
the B-factor was set to 20 for all residues as we lacked data or ways 
to better estimate it. The 3D model was built through homology mod-
eling of this sequence reconstructed from the information provided in 
said paper: HHHHHHMALPTPVVICGPSGSGKTTLYNKLLKEF-
PGVFQLSVSHTTRQPRPGEENGREFHFINRDQFQENIKQGD-

FLEWAEFSGNLYGTSKKALEEVQANNVIPILDIDTQGVRNVK-
KASLEAVYIFIKPPSIDVLEERLRSRKTETEEALQKRLSAAR-
NELEYGLKPGNFQHIITNDDLDVAYEKLKGILIKSQMPLAMA. 
(A) Experimental ΔTm against values predicted by our neural net-
work (compare with Fig.  6D of McGuiness et  al. 2018). (B) Table 
with all mutations predicted by our network to have ΔTm > 1 °C, 
showing also RSA, experimental ΔTm, and difference between pre-
dicted and experimental ΔTm. (C) Lys49 in PDB 1POH (left) and 
model of its mutation to Asp (right)
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Interactive Exploration of S1626 
through an Online Web App Facilitates 
Understanding How Structural Details 
Modulate the Impact of Mutations 
on Protein Thermal Stability, Helping 
to Discern General from Structure‑Specific 
Contributions

To explore the entries of the S1626 dataset in exquisite 
detail, we built a web app (Fig. 6) where the entries for 
each of the 20 × 19 substitutions can be inspected sepa-
rately, resolved against the structural parameters used above 
to train the neural network and enhanced with 3D views. 
Based on web programming [30], this web app is accessible 
at http://​lucia​noabr​iata.​alter​vista.​org/​paper​sdata/​prote​insta​
bilit​y2021/​s1626​navig​ation.​html on any device. For each 
possible mutation from one amino acid to another, the app 
displays plots that resolve ∆Tm against three features of 
the reference residue as in the structure: RSA as a cue for 
solvent exposure, average B-factor of its atoms as a proxy for 

flexibility, and secondary structures simplified from DSSP 
assignments to either alpha, beta or coil at + 1, − 1 and 0, 
respectively.

The web app presents data in four plots: one resolving 
∆Tm against each of RSA, B-factor, and secondary structure 
individually, and a bubble plot that displays RSA vs. aver-
age B-factor for each entry coding the sign of ∆Tm by color 
(red for ∆Tm < − 2 °C, green for ∆Tm > 2 °C, and blue for 
|∆Tm|< 2 °C, i.e., nearly neutral mutations) and its magni-
tude by the size of the data point. In all plots, hovering over 
the data points (with a mouse in computers only) displays 
additional data. Thanks to a built-in JSmol [31] library, users 
can launch 3D visualizations that automatically focus on 
the relevant residue, and right there model the mutation and 
download the mutated file.

At a prediction accuracy similar to that of Tm-HotMusic, 
an advantage of our network is that it uses simple inputs and 
runs extremely fast. Thanks to this, we could sample and tab-
ulate all 3 × 11 × 14 = 462 possible combinations of second-
ary structure (+ 1 for helical structures, 0 for unstructured, -1 

Fig. 6   A web app for interactive exploration of the S1626 dataset. 
When the user choses an amino acid substitution in (a) the app pre-
sents a list of all entries in (b), plots ∆Tm vs. RSA, average B-fac-
tor, and secondary structure (c), and produces bubble plots of ∆Tm 
resolved by RSA and B-factor in the entries of the dataset (d) or 
predicted by a simple neural network (e). By clicking button (f), the 

app displays in 3D the PDB structure of the currently selected entry, 
zoomed into the corresponding residue (g) which the user can mutate 
directly on-site. Last, the checkbox in (h) shows predictions when 
active. The web app is available at http://​lucia​noabr​iata.​alter​vista.​org/​
paper​sdata/​prote​insta​bilit​y2021/​s1626​navig​ation.​html

http://lucianoabriata.altervista.org/papersdata/proteinstability2021/s1626navigation.html
http://lucianoabriata.altervista.org/papersdata/proteinstability2021/s1626navigation.html
http://lucianoabriata.altervista.org/papersdata/proteinstability2021/s1626navigation.html
http://lucianoabriata.altervista.org/papersdata/proteinstability2021/s1626navigation.html
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for beta-like structures), RSA (from 0 to 1 every 0.1 units), 
and average B-factor (from 10 to 140 every 10 units) for 
each of the 20 × 19 = 380 possible amino acid substitutions. 
We integrated these 380 × 462 = 175,560 predictions into the 
web app so that users can visualize them overlaid (as black 
dots) onto the raw entries for each amino acid substitution 
in the S1626 dataset resolved against RSA, average B-factor, 

or secondary structure (plots around c in Fig. 6) and also 
as a bubble map of predictions resolved against both RSA 
and average B-factor where the sign and absolute value of 
the predicted ∆Tm are encoded by bubble color and size 
(indicated with e in Fig. 6). These plots show a recurrent 
pattern: the network seems to capture a rather general effect 
caused by each mutation, dependent mostly on RSA that acts 
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as a baseline from which large positive and negative devia-
tions occur. For example, the case of Phe-to-Ala mutations 
is described by the network mainly as a smooth depend-
ence on RSA such that more buried sites are more sensitive 
to destabilization by the mutation (Fig. 7A), but it is clear 
that on top of this general trend, there are other effects that 
might be quite strong, as exemplified with Phe7Ala in PDB 
451C later on. Together with the many structure-specific 
explanations required to rationalize cases of strongly stabi-
lizing and destabilizing mutations illustrated in Figs. 8, 9, 
10, 11, 12, 13 (and others that the reader can inspect in the 
online web app), the network’s predictions suggest that each 
individual mutation can be ascribed a general, or baseline, 
destabilizing-to-neutral contribution natural to the type of 
amino acid substitution, plus a specific contribution arising 
from the particular structure around the mutated residue very 
specific to each case, in which effect can range from very 
stabilizing to very destabilizing.

As the neural network captures global rather than specific 
effects (a feature probably shared with other methods, given 
the similar accuracy), it can then reasonably interpolate and 
extrapolate the effects of mutations that are underrepre-
sented or even not represented at all in the dataset. For exam-
ple, mutations from Asp or Glu to the big hydrophobic Phe, 
Leu, Val, or Ile are dominated in the dataset by neutral and 
stabilizing examples, although one would expect such muta-
tions to be rather destabilizing. As we discuss later, unfor-
tunately these entries come from very similar substitutions 
in only a few proteins and represent mainly specific effects. 
Despite the dominance of positive values for the mutations, 
the network does deliver rather destabilizing predictions as 
expected (Fig. 7B). The network probably learns this from 

the many other instances of similar physicochemical changes 
produced by other combinations of mutations that are better 
represented with destabilizing cases. Of course, the posi-
tive cases likely do affect the training, such that the actual 
general effect of these mutations is somewhat more negative 
than predicted. One further example of how the network 
produces reasonable extrapolations is that of Gly-to-Trp sub-
stitutions, which have no occurrences in the dataset yet are 
predicted as expected from basic physical chemistry; in fact, 
the network predicts ΔTm profiles vs. RSA and B-factor 
similar to those of Gly-to-Phe substitutions (Fig. 7C).

Detailed Structural Inspections Put Forward 
Strong Sources of Deviation from Baseline 
Effects on Stability

In this section and Figs. 8–13, we use the web app to explore 
the coarse physicochemical rationale for baseline effects of 
mutations on stability and discuss several specific examples 
of fine structural details that lead to strong deviations in 
∆Tm values. We carry out a very detailed analysis of the 
potential structural rationales for such deviations, an exer-
cise that is critical to interpret experiments and advance the 
design of protein mutations as wonderfully exemplified by 
Castro et al. in their discussion of mutational effects on the 
stability of human frataxin variants [32].

The first set of examples concerns S1626 mutations 
from glutamate to alanine, in which ∆Tm values span from 
roughly − 9 to + 8 °C including a larger fraction of destabi-
lizing and neutral mutations over stabilizing cases (Fig. 8A). 
The plots suggest that RSA, B-factor, and secondary struc-
ture information are not enough to predict ∆Tm, but they 
do show that for this mutation, the magnitude of the change 
in Tm (either positive or negative) decreases with RSA, a 
trend observed for most other amino acid substitutions in 
the dataset. The two most extreme cases seem to arise from 
changes in the configuration of buried charges, very impor-
tant because the electrostatic forces are scaled by a much 
smaller dielectric constant inside the protein compared to the 
solvent. One case is Glu6 in PDB 1H7M in which mutation 
to Ala results in strong destabilization (∆Tm = − 8.6 °C); 
this residue forms a salt bridge with Arg92 and a hydrogen 
bond to its backbone, both of which get lost upon mutation 
(Fig. 8B). On the most stabilizing end, the carboxylate of 
Glu8 in PDB 1IO2 is very close to that of Glu84, an intrinsi-
cally destabilizing arrangement that is lost when the former 
is mutated to Ala; moreover, such mutation may allow Arg11 
to establish a salt bridge with Glu84 contributing further 
stabilization (Fig. 8C).

For Glu-to-Ala substitutions, ∆Tm is only − 1 to − 2 °C 
for residues in coil conformation (4 cases) except for one 
case at − 7.5 °C, Glu107 in 1SHF. This is in a quite buried 

Fig. 7   Data analysis and extrapolations guided by the neural network. 
After running the network on all possible combinations of wild type 
and mutated amino acids, for all 3 kinds of secondary structures and 
spanning a wide range of RSA and B-factors, we incorporated the 
175,560 predictions into the web app. To view these predictions the 
user needs to enable “Show predictions” (checkbox h in Fig. 4). (A) 
Left: plot of ΔTm vs. RSA for Phe-to-Ala mutations, showing experi-
mental cases from S1626 in colors as in the previous figures and the 
network predictions as black dots. Right: the same plot with guides 
approximating the general dependency of ΔTm on RSA modeled by 
the network, with strong stabilizing and destabilizing contributions 
from peculiar structural details. (B) Experimental observations and 
network model of ΔTm against RSA for mutations from Asp to Phe, 
Glu to Leu and Glu to Phe. (C) Dependency of ΔTm on RSA learned 
by the network for mutations from Gly to Phe, and how this helps it 
to predict ΔTm for similar mutations that lack any data in the training 
set, here those from Gly to Trp. For all panels: in the plots of ΔTm vs 
RSA and B-factor (and secondary structure, not shown in the figure), 
the network predictions appear as black dots. Meanwhile, RSA vs. 
B-factor bubble plots encode ΔTm using red for destabilizing, blue 
for neutral (|ΔTm|< 2 °C) and green for stabilizing mutations, being 
the bubble diameter proportional to |ΔTm|. When multiple colors are 
seen this is because of a different output category by different second-
ary structures of same RSA and B-factor

◂
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loop, establishing hydrogen bonds that stabilize closure of 
the domain; thus, it is not surprising that mutation to Ala-
nine is very destabilizing (Fig. 8D). The other 4 cases of coil 
glutamates with no large impact on stability upon mutation 
to alanine are all highly exposed.

But not all cases are easy to explain. For example, Glu48 
of 2RN2, quite buried, looks like a stabilizing element as it 

forms hydrogen bonds with Asn44 one helical turn away and 
with Ser71 coming farther in sequence. Although this situa-
tion is quite similar to the one just discussed, here mutation 
to Ala is nearly neutral with ∆Tm = − 1 °C with no apparent 
obvious explanation (Fig. 8E).

The next set of examples (Fig. 9) shows how some simi-
lar mutations follow akin patterns of ∆Tm dependence on 

Fig. 8   Exploring substitutions from Glu to Ala. In all cases, the 
residue whose mutation is being discussed is colored with magenta 
carbons and other relevant residues with gray carbons; all other car-
bons are green, oxygen atoms red, and nitrogen atoms blue. (A) Plots 
presenting all observations of Glu- > Ala mutations, where letters B, 
C, D, and E relate each data point to the corresponding panel. Red, 
blue and green colors highlight destabilizing, nearly neutral, and sta-

bilizing entries, respectively, while black dots are the neural network 
predictions. (B) A case of a destabilizing mutation caused by rupture 
of a salt bridge. (C) A stabilizing mutation caused by removal of a 
charge–charge repulsion. (D) A case of destabilization by removal of 
two hydrogen bonds that connect two parts of the protein. (E) A hard-
to-explain case, as it resembles (D) but in documented as having no 
strong effect on stability
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protein features, here illustrated with substitutions from 
either Ile, Leu, or Val, all aliphatic hydrophobic, to Ala. 
All cases entail only neutral or destabilizing effects, and 
not even one instance of clear stabilization. Destabiliz-
ing effects are mild for residues with RSA above 0.15 (all 
showing ∆Tm > − 5 °C) and range from mild to severe 
(reaching − 10 to − 18 °C) for residues with RSA < 0.15 
(Fig. 9A). Dependences on average B-factor and second-
ary structure do not add much insight, other than the clear 
indication that mutations from Ile to Ala in loops are all 
quite destabilizing with all 5 cases having ∆Tm < − 7.5 °C. 
The single Leu-to-Ala mutation in coil secondary structure 
lies also at a low ∆Tm of − 13.7 °C, consistent with the 
trend for Ile to Ala, while the equivalent coil mutations 
from Val to Ala are also negative but spanning only from 

−  1 to −  9 °C. Inspecting structures, it is easy to under-
stand the strong destabilization of many Ile, Leu, or Val 
mutations to Ala for buried residues, as they are engaged 
in very hydrophobic clusters where their conformations 
match perfectly with the surrounding volumes, such that 
substitutions to Alanine would result in a void space (see 
example in Fig. 9B for Ile106Ala mutation in PDB 1KF2). 
Moreover, it is even reasonable that the effects are stronger 
for Leu and Ile than for Val, because the change in vol-
ume from Leu or Ile to Ala is larger than that from Val to 
Ala. However, the least destabilizing cases are difficult to 
explain, because they are also engaged in very hydropho-
bic clusters. For example, Ile15Ala in PDB 1IO2 is only 
slightly destabilizing with ∆Tm = − 2.2 °C despite look-
ing very similar to the previous case. It is possible that 

Fig. 9   Exploring substitutions from Ile, Leu, or Val to Ala. Atom 
colors as in Fig. 8, plus hydrogens modeled in white. (A) Plots pre-
senting all ∆Tm observations for these three substitutions, resolved 
against RSA and secondary structure. (B) The spacefill models of 
wild-type Ile106 and the Ala106 mutant of PDB 1KF2 show clearly 

how Ile fits perfectly at the core, whereas an Ala would leave a void 
volume that likely causes the observed destabilization. In the mod-
els, hydrogens were added to better represent volumes. The inset in 
the top shows how a methionine, removed for better visualization, 
encloses Ile106
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in certain cases, structural rearrangements are accessible 
that can compensate for the void space that the smaller 
alanine would create, thus, alleviating the negative impact 
(in fact Ile15 of PDB 1IO2 is in a loop). This is very hard 
for programs to predict if they do not consider structural 

rearrangements, opening a niche for molecular simulations 
to help.

Replacement of hydrophobic sidechains by small very 
polar residues also results mostly in destabilization, as exem-
plified by mutations from Ala, Val, Leu, or Ile to Ser or 

Fig. 10   Exploring substitutions from Ala, Val, Ile, or Leu to Ser or 
Thr. In all cases, the residue in which mutation is being discussed is 
colored with magenta carbons and other relevant residues with gray 
carbons; all other carbons are green, hydrogens (added) are white, 
oxygens red, and nitrogens blue. (A) Plots presenting all observations 
of these substitutions, where letters B, C, and D relate each data point 

to the corresponding panel. (B) The hard-to-explain case of a surface 
hydrophobic patch, where mutation of the central Ile to Thr results in 
strong destabilization. (C) Another small hydrophobic surface patch 
formed between a Val and a Pro, but where mutation of the Val to Ser 
is nearly neutral. (D) Ala92 mutated to Ser in PDB 1LZ1 shows how 
a hydrogen bond is gained at no expense, introducing some stability
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Thr where again the magnitude of the effect is rather weak 
for exposed residues but spans all the range from neutral to 
very destabilizing for buried residues (Fig. 10A). Besides 
the reduction in volume as in the cases discussed above, 
substitutions by Ser or Thr bring the additional problem of 
polar groups being inserted into very hydrophobic envi-
ronments. In particular, mutations from Leu or Ile to Thr 
are very disruptive, all 8 cases having ∆Tm < − 6 °C, with 
even an Ile-to-Thr mutation on a somewhat exposed residue 
(RSA = 0.36) that reaches ∆Tm = − 13.1 °C. This latter case 

is very difficult to explain and could probably pose a prob-
lem for automated methods, because this Ile forms a solvent-
exposed hydrophobic patch leaving no obvious reason for 
such destabilizing effect of its mutation to Thr (Fig. 10B). 
Note also the cases where surfaced-exposed hydrophobic 
residues are mutated to polar amino acids without any gain 
in stability, as in Val51 of PDB 1EY0 in which mutation 
to Ser has ∆Tm = 0 °C likely because the Val makes a 
hydrophobic contact with two methylene groups of Pro56 
(Fig. 10C) at the surface.

Fig. 11   Exploring substitutions from Thr to Val. Atom colors as in 
other figures. (A) Plots presenting all observations of Thr-to-Val sub-
stitutions, where letters B, C, and D relate each data point to the cor-
responding panel. (B) Thr113 in PDB ID 5DFR establishes a hydro-
gen bond with a nearby Asp (top); this interaction is lost when the 
former is mutated to Val, but the Asp could gain an alternate hydro-

gen bond if protonated at the same time as the Val methyls pack 
against the surrounding hydrophobic residues (bottom). (C) Thr41 in 
the quite hydrophobic interior of PDB 1EY0, resulting in stabiliza-
tion upon substitution of its OH group by a methyl. (D) Thr56 in PDB 
1LNI is involved in a large network of hydrogen bonds, so its disrup-
tion is very destabilizing



878	 Molecular Biotechnology (2021) 63:863–884

1 3

On the other end of the ∆Tm spectrum, only one of the 
73 entries corresponding to these 8 combinations of sub-
stitutions is stabilizing, and actually just mildly so an Ala-
to-Ser change that increases Tm by 2.6 °C, which could be 
explained by formation of a hydrogen bond between the 
introduced OH group and a nearby backbone O while not 
affecting much the hydrophobic contacts of the alanine’s 
methyl, now replaced by the serine’s β CH2 (Fig. 10D).

Just like there are several cases of Val mutations to Thr, 
there are also several cases of mutations from Thr to Val 
(Fig. 11A). Most such cases are neutral to somewhat desta-
bilizing (lowest ∆Tm is − 6 °C), but there are also three 
somewhat stabilizing entries. The highest ∆Tm is 3.9 °C 
for the interesting case of the buried Thr113 in PDB 5DFR, 
which is hydrogen bonded to Asp27. Although mutation to 
Val disrupts this hydrogen bond, a rotamer change of the 
Asp is feasible, which would result in a new hydrogen bond 
to Leu24, while the new methyl group introduced as Val113 
packs nicely with the surrounding hydrophobic amino acids 
and even with the CH2 unit of the rotated Asp27 (Fig. 11B). 
Another meaningful case of stabilization is that of Thr41 in 
PDB 1EY0, which is quite buried in a hydrophobic environ-
ment, flexible and with no hydrogen bonds satisfied around 
its OH group (Fig. 11C). Replacement of the OH group by 

the more hydrophobic and bigger methyl of Val probably 
stabilizes its position and makes better (hydrophobic) con-
tact with the neighboring residues, resulting in the clear sta-
bilization of 3.5 °C. The opposite case is the replacement 
of Thr56 in PDB 1LNI, in which OH group is involved in 
several polar contacts, by the hydrophobic Val resulting in a 
destabilization of − 6.3 °C (Fig. 11D).

As mentioned when discussing Fig. 3 and described with 
many examples above, mutations that cause large changes in 
volume tend to be quite destabilizing. Although this is much 
expected from basic physical chemistry, there are important 
outliers of quite stabilizing mutations, as exemplified by one 
of the Phe-to-Ala substitutions in Fig. 12A. Baseline destabi-
lization in Phe-to-Ala mutations likely arises from the void 
space that would result upon substitution if the structure 
cannot rearrange. But mutation of Phe7 to Ala in PDB 451C 
shows positive ΔTm by 9.5 °C (checked against the original 
publication [33]). This residue establishes several hydropho-
bic contacts and is quite buried, with an RSA = 0.11 that 
makes it better buried than many of the Phe-to-Ala muta-
tions that have destabilizing effects (Fig. 12B). Mutation of 
this Phe to Ala removes the hydrophobic contacts and would 
create a quite large cavity at the surface, which one would 
in principle assign as destabilizing. One way to explain the 

Fig. 12   A peculiar case of stabilizing mutation from Phe to Ala, 
despite a globally destabilizing effect. Atom colors as in other figures. 
(A) Plots resolving ΔTm vs. RSA, average B-factor and secondary 
structure for all observations of Phe-to-Ala substitutions, where B 

indicates the case discussed in panel B. (B) Stick model and surface 
representation of PDB 451C centered on Phe7 in the wild-type form 
or around Ala7 in the mutated form
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actually stabilizing effect is that the cavity is sealed through 
structural rearrangements that end up repacking the hydro-
phobic residues around Ala7 even better than around Phe7 
in the wild-type protein. This would then be an example of 
mutation that only methods with substantial structural sam-
pling can potentially capture. Importantly, this and similar 
cases presented in this review argue against Pucci et al.’s 
premise that substitutions with |ΔTm| in the range from 10 
to 20 °C still entail no major structural perturbations.

We conclude this section of examples, which the reader 
can extend using the web app to all other amino acid sub-
stitutions with data, with mutations from Asp and Glu to 
large hydrophobic amino acids like Val, Leu, Ile, and Phe 
(Fig. 13). Chemical intuition would suggest that these should 
be quite destabilizing, but the dataset reports only one such 
case. This single destabilizing case is mutation of Glu107 
to Val in PDB 1SHF (Fig. 13E), a residue that forms two 
hydrogen bonds that get lost upon mutation, just like in its 

mutation to Ala in Fig. 8D but here aggravated by the larger 
volume of the Val sidechain (ΔTm to Ala is − 7.5 °C and to 
Val is − 14.3 °C). Of the other 24 cases of mutations from 
Asp and Glu to Val, Leu, Ile, and Phe, 11 are just neutral 
and 12 are stabilizing, some even reaching quite high ΔTm. 
Inspection of the more extreme cases shows sources of sta-
bilization that seem quite specific to each structure. In the 
mutation of Asp26 to Ile in PDB 2TRX, the starting struc-
ture has a void space where the extended sidechain of Ile fits 
perfectly upon modeling, thus, filling in the cavity without 
the need of structural rearrangements (Fig. 13B). The case 
of Asp79 to Phe in PDB 1LNI not only is harder to explain 
but might also arise from better filling of a cavity by the 
Phe side chain at the expense of no hydrogen bonds around 
the Asp carboxylate (Fig. 13C). In fact, another mutation 
of this residue but by Val is even more stabilizing; how-
ever, this is easier to explain because the mutation preserves 
the shape removing a charged group from a hydrophobic 

Fig. 13   Mutations from Asp and Glu to large hydrophobic amino 
acids: many unexpectedly stabilizing cases. Atom colors as in other 
figures. (A) Plots resolving ΔTm vs. RSA for the five cases explored, 
where B, C, D, and E point to panels showing the indicated exam-
ples. (B) Spacefill model of PDB 2TRX centered on Asp26 (top) 

and its mutation to Ile (bottom); the inset shows a lysine that closes 
the internal void cavity. (C) Sticks models centered on Asp79 of 
PDB 1LNI (top) and the mutated Phe (bottom). (D) Asp134 of PDB 
2RN2 surrounded by four other negatively charged residues shown as 
spheres. (E) The hydrogen bonds around Glu107 of PDB 1SHF
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environment and placing methyl groups instead. The last 
example, Asp134 in PDB 2RN2, is engaged in a salt bridge 
that would get lost upon mutation but could be compensated 
by hydrogen bonding to a nearby Glu, thus, having no net 
effect. However, Asp134 itself is surrounded by other four 
negatively charged groups, so its mere replacement may 
bring alleviation of the repulsions between all these nega-
tive groups, resulting in the observed stabilization that works 
also with other mutations that remove the negative charge 
available in the dataset.

Considerations Regarding the Development 
of ΔTm Prediction Methods and New 
Training Datasets: Review of Established 
Ideas Convoluted with Proposals Based 
on our Analyses

Refining the Need for Larger, Better ΔTm Datasets

Papers and reviews reviewed in this work highlighted the 
need for datasets with better coverage of all possible muta-
tions, to which here we add the need to also better cover 
the space of structure-dependent features around each muta-
tion. Given that our network performs similar to other meth-
ods and programs for ΔTm estimation, it is likely that the 
observations discussed throughout this work apply to them 
as well. The following recommendations are hence likely 
of interest to all developers and users of such methods. As 
we have shown for several kinds of substitutions, one clear 
example being those from Gly to Trp in Fig. 7C, even sim-
ple prediction methods like our neural network can fill in 
certain gaps of the dataset with reasonable approximations; 
however, it is also clear that overall predictions are quite 
off for many of the 20 × 19 substitutions, especially when 
effects from rather special structural details dominate the 
training set, thus, confusing network training as shown for 
mutations from Lys to Asp among other examples. Clearly, 
more observations in other proteins are required to better 
establish the general component of the stability effects for 
these mutations and to tell if these substitutions are overall 
as stabilizing as the entries of S1626 suggest or, rather more 
likely, the specific entries listed are not representative of the 
general trends. But how much data are enough?

To estimate how many observations are “enough” in a 
sufficiently complete dataset, let us consider the case of 
Val-to-Ala substitutions, which is the best represented muta-
tion with 47 entries well spread in RSA between 0 and 0.7, 
B-factor between 0 and 50 which is as much as Valine resi-
dues get in folded proteins, and the three main secondary 
structures (Fig. 14A). On this mutation only, the network 
achieves a RMSE of 4.2 °C, a correlation r = 0.41, and quite 
dampened predictions (Fig. 13B left). However, symbolic 

regression [34] on RSA, average B-factor, and secondary 
structures as independent variables can model the data ana-
lytically achieving r = 0.68 and RMSE = 3.3 °C, even having 
split the 47 entries into 33 (70%) for training and leaving 
the rest as a check subset to stop model training. In princi-
ple, with enough data for all possible mutations, it could be 
possible to build similar analytical models for the general 
contributions to stability changes in all of them, with the 
advantage of being more interpretable than neural networks 
which rather behave as black boxes. For the example shown 
for Val-to-Ala mutations, the fitted equation (see caption 
for Fig. 14B) reveals a strong dependence on RSA followed 
by some effect of secondary structure and no distinguish-
able contribution from B-factors. A simpler alternative is to 
perform a linear regression, which results in slightly worse 
prediction of the stability changes yet better than that of 
the full neural network (Fig. 14C, right). In this case, the 
regression equation also detects RSA as the main contributor 
variable, with an offset of -5.81 °C, essentially no contribu-
tion from B-factors (which reach 5–50 times larger values 
but has a regression coefficient around 140 times smaller), 
and some contribution from the secondary structure. This 
interpretability is similar to that reported by a novel work 
showing that multilinear regression models on three simple 
parameters (RSA and differences in volume and hydropho-
bicity between wild-type and mutated residues) can achieve 
very simple, human-interpretable predictions of ΔΔGu at 
accuracy similar to that of other programs [35].

We tested similar symbolic and multiple linear regres-
sions for other substitutions of the dataset, but none resulted 
in such large improvements relative to the full neural net-
work and only Gly to Ala and Ser to Ala could roughly cap-
ture some of the experimental trends, although the effects 
here are only mildly destabilizing and the equations derived 
through symbolic regression are quite more complex than 
that for Val to Ala, suggesting possible overfitting. For com-
parison to Val-to-Ala mutations, mutations from Gly to Ala 
and from Ser to Ala count with 35 and 22 observations, 
respectively. Arguably, substitution from Val, Gly, or Ser 
to Ala are among the easiest cases, so modeling other sub-
stitutions properly may well require even larger numbers of 
examples, especially to cover the different possible structural 
details that induce strong effects.

Having larger number of observations would also help to 
better define those mutations that seem, based on the limited 
dataset, to never induce strong effects on stability, as appar-
ent from Fig. 3 for some mutations involving Gln although at 
the moment counting with too few cases for generalization. 
New datasets like FireProtDB [14], ThermoMutDB [12], 
and the latest ProTherm [13] are very promising to alleviate 
the problem of poor mutational coverage, although for our 
specific problem of predicting ΔTm, they all suffer from 
incompleteness, as most entries contain only either ΔTm or 
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ΔΔGu data and many entries include multiple simultaneous 
mutations. It is possible that rather than creating and curat-
ing new datasets, the community needs a coordinated effort 
to properly map, experimentally, all the scarcely covered 
substitutions on at least a defined set of proteins. Just com-
pleting all cells of the substitution matrix of Fig. 3 for small, 
soluble, globular, two-state folder proteins would be a major 
effort which would deliver a dataset highly specialized but 
at least very useful for, these proteins. Such an effort should 
include multiple situations for each possible substitution, so 

as to properly capture not only the general effects of each 
type of mutation, which are somewhat already accounted for 
by the S1626 dataset but also the effects of different struc-
tural subtleties that may be quite strong as we have shown in 
multiple examples. Based on all cases analyzed here, the list 
of structural details to consider include minimally internal 
salt bridges and hydrogen bonds not only formed or lost 
but also those rearranged upon mutation, changes in side-
chain volume that might be less destabilizing than expected 
or even stabilizing if they are compensated by structural 

Fig. 14   Modeling the 47 observations of Val- > Ala mutations. (A) 
Plots of ΔTm dependence on RSA and average B-factor for muta-
tions from Val to Ala, from the web app. (B) correlation plot between 
experimental ΔTm and ΔTm predictions for all Val-to-Ala muta-
tions of the dataset. Left: from predictions by the neural network of 
Fig. 12; center: from symbolic regression on RSA, average B-factor, 
and secondary structure; right: from multiple linear regression on 

RSA, average B-factor, and secondary structure. Symbolic regres-
sion was carried out using 70% of the Val-to-Ala entries for training 
and 30% for validation. It produced the equation ΔTm (°C) = SS–
SS / (8.58 RSA–0.89) + 13.56 RSA–7.35. The linear regression was 
carried out on all Val-to-Ala cases, resulting in the equation ΔTm 
(°C) = 12.63 RSA–0.089 B-factor + 1.95 SS–5.81
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rearrangements, (re)packing of hydrophobic clusters not 
only at proteins cores but also right underneath protein sur-
faces and relaxation of densely charged regions.

Remarks on Method Development

An important aspect which seems obvious but has only 
recently been addressed, and so far only for ΔΔGu predic-
tions although also applicable to ΔTm predictions, is that 
predictions should be symmetric when comparing forward 
to reverse mutations. This means ensuring that ΔΔGu (and 
also ΔTm) predicted from wild type to mutant and vice 
versa should be of same magnitude and different sign. As 
Pucci et al. showed, this is hardly the case for most ΔΔGu 
predictors, a problem that stems in the bias of training data-
sets towards destabilizing mutations [16] to which neural 
network-based systems are especially prone. Work by these 
authors also showed that certain physical symmetries can be 
imposed to correct for this problem, although of course at 
the expense of some prediction accuracy [16, 36]. It remains 
to be tested if similar approaches can also correct forward-
reverse symmetries in predictions of ΔTm. In our hands, 
training networks just like that presented in Fig. 4 but includ-
ing all reversed mutations on top of the forward mutations, 
and assuming the same RSA, average B-factor and second-
ary structures as in the wild type, results in a correlation 
coefficient of 0.42 and an RMSE of 4.9 °C in the independ-
ent test set (Fig. 15). These numbers are substantially worse 
than the correlation of 0.6 and RMSE of 3.2 for our network 
trained only on the forward data but is still good enough to 
capture global trends, now not only destabilizing ones but 
also those that are stabilizing. Furthermore, this prediction 
capacity can probably be improved by modeling the muta-
tions to obtain better input RSA values.

Last, an obvious, important conclusion of our analy-
ses is that methods that treat structure explicitly have bet-
ter chances of capturing the complex structure-dependent 

effects of mutations on (de)stabilization. As we have shown 
through examples, this might be important especially for 
mutations from and to amino acids of drastically differ-
ent volumes and, not minor, may be important already for 
changes that induce |ΔTm| of already 9–10 °C, i.e., quite 
before the usually accepted limit of 20 °C. Properly mod-
eling structural perturbations induced by mutations are far 
from trivial yet critical, because as many of our investiga-
tions show a simple backbone displacement or rotamer can 
change whether a hydrogen bond is lost, gained, or swapped. 
The incorporation of molecular dynamics simulations is 
enticing, especially as force fields evolve [37], because it 
would enable structural relaxations that are otherwise very 
difficult to predict. The downside of such simulations is that 
they are very costly in terms of computer time. Less detailed 
but far more efficient methods using normal mode analyses 
may find some utility in cases where changes in flexibility 
modulate changes in stability, as exploited in the DynaMut 
method for predicting the impact of mutations on ΔΔGu 
[38].

Yet it is important that many caveats will still stand even 
if we get very detailed, complete datasets and employ com-
plex methods based on simulations; for example, changes 
in stability originated by changes in oligomerization states 
(especially important when mutations affect surface hydro-
phobicity as in certain cases presented) will be very dif-
ficult to account for, because not even the most complex 
simulations can capture this correctly. Homology modeling 
at very high sequence similarity, i.e., essentially a problem 
of sidechain rotamer optimization, seems today to work 
quite well to predict melting temperature change. However, 
homology modeling already at sequence similarities under 
98% already results in quite substantial loss in the quality 
of predictions [39].

Fig. 15   A neural network like that of Fig.  4 but trained on the full 
S1626 dataset plus all the reversed mutations. From left to right, plots 
show correlations between predicted and experimental values in the 
training, validation, and testing sets (respectively, 60%, 30%, and 10% 

of the whole dataset of forward plus reversed mutations). Correlation 
coefficients are, respectively, 0.49, 0.39, and 0.42, and RMSEs are 
4.6, 5.0, and 4.9 °C
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