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In this study, two types of epidemiological models called “within host” and “between hosts” have been studied. The within-host
model represents the innate immune response, and the between-hosts model signifies the SEIR (susceptible, exposed, infected, and
recovered) epidemic model. The major contribution of this paper is to break the chain of infectious disease transmission by
reducing the number of susceptible and infected people via transferring them to the recovered people group with vaccination
and antiviral treatment, respectively. Both transfers are considered with time delay. In the first step, optimal control theory is
applied to calculate the optimal final time to control the disease within a host’s body with a cost function. To this end, the
vaccination that represents the effort that converts healthy cells into resistant-to-infection cells in the susceptible individual’s
body is used as the first control input to vaccinate the susceptible individual against the disease. Moreover, the next control
input (antiviral treatment) is applied to eradicate the concentrations of the virus and convert healthy cells into resistant-to-
infection cells simultaneously in the infected person’s body to treat the infected individual. The calculated optimal time in the
first step is considered as the delay of vaccination and antiviral treatment in the SEIR dynamic model. Using Pontryagin’s
maximum principle in the second step, an optimal control strategy is also applied to an SEIR mathematical model with a
nonlinear transmission rate and time delay, which is computed as optimal time in the first step. Numerical results are
consistent with the analytical ones and corroborate our theoretical results.

1. Introduction

Seasonal and pandemic influenza A virus (IAV) infection
causes severe morbidity and mortality worldwide [1]. There
are many drugs to treat influenza, but the immune system is
naturally the first defensive line against the disease. There-
fore, it is essential to understand the mechanisms that trigger
the immune system response and how this response affects
the overall spread of the disease. The innate immune
response plays an important role in the control and clear-
ance of pathogens following viral infection inside an individ-

ual’s body. However, in the majority of virus-infected
individuals, the innate immune response is insufficient
because viruses use different evasion strategies to escape
the immune response. Innate immunity plays a critical role
in the control of viral infection because most infectious
pathogens are eliminated through innate immune response
without necessarily requiring the activation of adaptive
immunity [2].

Since innate immunity is an important part of the body
for dealing with viral infections, some methods have been
determined to model different aspects of the human
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immune system. Differential equation models are the most
popular methods to simulate critical diseases’ immunologi-
cal and epidemiological dynamics [3]. In addition, the use
of mathematical modeling of the innate immune response
interpreting experimental results has made a significant con-
tribution to this field. Many mathematical models of the
immune response to IAV infection have been introduced
that considered both different aspects of the immune system
and different detail levels. The first mathematical model to
illustrate the within-host dynamic of IAV in infected mice
was developed in 1976 by Larson et al. [4]. The proposed
compartmental model includes seven compartments with
five associated rate parameters. Also, the virus population
dynamic was introduced in mathematical terms. Another
model introduced by Bocharov and Romanyukha [5] studied
immune responses to viral infections in human infections,
such as the influenza A virus, and considered 12 immune
populations. Also, Baccam et al. [6] described the viral kinet-
ics of influenza A during infection in the human body,
including target cell and the innate interferon response with
delayed virus production through infected cells. However, as
opposed to previous papers, which did not consider a com-
plete model of the innate immune system, we used a more
comprehensive one adapted from [7].

However, the disease’s impact within the community
and the relationship between people in society also need to
be examined. Mathematical models are instrumental in
explaining and quantifying epidemic dynamics. Hence, var-
ious mathematical models have been proposed in the follow-
ing for between-hosts epidemic models to provide a general
overview of strategies to be employed in the period of influ-
enza virus infection. Kermack and McKendrick created one
of the simplest types to explain epidemic dynamics that is
called SIR (susceptible, infected, and recovered individuals,
respectively). The proposed model was described in three
papers in 1927 [8], 1932 [9], and 1933 [10]. Moreover, in
[11], another type of epidemic model (SIS) is considered
with a nonlinear incidence rate and time delay. In addition,
four different control strategies are investigated and com-
pared, including optimal control to decrease the density of
infected individuals, increase that of susceptible ones, and
reduce relevant costs. Besides these, in [12], a model of the
relationship between two types of systems is formulated
and analyzed. The first dynamic is the within-host model
dynamic and focuses on cellular interactions. The second is
the between-hosts model dynamic that focuses on transmis-
sion and infection statuses that are governed by the suscep-
tible-exposed-infected-recovered (SEIR) model. Likewise, in
this study, motivated by the previous paper, a combined
model with different relationships is presented that will be
discussed in detail in the following sections. The authors in
[13] have used the sliding mode control on the SEIAR
dynamic to overcome the uncertainty of parameters. How-
ever, they have not considered the optimal time to eradicate
the infection in society, and they only refer to the between-
hosts dynamic. For this reason, since time is one of the pri-
orities in order to control disease, we use an optimal control
strategy to get the optimal time to cure the infected person
and recover the susceptible person.

Optimal control is a mathematical method derived from
the calculus of variations. There are different methods for
computing the optimal control for mathematical models
[14]. Pontryagin’s maximum principle, first formulated in
1956 by L. S. Pontryagin [15], is to calculate the optimal con-
trol for an ordinary differential equation model system with
a given constraint. In [16], an optimal control method is
applied to a generic model of a pathogenic attack on the
innate immune system. The minimization of a quadratic
cost function is generated by numerical optimization. Ter-
minal optimal time control is also investigated. For further
studies, the readers are referred to [2], and the references
therein introduce an optimal control model based on an
ordinary differential equation system. Some studies have
investigated the optimal control of SIR and SEIR models,
but we mention just some of them in the following. The
authors in [17] used an optimal control approach to an
SIR epidemic model with a time delay to minimize the
spread of infected individuals and maximize the number of
susceptible and recovered individuals. Likewise, in [18, 19],
optimal control is considered to minimize the level of infec-
tion at the terminal time for an SIR and SEIR model, respec-
tively, where the incidence rate is an unspecified nonlinear
function, while their models only consider one aspect of
the impact of the disease that affects the community and
the relationship between susceptible, infected, and recovered
people. They do not take into account the effects of the dis-
ease inside the body, and the relationship between cells is
not considered.

Epidemic mathematical models can be used for several
epidemic diseases like COVID-19 by modifying the param-
eter and adding or eliminating some states. In this regard,
the authors in [20] considered a SEIAR epidemic model
for the COVID-19 pandemic. Also, some new SIR-type
models are introduced in [21–24]. The authors in [21] have
considered “isolated,” “vaccinated,” and “quarantined” people
groups due to several different conditions (after and before
vaccine development). Moreover, “hospitalized” and “ICU-
admitted” people groups are introduced in [22] to express
the spread of coronavirus between the healthcare workers.
Also, in [23], a new epidemic model (called SIDARTHE) is
studied that considers the distinction between diagnosed and
nondiagnosed infected individuals with and without symp-
toms detected acutely symptomatic infected ones. Besides,
the discrete-time SEIR epidemic models can be used in such
studies instead of continuous ones [25, 26], to name a few.
To further study about optimal control with time delay,
readers refer to [27–31] and references therein.

Optimal control theory can be used to control other
diseases like HIV [32] and especially COVID-19. In this
regard, the authors in [33] used optimal control theory based
on the SQEIAR epidemic model (Susceptible, Quarantined,
Exposed, Infected, Asymptomatic, and Recovered) for the
eradication of infection considering quarantine and treat-
ment policies in China and Spain for different types of dis-
ease (COVID-19, Ebola, and influenza). Also, according to
travel between cities that cause an increase in the outbreak,
the authors in [33] investigated the impact of travel or immi-
gration and impulsive change of population. These changes
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lead to generate impulsive epidemic models and impulsive
control strategies [34]. Also, the authors in [35] have consid-
ered an optimal control strategy in the age-structured SEIRQ
model for the COVID-19 epidemic in Brazil, where the
quarantine entrance parameters are the control efforts of
the system. In the same way, to explore the dynamic of the
COVID-19 pandemic in Pakistan, the necessary optimality
conditions are introduced in [36] using the optimal control
theory in a mathematical model. Some optimal control strat-
egies with application to COVID-19 are also introduced in
[37], for further study.

This paper investigates the correlation between two
modeling aspects: the effect of the disease on society and
inside the individual’s body, which is an important issue.
The community includes four groups (SEIR), all of which
relate to each other in a community. All communications
occur only in the community and among individuals. In
contrast, there are some interactions among the cells
inside an individual’s body. Recovering the susceptible by
vaccination takes time that is considered as delay caused
by the length of converting the healthy cells into
resistant-to-infectious cells. Also, the infected people need
to be treated with antiviral treatment to recover, which is
also considered as a delay (the length of time to kill the
infected and partially infected cells and viruses and con-
vert the healthy cells into resistant-to-infection cells
simultaneously).

The goal of the present paper will be presented clearly
and thoroughly regarding the reviewed papers. This paper
introduces a multiscale model in which both innate
immune responses (within-host model) and the SEIR
dynamic (between-hosts model) are used simultaneously
to define a single system. A multiscale-type model has
already been presented in [12], with the difference that
the proposed model in the present study is more compre-
hensive and concisely describes the relationships between
the virus, cells, and the immune system. The model is also
more realistic and closer to the real world. Moreover, a
nonlinear sinusoidal transmission rate (contact rate) is
considered, which varies in time according to changes in
contacts between people throughout day and night. In this
study, the optimal control is used to eradicate the infection
at the optimal time in the community. As discussed in
Introduction, different papers have been published on the
subject of optimal control. However, to the best of the
authors’ knowledge, an optimal control approach that
simultaneously tackles both types of dynamics (within-host
and between-hosts) for epidemic models has never been
considered in the literature before.

1This paper is organized as follows. Section 2 describes
the preliminaries. After that, we propose an innate
immune response dynamic in Section 3. The optimal con-
trol of innate immune response is introduced in Section 4,
followed by the SEIR dynamic model with delay and non-
linear transmission rate in Section 5. In Section 6, we
apply optimal control of the SEIR epidemic model. The
results of simulations of different cases and sensitivity
analysis are presented in Section 7. Finally, Section 8 sum-
marizes the conclusions.

2. Preliminaries

In this section, we first look at the relationship between the
two models considered in this paper. According to
Figures 1 and 2, our multiscale model considers two scales:
the first is the interaction of the virus and innate immune
response within a host (inside the body), and the second is
the contact between susceptible, exposed, infected, and
recovered individuals in society. The dynamic of the innate
immune response and relationship between cells and other
components are now described in detail. The within-host
model dynamic is the innate immune response to the influ-
enza virus using a mathematical model. This model is based
on interferon-induced resistance to infection of respiratory
epithelial cells and the clearance of infected cells by natural
killers with seven state variables (the numbers of healthy
(UH), partially infected (UE), infected (UI), and resistant-
to-infection cells (UR) and IFN-I molecules ([IFN]), natural
killer cells ðKÞ, and virus particles ðVÞ). Also, a nonlinear
SEIR epidemiological model for influenza is given where
the nonnegative state variables SðtÞ, EðtÞ, IðtÞ, and RðtÞ are
the susceptible, exposed, infected (symptomatic), and recov-
ered compartments, respectively. Here, SðtÞ represents the
number of people that are susceptible but not infected with
influenza, EðtÞ denotes the number of people exposed to
influenza (infected but not yet infectious), IðtÞ denotes the
population of infected humans with infectious influenza
symptoms, RðtÞ is the number of recovered people from
influenza, and N is the total population size. The relation-
ship between the two epidemic models is shown in
Figures 1 and 2. The dynamics of the innate immune
response and SEIR epidemiological model is described fur-
ther in the following sections.

The general strategy for this study is described by the fol-
lowing Algorithm 1.

3. The Innate Immune Response
Dynamic Model

In this section, we consider innate immune system dynamics
for dealing with the influenza virus, which is derived from
[7]. There are seven components to the dynamic states,
and the following equations govern the dynamics. For brev-
ity, we suppress the notation “ðtÞ” for variables at the current
time.

_UH = SH − kIUHV − kRUH IFN½ � − δHUH , ð1Þ

_UE = kIUHV − kEUE − qKUEK , ð2Þ
_UI = kEUE − δIUI − qKUIK , ð3Þ
_UR = kRUH IFN½ � − δRUR, ð4Þ

_V = ρVUI − δVV , ð5Þ
_IFN½ � = aIUI − δIFN IFN½ �, ð6Þ

_K = SK +ΦKUI − δKK , ð7Þ
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where UH is the number of healthy cells that increase with
cell growth rate SH . These cells become partially infected
cells ðUEÞ via the virus particles ðVÞ with rate kI . They also
convert to resistant-to-infection cells ðURÞ by the rate kR
with IFN-I molecules ð½IFN�Þ that increase by the rate of aI
. Partially infected cells are in the eclipse phase. This means
that they cannot spread the virus in the body and they infect
the other healthy cells by the term kE . When the partially
infected cells pass through the eclipse phase, they will
become infected cells ðUIÞ and can spread the virus and
cause other healthy cells to become infected. Partially
infected ðUEÞ and infected cells ðUIÞ are destroyed by natu-
ral killers ðKÞ at a rate of qK . Once the cells are infected ðUIÞ,
they broadcast thousands of similar cells a day, which is
denoted by the parameter ρV . The natural death rates of
healthy, infected, infection-resistant cells, and IFN-I mole-
cules are denoted by δH , δI , δR,and δIFN, respectively, and
the clear rate of virus particles ðVÞ is δV . The number of

NKs (natural killers) increases with a constant cell growth
rate SK . In the same way, NKs die at the rate of δK . After
inflammatory stimulation caused by infected cells, natural
killers are recruited from the blood indicated by ΦKUI .
Figure 3 shows a schematic diagram of the innate immune
system response to the influenza virus, which shows the
cells’ relation very well.

After introducing the model, we now introduce the con-
troller and investigate how to influence the vaccine and anti-
viral treatment on the cells. As mentioned earlier, the
vaccination is used to make healthy cells resistant to infec-
tion in a susceptible person’s body and by using the antiviral
treatment, the virus particles, infected, and partially infected
cells are removed inside the infected body as discussed in
detail in the next section.

3.1. Equilibrium Points and the Basic Reproduction Number.
To determine the disease spread and the number of

Infected people
Recovered people

V 0

Susceptible people UH UR

URUH

Figure 1: Block diagram of the relationship between innate immune response and SEIR model.

Susceptible Exposed Infected

Between-hosts 

Recovered

Between-hosts 

Within-host (Exposed)

Healthy
cells 

Virus
particles 

Within-host (Infected)

Infected
cells 

Vaccination for susceptible

Antiviral tratment for infected

Figure 2: The disease modeling with two scales: within a host and between hosts.

Step1. Optimal control design (vaccination strategy) for within-host model to convert healthy cells to resistant-to-infection cells in
the optimal time ðt1Þ.
Step2. Optimal control design (antiviral treatment strategy) for within-host model to convert healthy cells to resistant-to-infection
cells at the same time as destroying the virus particles in the optimal time ðt2Þ.
Step3. Optimal control design for between-hosts model to eradicate the infection, considering delays ðt1, t2Þ in the community.

Algorithm 1: General strategy algorithm.
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secondary infections, an infected individual would produce
in his/her infectious period the most important threshold
criterion named “the basic reproduction number” ðR0Þ can
be calculated as the follows.

According to the definition of R0 = ρðFV−1Þ, where

F =
0 0 kI

SH
δH

0 0 0
0 0 0

2
6664

3
7775,

V =

kE + qK
SK
δK

0 0

−kE δI + qK
SK
δK

0

0 −ρV δV

2
6666664

3
7777775
,

ð8Þ

R0 is calculated as R0 = δHSHkIkEρVδK
2/ðδVðkEδK + qKSKÞð

δIδK + qKSKÞÞ.
The disease-free equilibrium point ðDFEÞ is calculated

by equating Equations (1)–(7) to zero and solving for
UE

∗ =UI
∗ =V∗ = ½IFN�∗ = 0 as ðSH/δH , 0, 0, 0, 0, 0, 0, SK /

δKÞ. To find the endemic equilibrium point ðEEÞ, Equa-
tions (1)–(7) are equated to zero, UH = SH/ðkIV + kR½IFN�
+ δHÞ, UE = kIUHV/ðkE + qKKÞ, UI = kEUE/ðδI + qKKÞ,
UR = ðkRUH ½IFN�Þ/δR, V = ρVUI/δV , and ½IFN� = aIUI/
δIFN. Therefore, by replacing the states, the following
equations can be calculated: �UH = SH/ða1 �UI + δHÞ, �UE =
a2/ða3δH + a5 �UI − a1a4 �U

2
I Þ�UI , �UR = kRSHδVaI/ða7 �UI − δH

δVδRδIFNÞ�UI , �V = ðρV /δVÞ�UI , ½IFN� = ðaI/δIFNÞ�UI , �K = ðSK
+ΦK

�UIÞ/δK , and α1 �U
4
I + α2 �U

3
I + α3 �U

2
I + α4 �UI = 0. The last

equation has four solutions that one of them is DFE and
can be achieved by �UI = 0. The other three solutions are
obtained using the parameter values in Table 1, one of
which is 1:84 × 105, and the other two solutions are nega-
tive and unacceptable, because the number of cells is a
positive value. Therefore, the other equilibrium points are
given as EE = ð�UH , �UE, �UI , �UR, �V , ½IFN�, �KÞ = ðSH/ða1 �UI +
δHÞ, a2/ða3δH + a5 �UI − a1a4 �U

2
I Þ�UI , �UI , kRSHδVaI/ða7 �UI −

δHδVδRδIFNÞ�UI , ðρV /δVÞ�UI , ðaI/δIFNÞ�UI , ðSK +ΦK
�UIÞ/δKÞ,

in which, α1 = qK
2ΦK

2/δK 2δIFNðδIFNkIρV + kRδIδVÞ, α2 =
qKΦK /δK2δIFNð2δIFNkIρVqKSK + δKδIFNkIρVðkE + δIÞ + 2qK
kRSKδVaI + kRδVδKaIðkE + δIÞ + δHδVδIFNqKΦKÞ, α3 = 1/
δK

2δIFNðkIρVðδK 2δIFNkEδI + δKδIFNqKSKðkE + δIÞ + qK
2δIFN

SK
2Þ + kRaIðδK 2δVkEδI + δKδVqKSKðkE + δIÞ + qK

2δVSK
2Þ

+ δHδVqKΦKð2δIFNqKSK + δKδIFNðkE + δIÞÞÞ, and α4 = ð1/
δK

2ÞðkEδIδHδVδK2 + δKδHδVqKSKðkE + δIÞ + δHqK
2δVSK

2

− kEkIρVSHÞ.
Then, the Jacobian of Equations (1)–(7) is given by

Theorem 1. The DFE is locally stable if R0 < 1 while it is
unstable if R0 > 1.

Proof. By calculating the seventh-order characteristic equa-
tion of J about its DFE and according to the Routh-

Hurwitz criterion, the following inequality must be satisfied:

δV kEδK + qKSKð Þ δIδK + qKSKð Þ − δHSHkIkEρVδK
2 > 0:

ð10Þ

(IFN)

δIFN(IFN)

δRUR δHUH

𝜌VUI

aIUI

kEUE

UHv
δIUI

δVV δKK

qk
qk

UIUEUH

SH

kI

SK

kR
UR

K
𝛷KUI

Figure 3: Conceptual flow diagram of innate immune dynamics
with vaccination.

J =

−kIV − kR IFN½ � − δH 0 0 0 −kIUH −kRUH 0
kIV −kE − qKK 0 0 −kIUH 0 −qKUE

0 kE −δI − qKK 0 0 0 −qKUI

kR IFN½ � 0 0 −δR 0 kRUH 0
0 0 ρV 0 −δV 0 0
0 0 aI 0 0 −δIFN 0
0 0 ΦK 0 0 0 −δK

2
666666666666664

3
777777777777775

: ð9Þ

5Computational and Mathematical Methods in Medicine



Therefore, it can be concluded that R0 < 1: For R0 > 1,
there exists a positive eigenvalue for the characteristic equa-
tion and the equilibrium point is unstable.

Theorem 2. The EE is locally stable if R0 > 1 and unstable if
R0 < 1.

Proof. In the same way and by calculating the characteristic
equation of J about its EE and according to the negative
eigenvalues obtained from Jacobian, the EE is stable if R0
> 1, otherwise it is unstable.

3.2. Sensitivity Analysis. In this subsection, the sensitivity of
R0 is investigated. Therefore, to check the R0 sensitivity,
SR0
α = ð∂R0/∂αÞðα/R0Þ, we have

SR0
δH

= 1,

SR0
SH

= 1,

SR0
kI
= 1,

SR0
ρV

= 1,

SR0
kE
= qKSK

kEδK + qKSKð Þ ,

SR0
δK

= qKSK kEδK + δIδK + 2SKqKð Þ
kEδK + qKSKð Þ δKδI + qKSKð Þ ,

SR0
δV

= −δV kEδK + qKSKð Þ δIδK + qKSKð Þ,

SR0
qK
= −qK kEδKSKδV + SKδIδKδV + 2δVS2KqK

� �
δV kEδK + qKSKð Þ δIδK + qKSKð Þ ,

SR0
SK
= −SK kEδKqKδV + qKδIδKδV + 2δVSKq2K

� �
δV kEδK + qKSKð Þ δIδK + qKSKð Þ :

ð11Þ

It can be concluded that R0 is directly related to the
change of parameters δH , SH , kI , ρV , kE , and δK . That is, if
the parameters δH , SH , kI ,and ρV increase by 10%, R0 also
changes accordingly (10%) and is inversely related to the
parameters δV ,qK , and SK .

3.3. Positivity Analysis. In this subsection, the positivity of
solutions is investigated with Theorem 3.

Theorem 3. If UH0 ≥ 0,UE0 ≥ 0,UI0 ≥ 0,UR0
≥ 0, V0 ≥ 0,

½IFN�0 ≥ 0, and K0 ≥ 0, then solutions of the model are posi-
tive for all t ≥ 0:

Proof. According to the positivity of all the parameters of the
model, Equation (4) can be written as _URðtÞ ≥ −δRURðtÞ.
Multiplying e

Ð t

0
δRdr into two both side gives _URðtÞe

Ð t

0
δRdr +

δRURðtÞe
Ð t

0
δRdr ≥ 0; then, ðd/dtÞðe

Ð t

0
δRdrURðtÞÞ ≥ 0 ; integrat-

ing from 0 to t gives URðtÞ ≥URð0Þe−
Ð t

0
δRdr ≥ 0. Therefore

URðtÞ is positive ðURðtÞ ≥ 0Þ. In the same way, the other
states VðtÞ, ½IFN�ðtÞ,andKðtÞ (Equations (5)–(7)) are also

positive states and can be written as VðtÞ ≥Vð0Þe−
Ð t

0
δVdr ≥

0, ½IFN�ðtÞ ≥ ½IFN�ð0Þe−
Ð t

0
δIFNdr ≥ 0, and KðtÞ ≥ Kð0Þe−

Ð t

0
δKdr

≥ 0: According to the positivity of URðtÞ, VðtÞ, ½IFN�ðtÞ
and KðtÞ and according to Equation (3), UIðtÞ ≥UIð0Þ
e−
Ð t

0
ðδI+qKKÞdr ≥ 0; therefore, UIðtÞ ≥ 0: Similarly, UEðtÞ ≥

UEð0Þe−
Ð t

0
ðkE+qKKÞdr ≥ 0 and UHðtÞ ≥UHð0Þ

e−
Ð t

0
ð−kIV−kR½IFN�−δHÞdr ≥ 0. Therefore, all solutions are posi-

tive.

3.4. Existence of Solutions. In this subsection, the existence of
solutions is investigated with Theorem 4.

Theorem 4. The proposed model with the initial conditions
UHð0Þ ≥ 0,UEð0Þ ≥ 0,UIð0Þ ≥ 0,URð0Þ ≥ 0,Vð0Þ ≥ 0, ½IFN�ð
0Þ ≥ 0, Kð0Þ ≥ 0, and Eð0Þ ≥ 0 has a unique solution.

Proof. The model can be rewritten as

f Xð Þ =AX + f1 Xð Þ ð12Þ

where X = UHðtÞUEðtÞUIðtÞ URðtÞ½ VðtÞ½IFN�ðtÞKðtÞ�T
and A =diag −δH , −kE, −δI , −δR, −δV , −δIFN ,−δK½ �
and f 1ðXÞ = SH − kIUHV½ − kRUH ½IFN�kIUHV − qKUEK
kEUE − qKUIK kRUH ½IFN� ρVUI aIUI SK +ΦKUI �T .

The function f1ðXÞ satisfies

f1 X1ð Þ − f1 X2ð Þj j = kI UH2V2 −UH1V1ð Þj j
+ kI UH1V1 −UH2V2ð Þj j
+ kR UH2 IFN½ �2 −UH1 IFN½ �1

� ��� ��
+ qK UE2K2 −UE1K1ð Þj j
+ kE −UE2 +UE1ð Þj j
+ qK UI2K2 −UI1K1ð Þj j
+ kR UH1 IFN½ �1 −UH2 IFN½ �2

� ��� ��
+ ρV + aI +ΦKð Þ UI1 −UI2ð Þj j

ð13Þ

Assumed that all parameters have the maximum

Table 1: Equilibrium values of the model.

State variable DFE EE

�UH
SH
δH

2:44 × 106

�UE 0 8:94 × 105

�UI 0 1:84 × 105

�UR 0 2:37 × 108
�V 0 354.65

IFN
� �

0 0.138

�K
SK
δK

804:610 × 103
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valueM which is a bounded value:

f1 X1ð Þ − f1 X2ð Þj j ≤ M UH1V1 −UH2V2ð Þj j + M UH1 IFN½ �1
���

−UH2 IFN½ �2
�j + M UE1K1 −UE2K2ð Þj j

+ M UI1K1 −UI2K2ð Þj j + M UE1 −UE2ð Þj j
+ M UI1 −UI2ð Þj j:

ð14Þ

Replacing ðUH1V1 −UH2V2Þ by ðUH1V1 −UH2V1 +
UH2V1 −UH2V2Þ and similarly for others,

f 1 X1ð Þ − f 1 X2ð Þj j ≤ M UH1V1 −UH2V1 +UH2V1 −UH2V2ð Þj j
+ M UH1 IFN½ �1 −UH2 IFN½ �1 +UH2 IFN½ �1

���
−UH2 IFN½ �2

�j + M UE1K1 −UE2K1ðj
+UE2K1 −UE2K2Þj + M UI1K1 −UI2K1ðj
+UI2K1 −UI2K2Þj + M UE1 −UE2ð Þj j
+ M UI1 −UI2ð Þj j

ð15Þ

Therefore,

f 1 X1ð Þ − f 1 X2ð Þj j ≤ MV1 UH1 −UH2ð Þ +MUH2 V1 − V2ð Þj j
+ M IFN½ �1 UH1 −UH2ð Þ��
+MUH2 IFN½ �1 − IFN½ �2

� ���
+ MK1 UE1 −UE2ð Þ +MUE2 K1 − K2ð Þj j
+ MK1 UI1 −UI2ð Þ +MUI2 K1 − K2ð Þj j
+ M UE1 −UE2ð Þj j + M UI1 −UI2ð Þj j:

ð16Þ

The maximum value of states is equal to R (bounded
value); therefore,

f1 X1ð Þ − f1 X2ð Þj j ≤ 2RM UH1 −UH2j j +RM V1 − V2j j
+RM IFN½ �1 − IFN½ �2

�� �� + 2RM UI1 −UI2j j
+ 2RM K1 − K2j j + 2RM UE1 −UE2j j

≤ 2RM X1 − X2j j:
ð17Þ

It can be concluded that k f1ðX1Þ − f1ðX2Þk ≤ 2RMkX1
− X2k. Therefore, k f ðX1Þ − f ðX2Þk ≤ LkX1 − X2k, where L
=max ð2RM, kAkÞ. Thus, f is uniformly Lipschitz contin-
uous, and the solutions exist.

4. Optimal Control of Within-Host
Epidemic Model

Optimal control techniques are used to improve optimal
strategies to control numerous kinds of diseases. The flexi-
bility and relative simplicity of optimal control techniques
can lead to the development of the optimal strategies to con-
trol the monitoring and treating of various kinds of diseases
[14]. Therefore, the optimal control theory is applied to the
innate immune dynamic in this part of the paper. In the first

subsection, the optimal control is used to vaccinate suscepti-
ble people and cure infected people.

4.1. Vaccination Strategy. In this subsection, the optimal
control is applied to the innate immune response to convert
healthy cells to resistant-to-infection cells. The vaccine
works with the innate immune to develop protection
(immunity) to the disease. This subsection is aimed at min-
imizing the number of healthy cells ðUHÞ by converting
them to resistant-to-infection cells ðURÞ with the control
input (vaccination) at a rate of ν in the optimal time. It is
obvious that injecting a vaccine into the susceptible person’s
bodies takes time to vaccinate them (recovered) against the
disease. Unlike [13, 19], in the current paper, this time is
considered as a delay in moving susceptible people to the
recovered people group in the society, which is investigated
in Section 5 in detail. As long as the healthy cells have not
become resistant-to-infection cells in the susceptible body,
the person has not been vaccinated against the disease, and
there is still a risk of infection. The above description is given
by the following model:

_UH = SH − kIUHV − kRUH IFN½ � − δHUH − νUH , ð18Þ

_UE = kIUHV − kEUE − qKUEK , ð19Þ
_UI = kEUE − δIUI − qKUIK , ð20Þ

_UR = kRUH IFN½ � − δRUR + νUH , ð21Þ
_V = ρVUI − δVV , ð22Þ

_IFN½ � = aIUI − δIFN IFN½ �, ð23Þ
_K = SK +ΦKUI − δKK: ð24Þ

Figure 3 shows the diagram of the within-host dynamic
model with vaccination. The susceptible individual’s body
does not have the virus, infected, or partially infected cells.
Therefore, the goal is to convert healthy cells into
resistant-to-infection cells using the vaccination strategy in
the optimal time.

Therefore, the optimal control problem is to minimize
the cost (objective) function applied to Equations (18)–(24)
given by

J ν, t f
� �

=
ðt f
0

A1UH − A2UR +
A3
2 ν2

� �
dt+∅ t f

� �
, ð25Þ

in which a free terminal time is investigated, which gives a
minimum duration of a vaccination. t f represent the dura-
tion of the vaccination. ∅ is a positive increasing function
such that lim

t⟶∞
∅ðtÞ = +∞. In other words, the vaccination

strategy is applied using the optimal control ðν∗Þ in optimal
time ðt f ∗Þ such that

J ν∗, t f ∗
� �

=min J ν, t f
� �

∣ ν ∈U1, t f ∈ℝ+	 

, ð26Þ

where ν is control and U1 is the set of admissible controls
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defined by

U1 = U1 ismeasurable, 0 ≤ ν ≤ νmax = 1, t ∈ 0, t f
� �	 


:

ð27Þ

The necessary conditions for optimality are expressed by

∇∅
Xf

− p t f
� �h iT

δXf + H X tf
� �

, u tf
� �

, p t f
� �

, t f
� �

+ ∂∅
∂t f

" #
δt f = 0,

ð28Þ

where Xðt f Þ or Xf is vector of constant values (the final

value of all states is known). The gradient ð∇∅
X f
Þ is the deriv-

ative of ∅ðt f Þ. t f is unknown but Xðt f Þ is defined; therefore,
δXf = 0. Also, a stationarity condition on the control is as
follows:

∇H
ν = 0, ð29Þ

which are expressed using the Hamiltonian of the system.
The Hamiltonian for the control problem is defined as fol-
lows:

H = g + pT f , ð30Þ

where f = _x = ½ _UH , _UE, _UI , _UR, _V , _½IFN�, _K�T and g = ½A1
UH − A2UR + ðA3/2Þν2�.

Therefore,

H = A1UH − A2UR +
A3
2 ν2 + p1 _UH + p2 _UE + p3 _UI + p4 _UR

+ p5 _V + p6 _IFN½ � + p7 _K ,
ð31Þ

and p1, p2, p3, p4, p5, p6, and p7 are the adjoint functions to
be determined suitably. Then, the necessary conditions are
computed as follows:

_x = ∂H
∂p

= _UH , _UE , _UI , _UR, _V , _IFN½ �, _K
h iT

: ð32Þ

Then, the necessary conditions for optimality are com-
puted, which are expressed by the mentioned Hamiltonian
equations [38]. These equations include a linear, ordinary
differential equation that are shown by

_p = −
∂H
∂x

= −
∂H
∂UH

,− ∂H
∂UE

,− ∂H
∂UI

,− ∂H
∂UR

,− ∂H
∂V

,− ∂H
∂ IFN½ � ,−

∂H
∂K

� �T
:

ð33Þ

In order to derive the necessary conditions for this opti-
mal control, the Pontryagin maximum principle [39] is
applied to characterize the optimal control problem and
the optimal final time, which is given as the following
theorem.

Theorem 5. Given an optimal control ν∗, solutions UH
∗,

UE
∗,UI

∗,UR
∗, V∗, ½IFN�∗, and K∗ for the optimal control

problem Jðν∗, t f ∗Þ =min fJðν, t f Þ ∣ ν ∈U1, t f ∈ℝ+g. Then,
there are adjoint variables p1, p2, p3, p4, p5, p6 , and p7 that
satisfy

_p1 = −A1 + p1δH − kIV p2 − p1½ � − kR IFN½ � + ν½ � p4 − p1½ �,
ð34Þ

_p2 = p2 kE + qKK½ � − p3kE , ð35Þ
_p3 = p3 δI + qKK½ � − p5ρV − p6aI − p7ΦK , ð36Þ

_p4 = A2 + p4δR, ð37Þ
_p5 = kIUH p2 + p1½ � + p5ρV , ð38Þ
_p6 = kRUH p1 − p4½ � + p6δIFN , ð39Þ

_p7 = p2qKUE + p3qKUI + p7δK , ð40Þ
with transversality conditions as

pi t f
� �

= 0, i = 1, 2, 3, 4, 5, 6, 7: ð41Þ

As a result, an optimal control ðνÞ is given by

ν∗ =max min UH
∗ p1 − p4½ �
A3

, 1
� �

, 0
� �

, ð42Þ

and the optimal final time is given by

∂ϕ
∂t f

t f
∗� �

= −A1UH
∗ + A2UR

∗ −
A3

2
ν∗2: ð43Þ

Proof. Using Pontryagin’s principle, the adjoint equations
and transversality conditions are obtained such that

_p1 = −
∂H
∂UH

,

p1 t f
� �

= 0,
ð44Þ

_p2 = −
∂H
∂UE

,

p2 t f
� �

= 0,
ð45Þ

_p3 = −
∂H
∂UI

,

p3 t f
� �

= 0,
ð46Þ

_p4 = −
∂H
∂UR

,

p4 t f
� �

= 0,
ð47Þ
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_p5 = −
∂H
∂V

,

p5 t f
� �

= 0,
ð48Þ

_p6 = −
∂H

∂ IFN½ � ,

p6 t f
� �

= 0,
ð49Þ

_p7 = −
∂H
∂K

,

p7 t f
� �

= 0,
ð50Þ

and using the optimality conditions, the optimal control
is solved as ∇H

ν = 0 in the following form:

A3ν + p1
∂ _UH

∂ν

 !
+ p2

∂ _UE

∂ν

 !
+ p3

∂ _UI

∂ν

 !
+ p4

∂ _UR

∂ν

 !

+ p5
∂ _V
∂ν

 !
+ p6

∂ _IFN½ �
∂ν

 !
+ p7

∂ _K
∂ν

 !

= A3ν + p1 −UHð Þ + p4 UHð Þ = 0:
ð51Þ

Thus, the control law is written as

ν∗ = UH
∗ p1 − p4½ �
A3

: ð52Þ

Using the property of the control space, the following equa-
tion is obtained:

ν∗ =

1 UH
∗ p1 − p4½ �
A3

≥ 1,

UH
∗ p1 − p4½ �

A3
0 < UH

∗ p1 − p4½ �
A3

< 1,

0 UH
∗ p1 − p4½ �
A3

≤ 0,

8>>>>>>>><
>>>>>>>>:

ð53Þ

so, the optimal control is characterized as

ν∗ =max min UH
∗ p1 − p4½ �
A3

, 1
� �

, 0
� �

: ð54Þ

Now, according to Equation (28) and knowing δXf = 0,
the optimal final time ðt f ∗Þ is computed using the following
equation:

∂ϕ
∂t f

t f
∗� �

= −H UH
∗,UE

∗,UI
∗,UR

∗, V∗, IFN½ �∗, K∗, ν∗, t f ∗
� �

:

ð55Þ

Therefore, using the characterization of the optimal con-
trol, the following optimality system is presented to obtain

the optimal control and the state. This optimal control prob-
lem consists of the state system Equations (18)–(24) with
initial conditions at t = 0, the adjoint system Equations
(34)–(40) with the final conditions Equation (41), and the
characterization of the optimal control Equation (42).

_UH
∗ = SH − kIUH

∗V∗ − kRUH
∗ IFN½ �∗ − δHUH

∗

− max min UH
∗ p1 − p4½ �
A3

, 1
� �

, 0
� �
 �

UH
∗,

_UE
∗ = kIUH

∗V∗ − kEUE
∗ − qKUE

∗K∗,
_UI

∗ = kEUE
∗ − δIUI

∗ − qKUI
∗K∗,

_UR
∗ = kRUH IFN½ �∗ − δRUR

∗ + max min UH
∗ p1 − p4½ �
A3

, 1
� �

, 0
� �
 �

UH
∗,

_V
∗ = ρVUI

∗ − δVV
∗,

_IFN½ �∗ = aIUI
∗ − δIFN IFN½ �∗,

_K
∗ = SK +ΦKUI

∗ − δKK
∗,

ð56Þ

and the adjoint system is as follows:

_p1 = −A1 + p1δH − kIV
∗ p2 − p1½ �

− kR IFN½ �∗ +max min UH
∗ p1 − p4½ �
A3

, 1
� �

, 0
� �� �

p4 − p1½ �,

_p2 = p2 kE + qKK
∗½ � − p3kE ,

_p3 = p3 δI + qKK
∗½ � − p5ρV − p6aI − p7ΦK ,

_p4 =A2 + p4δR,
_p5 = kIUH

∗ p2 + p1½ � + p5ρV ,
_p6 = kRUH

∗ p1 − p4½ � + p6δIFN,
_p7 = p2qKUE

∗ + p3qKUI
∗ + p7δK ,

ð57Þ

with p1ðt f Þ = 0, p2ðt f Þ = 0, p3ðt f Þ = 0, p4ðt f Þ = 0, p5ðt f Þ = 0,
p6ðt f Þ = 0, p7ðt f Þ = 0, UHð0Þ =UH0, UEð0Þ =UE0, UIð0Þ =
UI0, URð0Þ =UR0, Vð0Þ = V0, ½IFN�ð0Þ = ½IFN�0, Kð0Þ = K0,
and T∗which can be rewritten as in Equation (78). So, the
proof is completed.

After examining the effect of the vaccine on the person’s
body and the control strategy applied to the model for the
best effect, it is necessary to investigate the efficiency of the
optimal antiviral treatment strategy in an optimal time,
which is considered in the following subsection.

4.2. Antiviral Treatment Strategy. This subsection is aimed at
destroying the virus particles and converting healthy cells
into resistant-to-infection cells simultaneously using the
optimal antiviral treatment strategy. There are infected and
partially infected cells within the infected individual’s body.
Therefore, the control input (antiviral treatment) is used to
eradicate the disease by converting healthy cells to
resistant-to-infection cells at the rate of T 1 and destroying
virus particles at a rate of T 2. Figure 4 shows the conceptual
flow diagram of the innate immune dynamics with the pro-
posed control action (antiviral treatment). Moreover, the
dynamic of the innate immune with antiviral treatment is
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considered as

_UH = SH − kIUHV − kRUH IFN½ � − δHUH −T 1UH , ð58Þ

_UE = kIUHV − kEUE − qKUEK , ð59Þ
_UI = kEUE − δIUI − qKUIK , ð60Þ

_UR = kRUH IFN½ � − δRUR +T 1UH , ð61Þ
_V = ρVUI − δVV −T 2V , ð62Þ
_IFN½ � = aIUI − δIFN IFN½ �, ð63Þ

_K = SK +ΦKUI − δKK: ð64Þ
To reach the proposed goal and minimize the cost of the

optimal antiviral treatment strategy within an optimal dura-
tion, the following objective function with free terminal time
has to be minimized:

J T 1,T 2, t f
� �

=
ðt f
0

A1UH − A2UR + A3V + A4
2 T 1

2 + A5
2 T 2

2
� �

dt+∅ t f
� �

,

ð65Þ

in which t f represent the duration of the antiviral treatment.
∅ is a positive increasing function such that lim

t⟶∞
∅ðtÞ = +

∞. Also, to reach the optimal controls ðT 1
∗,T 2

∗Þ and an
optimal terminal time ðt f ∗Þ, we considered

J T 1
∗,T 2

∗, t f ∗
� �

=min J T 1,T 2, t f
� �

∣ T 1,T 2ð Þ ∈U2, t f ∈ℝ+	 

,

ð66Þ

where U2 is the set of admissible controls defined by

U2 = T 1,T 2ð Þ ∣T 1,T 2f aremeasurable,

  0 ≤T 1 ≤ 1, 0 ≤T 2 ≤ 1, t ∈ 0, t f
� �


: ð67Þ

Then, the necessary conditions for optimality are written
as follows:

_p = −
∂H
∂x

, ð68Þ

∇∅
Xf

− p t f
� �h iT

δXf + H X tf
� �

, u t f
� �

, p t f
� �

, t f
� �

+ ∂∅
∂t f

" #
δt f = 0,

ð69Þ

in which t f is unknown while Xðt f Þ is fixed; therefore, δXf

= 0. Then, the Hamiltonian for the control problem is
defined as

H = A1UH − A2UR + A3V + A4
2 T 1

2 + A5
2 T 2

2 + p1 _UH

+ p2 _UE + p3 _UI + p4 _UR + p5 _V + p6 _IFN½ � + p7 _K ,
ð70Þ

where p1, p2, p3, p4, p5, p6, and p7 are also the adjoint func-
tions to be obtained. As discussed earlier, the following the-
orem is obtained to apply Pontryagin’s principle to the
Hamiltonian.

Theorem 6. Given optimal control pair T 1
∗,T 2

∗ and
solutions UH

∗,UE
∗,UI

∗,UR
∗, V∗, ½IFN�∗, and K∗ for the

optimal control problem JðT 1
∗,T 2

∗, t f ∗Þ =min fJðT 1,T 2,
t f Þ ∣T 1,T 2 ∈U , t f ∈ℝ+g, let UH

∗,UE
∗,UI

∗,UR
∗,V∗,

½IFN�∗, and K∗ be optimal state solutions with an associated
optimal control pair ðT 1,T 2Þ. There are adjoint variables that
satisfy the following equations:

_p1 = −A1 + p1δH + kIV p1 − p2½ � + kR IFN½ � + ν½ � p1 − p4½ �,
_p2 = p2 kE + qKK½ � − p3kE ,

_p3 = p3 δI + qKK½ � − p5ρV − p6aI − p7ΦK ,
_p4 = A2 + p4δR,

_p5 = −A3 + kIUH p1 − p2½ � + p4 δv +T 2½ �,
_p6 = kRUH p1 − p4½ � + p6δIFN ,
_p7 = p2qKUE + p3qKUI + p7δK ,

ð71Þ

with transversality conditions:

pi t f
� �

= 0,  i = 1, 2, 3, 4, 5, 6, 7: ð72Þ

Furthermore, the optimal controls ðT 1,T 2Þ are given by

T 1
∗ =max min UH

∗ p1 − p4½ �
A4

, 1
� �

, 0
� �

,

T 2
∗ =max min p5V

∗

A5
, 1

� �
, 0

� �
,

ð73Þ

(IFN)

δIFN(IFN)

δRUR δHUH

𝜌VUI

aIUI

kEUE

δIUI

δVV δKK

qkqk

UIUEUH

SH

kI

SK

kR
UR

K
𝛷KUI

UH 1

V 2

V

Figure 4: The diagram of the innate immune dynamics with the
proposed control action (antiviral treatment).
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and the optimal final time is given by

H UH
∗,UE

∗,UI
∗,UR

∗, V∗, IFN½ �∗, K∗,T 1
∗,T 2

∗, t f ∗
� �
+ ∂ϕ
∂t f

t f
∗� �

= 0:

ð74Þ

Proof. The adjoint equation and transversality conditions can
be obtained using Pontryagin’s principle as similar to Equa-
tions (44)–(50). Then, by using the optimality conditions,
the optimal controls are obtained using ∇H

T 1
= 0 and ∇H

T 2
= 0

. As a result, the control inputs are computed as

T 1
∗ = UH

∗ p1 − p4½ �
A3

,

T 2
∗ = p5V

∗

A5
:

ð75Þ

Using the property of the control space, we obtain

T 1
∗ =

1 UH
∗ p1 − p4½ �
A4

≥ 1,

UH
∗ p1 − p4½ �

A3
0 < UH

∗ p1 − p4½ �
A4

< 1,

0 UH
∗ p1 − p4½ �
A4

≤ 0,

8>>>>>>>><
>>>>>>>>:

T 2
∗ =

1 p5V
∗

A5
≥ 1,

p5V
∗

A5
0 < p5V

∗

A5
< 1,

0 p5V
∗

A5
≤ 0:

8>>>>>>>><
>>>>>>>>:

ð76Þ

So, the optimal control is characterized as

T 1
∗ =max min UH

∗ p1 − p4½ �
A4

, 1
� �

, 0
� �

,

T 2
∗ =max min p5V

∗

A5
, 1

� �
, 0

� �
,

ð77Þ

and according to Equation (74) and knowing that δXf = 0, the
optimal final time ðt f ∗Þ is computed using the following
equation:

∂ϕ
∂t f

t f
∗� �

= −A1UH
∗ − A2UR

∗ + A3V
∗ + A4

2 T 1
∗2 + A5

2 T 2
∗2:

ð78Þ

Therefore, using the characterization of the optimal con-
trol, we have the following optimality system to obtain the
optimal states:

_UH
∗ = SH − kIUH

∗V∗ − kRUH
∗ IFN½ �∗ − δHUH

∗

− max min UH
∗ p1 − p4½ �
A4

, 1
� �

, 0
� �
 �

UH
∗,

_UE
∗ = kIUH

∗V∗ − kEUE
∗ − qKUE

∗K∗,

_UI
∗ = kEUE

∗ − δIUI
∗ − qKUI

∗K∗,

_UR
∗ = kRUH IFN½ �∗ − δRUR

∗

+ max min UH
∗ p1 − p4½ �
A4

, 1
� �

, 0
� �
 �

UH
∗,

_V
∗ = ρVUI

∗ − δVV
∗ −max min p5V

∗

A5
, 1

� �
, 0

� �
V∗,

_IFN½ �∗ = aIUI
∗ − δIFN IFN½ �∗,

_K
∗ = SK +ΦKUI

∗ − δKK
∗, ð79Þ

and the adjoint equations are as follows:

_p1 = −A1 + p1δH − kIV
∗ p2 − p1½ �

− kR IFN½ �∗ +max min UH
∗ p1 − p4½ �
A4

, 1
� �

, 0
� �� �

� p4 − p1½ �,

_p2 = p2 kE + qKK
∗½ � − p3kE,

_p3 = p3 δI + qKK
∗½ � − p5ρV − p6aI − p7ΦK ,

_p4 = A2 + p4δR,

_p5 = −A3 + kIUH
∗ p1 − p2½ �

+ p4 δv +max min p5V
∗

A5
, 1

� �
, 0

� �� �
,

_p6 = kRUH
∗ p1 − p4½ � + p6δIFN,

_p7 = p2qKUE
∗ + p3qKUI

∗ + p7δK , ð80Þ

where p1ðt f Þ = 0, p2ðt f Þ = 0, p3ðt f Þ = 0, p4ðt f Þ = 0, p5ðt f Þ = 0,
p6ðt f Þ = 0, p7ðt f Þ = 0, UHð0Þ =UH0, UEð0Þ =UE0, UIð0Þ =
UI0, URð0Þ =UR0, Vð0Þ =V0, ½IFN�ð0Þ = ½IFN�0, and Kð0Þ
= K0. Then, the proof is completed.

Remark 7. In the vaccination strategy, the healthy cells con-
vert to resistant-to-infection cells using the proposed con-
troller and their number converges to zero when t⟶∞
ðUH ⟶ 0Þ and the rest remain at their initial zero value,
while in the antiviral treatment strategy, in addition to
converting healthy cells to resistant-to-infection cells, the
virus particles decrease and converge to zero using the pro-
posed controller. Meanwhile, the number of natural killers
converges to the initial constant value. Then, after a while,
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Equation (59) becomes _UE = −ðkE + qKKÞUE in which ðkE
+ qKKÞ is constant and is considered as first-order linear
differential equation that yields UE =UE0e

−ðkE+qKKÞt . As a
result, UE converges exponentially to zero.

In this section, the effect of the optimal control on the
within-host model is examined. At the same time, it is nec-
essary to explore the controller’s influence on the between-
hosts model (SEIR epidemic model). Thus, the impact of
the delay computed in this section is discussed in the follow-
ing section in detail.

5. SEIR Dynamic Model

In this section, a SEIR epidemic model is introduced with two
additional properties. First is two time-delay that aroused
from this fact that vaccination and antiviral treatment take
time to impact a person’s body. Second is a nonlinear contact
rate (transmission rate) function that is followed by this fact
that the contact rate is varying throughout day and night. In
this regard, the susceptible and infected individuals move to
the recovered people group with time delays t1 and t2 (optimal
times of vaccination and antiviral treatment within the body,
which is computed in the previous section), respectively. The
proposed SEIR epidemic model is presented as

_S tð Þ = −β tð ÞS tð ÞI tð Þ + μd 3 1 − ρI tð Þð Þ − S tð Þð Þ,
_E tð Þ = β tð ÞS tð ÞI tð Þ − μd + κð ÞE tð Þ,

_I tð Þ = κE tð Þ − αI tð Þ,
_R tð Þ = gI tð Þ − μdR tð Þ,

ð81Þ

where α = ðg − 3μdρ + μdÞ. As shown in Figure 5, SðtÞ repre-
sents the number of susceptible individuals who are vulnerable
and not infected, EðtÞ or exposed individual denotes the num-
ber of people that are infected but not infectious yet, IðtÞ sig-
nifies the population of infectious people with symptoms that
can transmit the disease to others, and RðtÞ is the number of
completely recovered (immune) people. N is the total popula-
tion size ðSðtÞ + EðtÞ + IðtÞ + RðtÞ =NÞ. μd is the rate of deaths
from causes unrelated to the infection, and μb is the birth rate
in each group, which is triple the mortality rate ðμb = 3μdÞ. t1
is the vaccination time of susceptible people, and t2 is the
recovery time of infected people. In the case of births, in the
susceptible, exposed, and recovered groups, newborns are sus-
ceptible to the disease and add to the susceptible group at the
rate of μb. Fraction ρ of the infected individuals’ infants goes
to the infected compartment, and the others (fraction ð1 − ρÞ
of infected individuals’ infants) move to the susceptible group.
The exposed people get infected at a rate of κ, and infected peo-
ple leave their compartment at the rate of α.

The contact rate is βðtÞ that is purposefully variable
throughout day and night. It is also obvious that this rate
at night is higher than during the day, which makes it
closer to the real world and is more effective in practice
[40]. According to the basic definition of βðtÞ that is
defined as “the average number of contacts between indi-

viduals in the population per unit time” [40], the contact
rate must be more than one during the day due to the
more relations between people in the community. More-
over, late at night and early in the morning, the transmis-
sion rate is less than one. Therefore, with trial and error
and taking into account the assumptions below, the contact
rate is obtained as βðtÞ = 0:5ð3 − sin ð2πtÞ2 − sin ð2πtÞ − cos
ð2πtÞÞ.

(a) 00:00 midnight: βð00 : 00Þ = 1
(b) 06:00 morning: βð06 : 00Þ = 0:5
(c) 12:00 midday: βð12 : 00Þ = 2
(d) 18:00 evening: βð18 : 00Þ = 1:5

Thus, the contact rate is less than one late at night and at
daybreak and is greater than one in the middle of the day
because there are more social gatherings and offices and
schools are also open.

In the next section, an optimal control is applied to the
proposed model to overcome the disease outbreak.

𝜇bE+𝜇bS+𝜇bR+𝜇b(1-𝜌)I

S E I R

𝜇dS 𝜇dE 𝜇dI 𝜇dR

𝜇b𝜌I

gI

uv

𝛽SI kE

u

Figure 5: Conceptual flow diagram of the influenza SEIAR
dynamics with the proposed controllers.

Table 2: Initial values of the SEIR epidemic model.

State variable Initial value

S0 9375

E0 125

I0 313

R0 0

N0 10,000

Table 3: Initial values of innate immune response.

State
variable

Susceptible
person

Infected
person

Exposed
person

UH0 5 × 108 5 × 108 5 × 108

UE0 0 3 × 103 0

UI0 0 1․5 × 103 0

UR0 0 0 0

V0 0 10−3 10−3

IFN½ �0 0 0 0

K0 8 × 105 8 × 105 8 × 105
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Figure 6: Continued.
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6. Optimal Control of the Between-Hosts
Epidemic Model

The aim of this section is twofold: first, minimizing the
number of susceptible individuals and moving them to the
recovered group by vaccination at a rate of uvð0 ≤ uv ≤ 1
Þ in 25 days and second, moving the infected people to
the recovered group at a rate of uτð0 ≤ uτ ≤ 1Þ by antivi-

ral treatment in 25 days, as shown in Figure 5. The SEIR
dynamic model in the presence of the controller is pre-
sented as

_S tð Þ = −β tð ÞS tð ÞI tð Þ + μd 3 1 − ρI tð Þð Þ − S tð Þð Þ − uv t − t1ð ÞS tð Þ,
ð82Þ
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Figure 6: The impact of the contact rate changes on the (a) susceptible, (b) exposed, (c) infected, and (d) recovered people.
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_E tð Þ = β tð ÞS tð ÞI tð Þ − μd + κð ÞE tð Þ, ð83Þ

_I tð Þ = κE tð Þ − αI tð Þ − uτ t − t2ð ÞI tð Þ, ð84Þ

_R tð Þ = gI tð Þ − μdR tð Þ + uv t − t1ð ÞS tð Þ + uτ t − t2ð ÞI tð Þ,
ð85Þ

where uvðtÞ = 0 for t ∈ ½−t1, 0� and uτðtÞ = 0 for t ∈ ½−t2, 0�.
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Figure 7: The impact of the recovery rate changes on the (a) susceptible, (b) exposed, (c) infected, and (d) recovered people.
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Figure 8: The impact of the κ rate changes on the (a) susceptible, (b) exposed, (c) infected, and (d) recovered people.
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To this end, the optimal control strategy is used to
achieve these goals. The objective function is considered
as

J uv tð Þ, uτ tð Þ, t f
� �

=
ðt f
0

B1I tð Þ + B2S tð Þ − B3R tð Þ + B4
2 uv tð Þ2 + B5

2 uτ tð Þ2
� �

dt,

ð86Þ

where B1, B2, and B3 are gains of the infected, susceptible,
and recovered individuals. Also, B4 and B5 are the gains of
control inputs uv, and uτ, respectively. Moreover, t f and
Xðt f Þ are fixed. Tacking the Hamiltonian yields

H = B1I tð Þ + B2S tð Þ − B3R tð Þ + B4
2 uv tð Þ2 + B5

2 uτ tð Þ2

+ p1 _S tð Þ + p2 _E tð Þ + p3 _I tð Þ + p4 _R tð Þ,
ð87Þ

where p1:p2,p3, and p4 are adjoint functions that satisfy the
adjoint equations. Pontryagin’s maximum principle is
applied to the Hamiltonian H to derive the necessary con-
ditions for the optimal control. The adjoint equation and
transversality conditions are obtained by using Pontrya-
gin’s maximum principle such that

_p1 = −
∂H
∂S tð Þ = −B2 + β tð ÞI tð Þ p1 − p2½ � + uv t − t1ð Þ p1 − p4½ �

+ p1μd , p1 t f
� �

= 0,

_p2 = −
∂H
∂E tð Þ = κ p2 − p3ð Þ + p2μd , p2 t f

� �
= 0,

_p3 = −
∂H
∂I tð Þ = −B1 + β tð ÞS tð Þ p1 − p2½ � + uτ t − t2ð Þ p3 − p4½ �

+ p3α − p4g, p3 t f
� �

= 0,

_p4 = −
∂H
∂R tð Þ = B3 + p4μd , p4 t f

� �
= 0:

ð88Þ

Notice that the control uvðt − t1Þ can only influence
the state variable on the time interval ½t f − t1, t f �. Thus,
it suffices to compute the optimal control on the interval
½0, t f − t1�. Therefore, we have

∂H
∂uv tð Þ + ∂H

∂uv t − t1ð Þ
����
t+t1

= 0, ð89Þ

which yields

uv
∗ tð Þ = S∗ t + t1ð Þ p1 t + t1ð Þ − p4 t + t1ð Þ½ �

B4
, t ∈ 0, t f − t1

� �
,

uv
∗ tð Þ = 0, t ∈ t f − t1, t f

� �
:

8><
>:

ð90Þ

Similarly,

∂H
∂uτ tð Þ + ∂H

∂uτ t − t2ð Þ
����
t+t2

= 0 ð91Þ

that can be written as

uτ
∗ tð Þ = I∗ t + t2ð Þ p3 t + t2ð Þ − p4 t + t2ð Þ½ �

B5
, t ∈ 0, t f − t2

� �
,

uτ
∗ tð Þ = 0, t ∈ t f − t2, t f

� �
,

8><
>:

ð92Þ

which yields

uv
∗ tð Þ =

1 S∗ t + t1ð Þ p1 t + t1ð Þ − p4 t + t1ð Þ½ �
B4

≥ 1,

S∗ t + t1ð Þ p1 t + t1ð Þ − p4 t + t1ð Þ½ �
B4

0 < S∗ t + t1ð Þ p1 t + t1ð Þ − p4 t + t1ð Þ½ �
B4

< 1,

0 S∗ t + t1ð Þ p1 t + t1ð Þ − p4 t + t1ð Þ½ �
B4

≤ 0,

8>>>>>>>><
>>>>>>>>:

uτ
∗ tð Þ =

1 I∗ t + t2ð Þ p3 t + t2ð Þ − p4 t + t2ð Þ½ �
B5

≥ 1,

I∗ t + t2ð Þ p3 t + t2ð Þ − p4 t + t2ð Þ½ �
B5

0 < I∗ t + t2ð Þ p3 t + t2ð Þ − p4 t + t2ð Þ½ �
B5

< 1,

0 I∗ t + t2ð Þ p3 t + t2ð Þ − p4 t + t2ð Þ½ �
B5

≤ 0:

8>>>>>>>><
>>>>>>>>:

ð93Þ
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So, the optimal controls are given as

uv
∗ tð Þ =max min S∗ t + t1ð Þ p1 t + t1ð Þ − p4 t + t1ð Þ½ �

B4
, 1

� �
, 0

� �
, t ∈ 0, t f − t1

� �
,

uτ
∗ tð Þ =max min I∗ t + t2ð Þ p3 t + t2ð Þ − p4 t + t2ð Þ½ �

B5
, 1

� �
, 0

� �
, t ∈ 0, t f − t2

� �
:

ð94Þ

Therefore, using the characterization of the optimal con-
trol and considering Equations (90) and (92), the following
optimality system is obtained as

_S
∗
tð Þ = −β tð ÞS∗ tð ÞI∗ tð Þ + μd 3 1 − ρI∗ tð Þð Þ − S∗ tð Þð Þ − uv

∗ tð ÞS∗ tð Þ,
_E
∗
tð Þ = β tð ÞS∗ tð ÞI∗ tð Þ − μd + κð ÞE∗ tð Þ,

_I
∗
tð Þ = κE∗ tð Þ − gI∗ tð Þ − uτ

∗ tð ÞI∗ tð Þ,
_R
∗
tð Þ = gI∗ tð Þ − μdR

∗ tð Þ + uv
∗ tð ÞS∗ tð Þ + uτ

∗ tð ÞI∗ tð Þ:
ð95Þ

The adjoint equations are also obtained as

_p1 = −B2 + β tð ÞI∗ tð Þ p1 − p2½ � + u∗v t − t1ð Þ p1 − p4½ � + p1μd ,
_p2 = κ p2 − p3ð Þ + p2μd ,

_p3 = −B1 + β tð ÞS∗ tð Þ p1 − p2½ � + u∗τ t − t2ð Þ p3 − p4½ � + p3α − p4g,
_p4 = B3 + p4μd ,

ð96Þ

where p1ðt f Þ = 0, p2ðt f Þ = 0, p3ðt f Þ = 0, p4ðt f Þ = 0, p5ðt f Þ = 0,
p6ðt f Þ = 0, p7ðt f Þ = 0, Sð0Þ = S0, Eð0Þ = E0, Ið0Þ = I0, and Rð
0Þ = R0.

Remark 8. According to the proposed controller, susceptible
and infected persons converge to zero as ⟶∞
ðSðtÞ, IðtÞ⟶ 0Þ; then, Equation (83) becomes a first-order
linear differential equation as _EðtÞ = −ðμd + κÞEðtÞ in which
ðμd + κÞ is a positive constant and yields EðtÞ = E0e

−ðμd+κÞt .
Thereupon, EðtÞ converges exponentially to zero indirectly
and as a result of zeroing infected and susceptible people.

After investigating the effect of the proposed controller
on both models, the results of the controller actions should
be illustrated. Therefore, the simulation results of the pro-
posed work are outlined in the next section.

7. Simulation Results

In this section, a numerical simulation is given to prove the
accuracy of the results obtained in the previous sections.
First, the effect of the optimal controllers on the innate
immune response and then on the SEIR epidemic model is
assessed. The value of innate immune response parameters
ðkI , kR, kE, qK ,ΦK , aI , ρV , δH , δI , δR, δIFN, δK , δV , SH , SKÞ is
based on experimental data from Hernandez-Vargas and
Meyer-Hermann [7], and the parameter values of the SEIR
epidemic model are κ = g = ρ = 0:3 and μd = 0:02. The initial

values of the SEIR epidemic model states and innate
immune response model are shown in Tables 2 and 3,
respectively.

This section is categorized as follows:

(a) The influence of model parameters

(b) The effect of the optimal controller on the within-
host model. This section is divided into the following
two subsections:

(i) Within-host vaccination

(ii) Within-host therapy

(c) The effect of the optimal controller on the between-
hosts model. This section is divided into the follow-
ing two subsections:

(i) Between-hosts vaccination

(ii) Between-hosts therapy

7.1. Influence of Model Parameters. This section is aimed at
conducting the sensitivity analysis to identify the factors that
noticeably affect the number of people engaged in influenza.
Therefore, the changes in the value of parameters βðtÞ, g,
and k are investigated, respectively. The tremendous influ-
ence of contact rate cannot be neglected. The susceptible
people get infected if they have more contact with infected
people; as a result, the epidemic widely spreads. Thus, the
contact rate has to be considered as a critical parameter in
the epidemic containment process. To this end, the value
of the contact rate is changed from 0:6βðtÞ to 1:4βðtÞ to
observe its impact on the population size in each engaged
group. As shown in Figures 6(a)–6(d), by increasing in the
value of contact rate to 1:4βðtÞ, as a result, the more contact
between people, the number of susceptible people reduces
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Figure 9: The optimal final time.
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regarding increment in the number of infected people, while
the number of susceptible people does not decrease more
because of the less contact between infected individuals ð
0:6βðtÞÞ. Obviously, the number of exposed and infected
people decreases followed by nearly half decrement in the
contact rate with susceptible people. Thus, few people get
infected; as a result, few people have recovered.

In Figure 7, the impact of changes in the value of g,
which is the recovery rate of infected people, is presented.
As shown in Figure 7(a), when the rate of g is doubled, a
greater number of susceptible people have recovered; as a
result, fewer people get infected and the number of suscepti-
ble people is increased. Moreover, the number of infected
people increases when the recovery rate decreases and
decreases with increment in the value of recovery rate
because more infected people are recovered. As a result, it
is obvious that the number of recovered people is grown
up followed by the rise in the recovery rate.

According to Figure 8, the exposed people are infected at
a rate of κ; therefore, increment in this rate leads to growth
in the infected people number; as a result, there is growth
in the number of recovered people. It is obvious that the
number of susceptible people is decreased when κ increases.

As observed, for different values of βðtÞ, g,and k, the dis-
ease does not disappear in about 25 days; therefore, it is nec-
essary to use vaccination and antiviral treatment strategies to
overcome the epidemic. Thus, in the next sections, the
model in the presence of vaccination and antiviral treatment
is simulated compared to the model without the controller.

7.2. Optimal Control Results in the Within-Host Model. In
the real world, susceptible people will not immediately

become immune to the infection following vaccination
because it takes time for all healthy cells (within the suscep-
tible individual’s body) to become resistant-to-infection
cells. Moreover, the destruction of the virus (and at the same
time the transformation of healthy cells into resistant-to-
infection cells) within the infected person’s body is not
immediate with antiviral therapy; therefore, the infected per-
son is treated after a while. To this end, two-time delay (the
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Figure 10: Evolution of healthy cells and resistant-to-infection cells with and without the controller.
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length of vaccination and antiviral treatment) is considered
in the SEIR model.

7.2.1. Within-Host Vaccination. Vaccine injection into the
susceptible individual’s body makes the healthy cells
resistant-to-infection. Consequently, the susceptible individ-
ual, which includes healthy cells, will be recovered against
the infection. Converting the healthy cells into the
resistant-to-infection cells takes time, which is considered
as delay in recovering process of susceptible individuals in
the SEIR model. In Section 4, initially, the optimal time of
healthy cells converting into resistant-to-infection cells in
the susceptible individual’s body has been obtained. Numer-
ical simulations suggest eight days as the optimal time to
convert the healthy cells into the resistant ones in a suscep-
tible person’s body (see Figure 9). The proposed optimal
time will be considered as a delay of moving susceptible peo-
ple to the recovered people group in the SEIR model in the
next section.

Figures 10(a) and 10(b) show the effect of control input
(vaccination) on the number of healthy and resistant-to-
infection cells. There is a surge in the number of resistant-
to-infection cells during vaccination in eight days. After vac-
cination, it can be deduced that rising in the resistant-to-
infection cell numbers is associated with the reduction in
the healthy cell numbers, indicating the controller efficacy.
As mentioned, as the number of resistant-to-infection cells
increases moment by moment, the susceptible person even-
tually becomes immune to the disease after eight days
because the healthy cells in his/her body have all become
resistant.

7.2.2. Within-Host Therapy. There are virus particles (as a
result, infected and partially infected cells) in the infected
person’s body. Therefore, the infected person needs to be
treated with antiviral treatment. Thus, over the treatment
process, the infected and partially infected cells and virus
particles are killed, and the healthy cells become resistant-
to-infection simultaneously, which also takes time.

In Figure 11, the final optimal time to eradicate disease
computed in Section 4 is shown. As shown in
Figures 12(a) and 12(b), using antiviral drugs, healthy cells
become resistant-to-infection cells. The drug’s effect on
infected and partially infected cells and viruses can also be
seen in Figures 13 and 14, respectively. It is clear that the
infected and partially infected cells are destroyed within six
days, and the number of virus particles is also converged to
zero, which indicates that the infected person is cured.
Moreover, the evolution of IFN-I molecules and natural
killer cells with and without the controller is shown in
Figures 15(a) and 15(b).

7.3. Optimal Control Results between Hosts. In this section,
we examine the effect of the optimal controller on the SEIR
epidemic model, which was discussed in Section 7, in detail.
First, the changes in the number of susceptible, exposed,
infected, and recovered individuals in the absence of appro-
priate control are investigated. Then, the effect of the vacci-
nation strategy and antiviral treatment on individuals in a
community is examined. For the numerical simulations,
the delay differential equation solver (dde23) is used. This
solver does not solve the advance equations ðt + tiÞ directly;
therefore, it is necessary to convert the advance equations
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Figure 12: Evolution of healthy cells and resistant-to-infection cells with and without the controller.
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into delay differential equations. To this end, a new
reversed-time variable ς = t f − t is defined and new adjoint
variables λiðςÞ = piðt f − ςÞ are introduced. Thus, this new
system is solved numerically using dde23.

7.3.1. Between-Hosts Vaccination. As shown in Figures 16(a)
and 16(b), the number of susceptible individuals in the
absence of a controller (vaccination has not been applied)

descends and converts to infected people. Eventually, it
remains stationary at a constant value (less than 2,000 peo-
ple). Besides, the number of recovered people without any
controller is greater than their number in the control-based
strategy. The number of recovered people has reached more
than 10,000 because in the absence of effective treatment,
more people become infected, and as a result, more people
will be recovered. By injecting the vaccine into the suscepti-
ble person’s body, during the conversion of healthy cells to
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Figure 13: Evolution of partially infected cells and infected cells with and without the controller.
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resistant cells, the susceptible person also vaccinates (direct
transfer of individuals from the susceptible group to the
recovered group). As a result, the number of susceptible
individuals decreases and moves to the recovered individual
group at the same time. This means the susceptible people
vaccinate against the disease in almost 25 days ðt3Þ (the
healthy cells of the susceptible individual convert to
resistant-to-infection cells in eight days as the delay time
with vaccination), while in [13], the final time of the vaccina-
tion campaign of nearly 40 days is suggested without consid-
ering the delay in the vaccination of susceptible people.

7.3.2. Between-Hosts Therapy. When the infection spreads
in the community without control over its prevalence,
the number of infected people is increasing every day,
as shown in Figure 17(a). It rose by over 3,000 people.
Finally, their number decreases until the 25th day and
reaches a little under 2,000 and remains unchanged,
indicating the community’s disease persistence. Also, the
exposed people number reaches a high number of 4,000
in only twelve days and ultimately converges to a stable
population and remains at almost 1,500 (see
Figure 17(b)).
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Figure 15: Evolution of IFN-I molecules and natural killer cells with and without the controller.
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In contrast, the number of infected people exceeds
almost 500 with antiviral therapy, which is used to treat
infected people (transfer them to a recovered group). During
the computed optimal time (the same delay as six days), the
healthy cells convert to resistant-to-infection cells; at the
same time, virus particles are eradicated by antiviral treat-
ment in the infected person’s body. Therefore, the infected
people move to the recovered people group in almost 25
days. According to Remark 8, the number of exposed people
also converges to zero as a result of decrement of infected
people in 25 days.

8. Conclusion

In this paper, the optimal control theory was applied to two
types of dynamic epidemic models: the innate immune
response dynamic and the SEIR epidemic model. A nonlin-
ear transmission rate and time delay were considered in the
SEIR epidemic model. The aim of this paper was twofold:
firstly, preventing the virus from spreading within the body
of a host and secondly, curb the epidemic in the society
and between hosts. To this end, two control strategies were
introduced to satisfy the first goal in the susceptible and
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Figure 16: The population of susceptible and recovered individuals with and without the controller.
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Figure 17: The population of infected and exposed individuals with and without the controller.
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infected person’s bodies. In this regard, vaccination was used
to convert healthy cells to resistant-to-infection cells inside
the susceptible individual’s body that recovered them against
the disease in society. In the following, antiviral treatment
was used to reduce the concentration of viruses and convert
healthy cells to resistant-to-infection cells at the same time
inside the infected individual’s body to recover them. More-
over, to control the epidemic in society, the optimal control
was used to increase the number of recovered people by
reducing the number of susceptible and infected people in
the fixed 25 days. Transferring occurred with a delay com-
puted as the optimal time of disease eradication inside the
infected individual’s body and the recovery of the susceptible
individual’s body. Finally, numerical simulation was used to
illustrate the usefulness of the obtained results.
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