Supplementary Information

Minimisation of metabolic networks defines a new functional class of genes

Giorgio Jansen^{1,2}, Tanda Qi³, Vito Latora^{4,5}, Grigoris D. Amoutzias⁶, Daniela Delneri³, Stephen G. Oliver^{1*,} Giuseppe Nicosia^{1,2*}

¹Department of Biochemistry, University of Cambridge, UK; ²Department of Biomedical & Biotechnological Sciences, University of Catania, Italy; ³Manchester Institute of Biotechnology, University of Manchester, UK; ⁴School of Mathematical Sciences, Queen Mary University of London, UK; ⁵Department of Physics and I.N.F.N., University of Catania, Italy: ⁶Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, Greece

*These two authors made equivalent contributions to the research.

This research work includes 8 excel files (8 Supplementary Data):

Legends of the Supplementary Data.

SD1 All Frequencies.xlsx

All results for all organisms studied. This table summarizes all the results in terms of frequency genes in the MMNs found by the algorithm Each sheet corresponds to a single organism's genome scale-model tested. Frequency Definition For each organism, excluding S. cerevisiae, the first column represents the frequency in the MMNs found for that model for each of the genes in the second column. So, for example, a frequency of 1 means that the corresponding gene is present in the 100% of the MMNs, a frequency of 0.5 correspond to a gene present in the 50% of MMNs and so on. S. cerevisiae tabs. In these two tabs the first columns describe the genes, while there are more columns for the results, having considered more media. The 'All' columns refers to the frequency considering all the MMNs in all the media tested. The 'All Aerobic' columns refer to the frequency considering all the MMNs in the 3 anaerobic media tested. The 'All Anaerobic' columns refers to the frequency considering all the MMNs in the 3 anaerobic media tested. Then there are the single columns referring to the MMNs found separately by the algorithm for each medium considered.

SD2 mandGenesMagnificentImpactMean.xlsx

We considered different metabolic networks resulting from their deletion and measured the reduced capability to produce precursors for the biomass pseudo-reaction, as defined in the metabolic network (by Flux Variability Analysis) detailed results in Supplementary Data 2. The table describes the simulated impact of the magnificent seven genes and all their possible combinations. For each deletion strain considered (columns) the ability of the metabolic network to grow or produce the maximum possible amount of a biomass' precursors (rows) is tested Global: the first two sheets consider an average of the strain in all the 6 media considered In the 'Perc' sheets are reported the percentual variation from the WT, colouring the strains with a more severe reduction The next tab report the absolute value of fluxes predicted All the next tabs consider a single medium (please consider that there is a duplicate for each tab).

SD3 Functions and Compartments KO.xlsx

Information on the compartments and functions in the various used media.

The table reports the frequency of KO divided by functionality or compartment location Each tab is for the function or compartment KO in the 6 different media. The columns B and C are the number of genes in WT and the relative weight in the genome scale model The columns D and E are similar, but referring to the smallest MMN found by the algorithm. The last two columns are again similar, but with the mean over all the MMNs found.

SD4 comp-datasetev13.xlsx

Comparison with published prediction of dispensable and core essential genes.

The table summarizes the comparison of our results with the study. The genes in the model marked as essential were not considered. In the first tab all the genes also present in the model are reported. The first 6 columns are taken from the reference study. In the columns labelled as 'Simulation (Presence in MMNs)' our results are reported instead. A scale of colour from green (or blue for dispensable) to red is used to highlight the genes with an outcome more or less similar to the result reference study. A last remark is sometimes added in the last column. The next two tabs consider only the subsets of experimental results or the computer prediction of the reference study for the genes that are also present in the model. The final tab report all the gene present in the reference study. Most of the genes are not present in the model, hence the data in our simulation for them are left blank.

SD5 transporters_related_genes.xlsx

This supplementary data contains the list of genes considered as transporters in our study, with their SGD description and their category. This supplementary data lists all the transporter genes included in the WT metabolic model; it also provides information on their functional categories (e.g., amino acid transport, ammonium transport, ion transport, etc.) as well as the SGD description of their functional role (SGD accessed on 22.06.24).

SD6 Primers.xlsx

All primers used for construction of the deletion cassettes and those used for confirmatory PCRs.

SD7 GR Td Y.xlsx

Growth rate, doubling times, and yields in both SD and YPD for the wild-type strains and the multiple mutants that we constructed.

SD8.xlsx

Statistical test used for comparison in Fig 2: two-sided Wilcoxon Test.

Methods

In vivo validation experiments

Random selection of non-NED genes

For the random selection, none of the data were excluded. Non-*NED* genes were selected with the random initialisation function of Python3 (using random initial seeds) from the list of non-*NED* genes.

Construction of double, triple and quadruple mutants

Multi-gene deletants were constructed by deleting genes of interest sequentially from single-gene deletion mutants (carrying *kanMX*) via multiple rounds of target gene replacement (Wach A. et al. 1994) using either antifungal resistance cassettes (*nat*NT2, *hph*MX6) or a *URA3* marker⁴⁰. Successful transformants were confirmed via colony PCR (Wach A. et al. 1994). All primers used for construction of the deletion cassettes and confirmatory PCRs are listed in Supplementary Table 6.

Supplementary Table 1. Summary of the minimisation results and WT growth rates in the different conditions and GR thresholds for the *S. cerevisiae* model (yeast 8.3.1, PMID 31395883) used in this study. The model includes 1133 genes of which 157 are essential genes. The fourth column reports the number of Minimal Metabolic Networks (*MMNs*) found by the algorithm. Columns 5-7 report the maximum, minimum and average number of KOs respectively. The eighth column reports the number of Network Efficiency Determinants (*NEDs*) for each medium. In the penultimate column there are 4 values, the first two values (i.e., 46 and 7) indicate the *NEDs*, respectively for the three aerobic and anaerobic media, when the threshold on the GR is 1%; similarly, the remaining two values (i.e., 38 and 7) indicate *NEDs* when the threshold on the GR is 10%. In the last column there are two values (i.e., 7 and 6) indicating the *NEDs* for the 6 media, with the GR threshold at 1% and 10% respectively.

Threshold	Medium	GR of WT (h ⁻¹)	#MMNs	max KOs	min KOs	mean KOs	<i>NED</i> Genes	NED Genes per Aerobic and Anaerobic conditions and Thresholds	NED Genes for the given threshold	
1%	SD	0.47*	787	818	789	806.89	81			
	Minimal	0.30*	756	782	761	819.53	117	46		
	YPD	0.63	772	834	811	826.41	65			
	SD Anaerobic	0.32	773	912	867	902.74	17		7	
	Minimal Anaerobic	0.26	769	825	806	819.53	79	7		
	YPD Anaerobic	0.32	799	909	868	898.56	20			
	SD	0.47	792	836	782	817.34	61			
	Minimal	0.30	791	789	762	778.94	100	38		
10%	YPD	0.63	799	850	808	836.46	49			
	SD Anaerobic	0.32	778	912	868	903.90	17		6	
	Minimal Anaerobic	0.26	801	832	800	824.38	72	7		
	YPD Anaerobic	0.32	791	909	857	899.34	20			

^{*}For these two media aerobic simulations, the oxygen uptake rate was constrained to 2 mmol/(h*gDW), otherwise the growth rates became infeasibly high (1.87 and 1.16 h⁻¹, respectively). The *in vivo* values for the WT aerobic growth rates that we obtained in our liquid culture experiments were 0.44 h⁻¹ for SD and 0.63 h⁻¹ for YPD (see Supplementary Data 6).

Supplementary Table 2. The *NEDs* for all the *MMNs* of *S. cerevisiae* in the 6 different external conditions. When considering the 1% maximum reduction of Growth Rate, only 7 genes are always present in the *MMNs* regardless of the simulated medium considered.

Systematic Names	Standard Gene Names	Name Description	Frequency (1% Biomass Threshold)	Frequency (10% Biomass Threshold)
YBR126C	TPS1	Trehalose-6-Phosphate Synthase	1	1
YDR074W	TPS2	Trehalose-6-Phosphate Synthase/phosphatase	1	1
YER026C	CHO1	CHOline requiring	1	1
YGR204W	ADE3	ADEnine requiring	1	1
YKL067W	YNK1	Yeast Nucleoside diphosphate Kinase	1	1
YKR067W	GPT2	Glycerol-3-Phosphate acylTransferase	1	1
YMR205C	PFK2	PhosphoFructoKinase	1	0.87731
YLR058C	SHM2	Serine HydroxyMethyltransferase	0.87393	0.78704
YDR127W	ARO1	AROmatic amino acid requiring	0.83613	0.83965
YGL148W	ARO2	AROmatic amino acid requiring	0.83613	0.83965
YPR060C	ARO7	AROmatic amino acid requiring	0.83527	0.83859
YNL220W	ADE12	ADEnine requiring	0.82882	0.79545
YJR073C	OPI3	OverProducer of Inositol	0.81508	0.86237

Supplementary Table 3. The 49 NED genes present in all the *MMNs* in Aerobic Conditions (3 media) and the corresponding 7 Mandatory Genes in Anaerobic Conditions (3 media). For each gene the frequency in the other conditions is reported (considering the 1% Growth rate threshold results). All the mandatory genes for anaerobic MNs are also mandatory for the aerobic MNs.

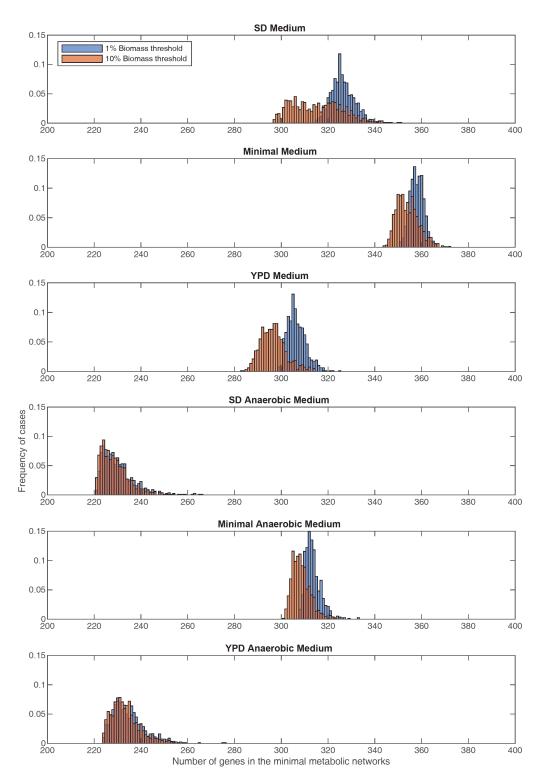
NED Genes in Aerobic Conditions	Standard Names	Name Description	Frequency (Anaerobic)
Q0045	COX1	Cytochrome c OXidase	0
Q0080	ATP8	ATP synthase	0.005126015
Q0085	ATP6	ATP synthase	0.005126015
Q0105	СОВ	CytochrOme B	0
Q0130	OLI1	OLIgomycin resistance	0.005126015
Q0250	COX2	Cytochrome c OXidase	0
Q0275	COX3	Cytochrome c OXidase	0
/AL044C	GCV3	GlyCine cleaVage	0.179837676
/BL045C	COR1	CORe protein of QH2 cytochrome c reductase	0.173837070
/BL099W	ATP1	ATP synthase	0.005126015
/BR039W	ATP3	ATP synthase	0.005126015
/BR126C	TPS1	Trehalose-6-Phosphate Synthase	1
/BR263W	SHM1	Serine HydroxyMethyltransferase	0.327637762
DL067C	COX9	Cytochrome c OXidase	0
DR019C	GCV1	GlyCine cleaVage	0.179837676
DR074W	TPS2	Trehalose-6-Phosphate Synthase/phosphatase	1
DR127W	ARO1	AROmatic amino acid requiring	0.67407091
'DR298C	ATP5	ATP synthase	0.005126015
′DR377W	ATP17	ATP synthase	0.005126015
DR529C	QCR7	ubiQuinol-cytochrome C oxidoReductase	0
′EL024W	RIP1	Rieske Iron-sulfur Protein	0
'ER014W	HEM14	HEMe biosynthesis	0
′ER026C	CHO1	CHOline requiring	1
/FL018C	LPD1	LiPoamide Dehydrogenase	0.27765912
/FR033C	QCR6	ubiQuinol-cytochrome C oxidoReductase	0
/GL148W	ARO2	AROmatic amino acid requiring	0.67407091
GR183C	QCR9	ubiQuinol-cytochrome C oxidoReductase	0
/GR204W	ADE3	ADEnine requiring	1
/HR001W-A	QCR10	ubiQuinol-cytochrome C oxidoReductase	0
/JL166W	QCR8	ubiQuinol-cytochrome C oxidoReductase	0
/JR121W	ATP2	ATP synthase	0.005126015
	ATP7	•	
/KL016C		ATP synthase	0.005126015
/KL067W	YNK1	Yeast Nucleoside diphosphate Kinase	1
′KR067W	GPT2	Glycerol-3-Phosphate acylTransferase	1
′LR058C	SHM2	Serine HydroxyMethyltransferase	0.749252456
′LR295C	ATP14	ATP synthase	0.005126015
/ML081C-A	ATP18	ATP synthase	0.005126015
/MR189W	GCV2	GlyCine cleaVage	0.179837676
/MR205C	PFK2	PhosphoFructoKinase	1
/MR267W	PPA2	PyroPhosphatAse	0.042716788
OR065W	CYT1	CYTochrome c1	0
PL078C	ATP4	ATP synthase	0.005126015
/PL172C	COX10	Cytochrome c OXidase	0
/PL271W	ATP15	ATP synthase	0.005126015
PR060C	ARO7	AROmatic amino acid requiring	0.672362238
PR191W	QCR2	QH2:cytochrome-C oxidoReductase	0
′KL029C	MAE1	MAlic Enzyme	0.593336181
PR160W	GPH1	Glycogen PHosphorylase	0.591200342
/PL262W	FUM1	FUMarase	0.548056386
Magnificent 7 Genes in			
naerobic Conditions	Standard Names	Name Description	Frequency (Aerobic)
'BR126C	TPS1	Trehalose-6-Phosphate Synthase	1
/DR074W	TPS2	Trehalose-6-Phosphate Synthase/phosphatase	1
′ER026C	CHO1	CHOline requiring	1
′GR204W	ADE3	ADEnine requiring	1
′KL067W	YNK1	Yeast Nucleoside diphosphate Kinase	1
/KR067W	GPT2	Glycerol-3-Phosphate acylTransferase	1
/MR205C	PFK2	PhosphoFructoKinase	1

Supplementary Table 4. The Genes with the greatest frequency difference between Aerobic and Anaerobic external conditions (considering the 1% Growth rate threshold results only).

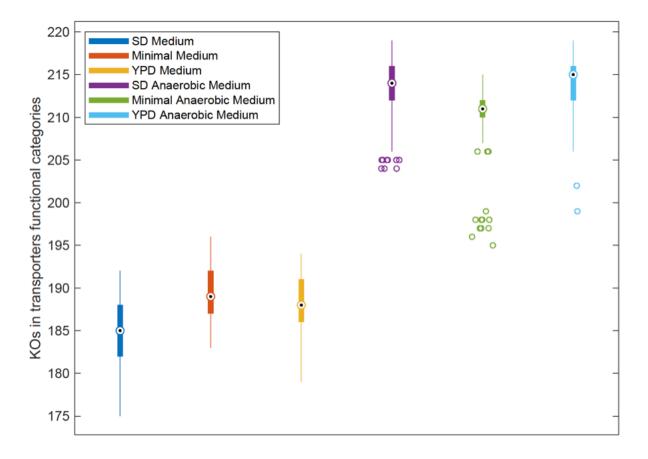
Systematic Names	Standard Gene Names	Name Description	Aerobic	Anaerobic	Difference
Q0045	COX1	Cytochrome c OXidase	1	0	1
Q0105	СОВ	CytochrOme B	1	0	1
Q0250	COX2	Cytochrome c OXidase	1	0	1
Q0275	COX3	Cytochrome c OXidase	1	0	1
YBL045C	COR1	CORe protein of QH2 cytochrome c reductase	1	0	1
YDL067C	COX9	Cytochrome c OXidase	1	0	1
YDR529C	QCR7	ubiQuinol-cytochrome C oxidoReductase	1	0	1
YEL024W	RIP1	Rieske Iron-sulfur Protein	1	0	1
YER014W	HEM14	HEMe biosynthesis	1	0	1
YFR033C	QCR6	ubiQuinol-cytochrome C oxidoReductase	1	0	1
YGR183C	QCR9	ubiQuinol-cytochrome C oxidoReductase	1	0	1
YHR001W-A	QCR10	ubiQuinol-cytochrome C oxidoReductase	1	0	1
YJL166W	QCR8	ubiQuinol-cytochrome C oxidoReductase	1	0	1
YOR065W	CYT1	CYTochrome c1	1	0	1
YPL172C	COX10	Cytochrome c OXidase	1	0	1
YPR191W	QCR2	QH2:cytochrome-C oxidoReductase	1	0	1
Q0080	ATP8	ATP synthase	1	0.005126015	0.994873985
Q0085	ATP6	ATP synthase	1	0.005126015	0.994873985
Q0130	OLI1	OLIgomycin resistance	1	0.005126015	0.994873985
YBL099W	ATP1	ATP synthase	1	0.005126015	0.994873985
YBR039W	ATP3	ATP synthase	1	0.005126015	0.994873985
YDR298C	ATP5	ATP synthase	1	0.005126015	0.994873985
YDR377W	ATP17	ATP synthase	1	0.005126015	0.994873985
YJR121W	ATP2	ATP synthase	1	0.005126015	0.994873985
YKL016C	ATP7	ATP synthase	1	0.005126015	0.994873985
YLR295C	ATP14	ATP synthase	1	0.005126015	0.994873985
YML081C-A	ATP18	ATP synthase	1	0.005126015	0.994873985
YPL078C	ATP4	ATP synthase	1	0.005126015	0.994873985
YPL271W	ATP15	ATP synthase	1	0.005126015	0.994873985
YMR267W	PPA2	PyroPhosphatAse	1	0.042716788	0.957283212
YAL044C	GCV3	GlyCine cleaVage	1	0.179837676	0.820162324
YDR019C	GCV1	GlyCine cleaVage	1	0.179837676	0.820162324
YMR189W	GCV2	GlyCine cleaVage	1	0.179837676	0.820162324
YFL018C	LPD1	LiPoamide Dehydrogenase	1	0.27765912	0.72234088
YOL126C	MDH2	Malate DeHydrogenase	0.701511879	0.002563007	0.698948872
YDR148C	KGD2	alpha-KetoGlutarate Dehydrogenase	0.694168467	0.009397693	0.684770773
YIL125W	KGD1	alpha-KetoGlutarate Dehydrogenase	0.694168467	0.009397693	0.684770773
YNL037C	IDH1	Isocitrate DeHydrogenase	0.717926566	0.037590773	0.680335793
YOR136W	IDH2	Isocitrate DeHydrogenase	0.717926566	0.037590773	0.680335793
YBR263W	SHM1	Serine HydroxyMethyltransferase	1	0.327637762	0.672362238
YNL280C	ERG24	ERGosterol biosynthesis	0.666522678	0	0.666522678

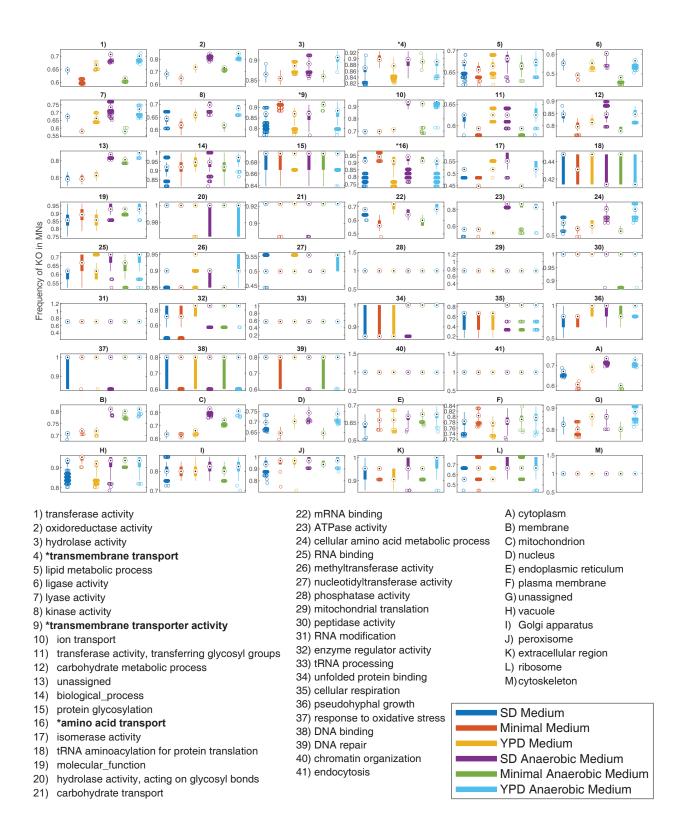
YOR388C	FDH1	Formate DeHydrogenase	0.666522678	0.001708672	0.664814007
YHR037W	PUT2	Proline UTilization	0.688552916	0.055531824	0.633021092
YLR142W	PUT1	Proline UTilization	0.688552916	0.055531824	0.633021092

Supplementary Table 5. The Genes with the greatest frequency difference between Minimal and YPD Aerobic and Anaerobic external conditions (considering the 1% Growth rate threshold results only).

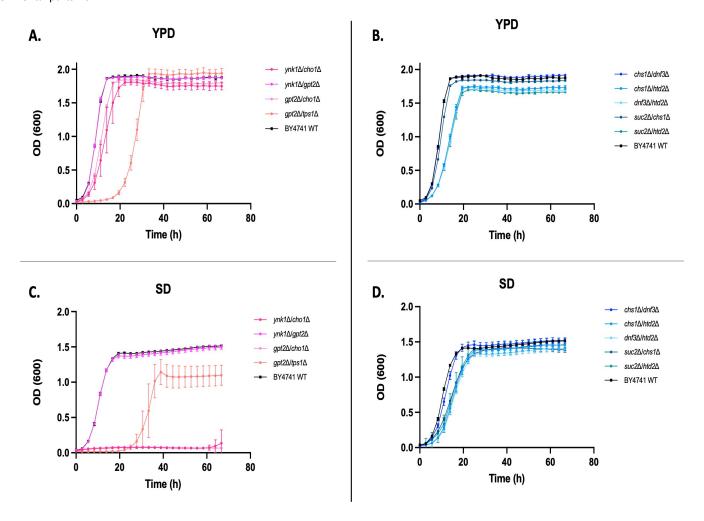

Gene			YPD	Min	AnYPD	AnMin
YNL280C	ERG24	ERGosterol biosynthesis	0	1	0	0
YOR388C	FDH1	Formate DeHydrogenase	0	1	0.0025031	0
YFL030W	AGX1	Alanine:Glyoxylate aminotrans(X)ferase	1	0	0.011264	0
YML035C	AMD1	AMP Deaminase	0.027202	0.063492	0.043805	0.97919
YDL238C	GUD1	GUanine Deaminase	0.96244	0	0.075094	0
YJR148W	BAT2	Branched-chain Amino acid Transaminase	0.9456	1	0.090113	1
YDL080C	THI3	THIamine metabolism	0.8614	0	0.045056	0
YHR002W	LEU5	LEUcine biosynthesis	0	0.80688	0	0
YER065C	ICL1	IsoCitrate Lyase	1	0.010582	0.18523	0
YHR037W	PUT2	Proline UTilization	1	0.046296	0.15144	0
YLR142W	PUT1	Proline UTilization	1	0.046296	0.15144	0
YHR018C	ARG4	ARGinine requiring	0.75	1	0.021277	1
YOL058W	ARG1	ARGinine requiring	0.75	1	0.021277	1
YEL047C	FRD1	Fumarate ReDuctase	1	0.21958	0.20651	0.11964
YDL215C	GDH2	Glutamate DeHydrogenase	0.82642	0.063492	0.070088	0
YCR053W	THR4	THReonine requiring	0.61658	1	0	1
YHR025W	THR1	THReonine requiring	0.61658	1	0	1
YDR158W	ном2	HOMoserine requiring	0.62435	1	0.008761	1
YER052C	ном3	HOMoserine requiring	0.62435	1	0.008761	1
YJR139C	ном6	HOMoserine requiring	0.62435	1	0.008761	1
YKL120W	OAC1	OxaloAcetate Carrier	0.007772	0.16138	0.010013	0.76593
YFL018C	LPD1	LiPoamide Dehydrogenase	1	1	0.098874	0.69571
YDR516C	EMI2	Early Meiotic Induction	1	0.77513	0.20526	1
YBR221C	PDB1	Pyruvate Dehydrogenase Beta subunit	0.018135	1	0.0025031	0.42003
YER178W	PDA1	Pyruvate Dehydrogenase Alpha	0.018135	1	0.0025031	0.42003
YGR193C	PDX1	Pyruvate Dehydrogenase complex protein X	0.018135	1	0.0025031	0.42003
YNL071W	LAT1	iii	0.018135	1	0.0025031	0.42003
YML042W	CAT2	Carnitine AcetylTransferase	0	0	0.020025	0.57997
YPR160W	GPH1	Glycogen PHosphorylase	0.8899	1	0.34418	1
YJR095W	SFC1	Succinate-Fumarate Carrier	0.82254	0.52381	0.042553	0.28218

Supplementary Table 6. Quantitative analysis of the genes in the *MMN*s using Functional Category and Compartment annotations. In the first two columns are the number of genes that can be attributed to the specific category and the percentage in the WT genome. The next two columns are relative to the SD Media mean values in the MNs, with the average percentage of genes that were turned off. In the next column the difference in the KO values is reported (1% Growth rate threshold). The next three columns are analogous for the minimal media.

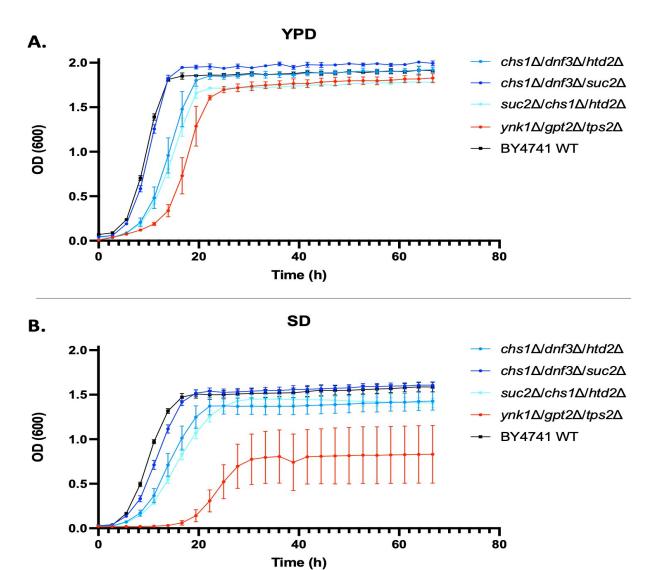

transferase activity oxidoreductase activity hydrolase activity transmembrane transport lipid metabolic process ligase activity lyase activity kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned biological_process	320 210 192	28.24 18.53	64.55				(Min. An.)	
hydrolase activity transmembrane transport lipid metabolic process ligase activity lyase activity kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	192	18.53		70.44	-5.89	60.44	61.43	-0.98
transmembrane transport lipid metabolic process ligase activity lyase activity kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned			68.29	84.15	-15.86	64.91	73.35	-8.44
lipid metabolic process ligase activity lyase activity kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned		16.95	86.46	89.09	-2.62	85.52	85.98	-0.46
ligase activity lyase activity kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	146	12.89	86.77	88.97	-2.19	90.00	89.15	0.85
lyase activity kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	116	10.24	66.71	68.07	-1.36	65.85	66.66	-0.81
kinase activity transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	83	7.33	55.27	60.17	-4.90	49.64	48.23	1.41
transmembrane transporter activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	83	7.33	67.27	73.96	-6.69	58.26	57.72	0.54
activity ion transport transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	76	6.71	64.23	69.96	-5.73	61.81	61.30	0.51
transferase activity, transferring glycosyl groups carbohydrate metabolic process unassigned	69	6.09	85.91	86.02	-0.11	92.38	91.63	0.75
transferring glycosyl groups carbohydrate metabolic process unassigned	66	5.83	69.57	92.69	-23.12	69.41	92.02	-22.61
process unassigned	64	5.65	61.75	62.61	-0.86	59.27	59.24	0.02
_	59	5.21	84.19	84.53	-0.34	80.10	78.58	1.52
biological process	48	4.24	59.32	87.84	-28.51	58.95	81.80	-22.85
	38	3.35	90.73	93.53	-2.80	92.45	92.59	-0.14
protein glycosylation	36	3.18	67.97	68.33	-0.36	68.12	68.03	0.09
amino acid transport	34	3.00	89.94	90.98	-1.04	94.19	92.45	1.74
isomerase activity	29	2.56	51.53	56.32	-4.79	45.50	44.83	0.67
tRNA aminoacylation for protein translation	29	2.56	43.18	43.04	0.14	43.10	43.19	-0.08
molecular_function	28	2.47	85.56	93.25	-7.69	89.06	92.00	-2.94
hydrolase activity, acting on glycosyl bonds	27	2.38	100.00	98.60	1.40	100.00	100.00	0.00
carbohydrate transport	26	2.29	92.31	92.28	0.02	92.29	92.31	-0.02
mRNA binding	25	2.21	67.54	65.59	1.95	57.90	58.67	-0.77
ATPase activity	23	2.03	56.47	86.66	-30.19	56.51	84.79	-28.28
cellular amino acid metabolic process	23	2.03	69.17	92.10	-22.94	59.32	57.95	1.37
RNA binding	21	1.85	60.30	69.36	-9.06	65.02	65.90	-0.88
methyltransferase activity	20	1.77	89.00	88.41	0.59	85.00	85.00	0.00
nucleotidyltransferase activity	18	1.59	51.09	55.54	-4.45	50.00	50.00	0.00
phosphatase activity	11	0.97	100.00	100.00	0.00	100.00	100.00	0.00
Others	144	12.71	85.15	88.03	-2.88	82.55	85.07	-2.52
Compartments								
cytoplasm	470	41.48	67.02	73.11	-6.09	60.58	60.17	0.41
membrane	449	39.63	70.67	80.92	-10.25	71.99	80.25	-8.26
mitochondrion	376	33.19	63.70	82.33	-18.63	61.78	73.97	-12.19
nucleus	198	17.48	69.74	74.30	-4.56	64.75	64.50	0.25
endoplasmic reticulum	181	15.98	64.39	66.59	-2.20	65.68	67.16	-1.48
plasma membrane	153	13.50	78.03	78.27	-0.24	80.21	79.32	0.89

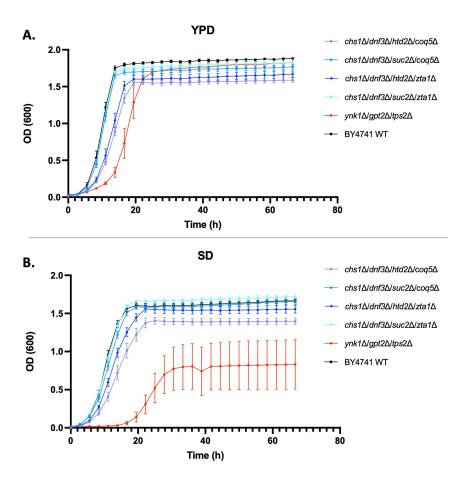

unassigned	86	7.59	82.56	85.85	-3.30	80.60	80.27	0.33
vacuole	61	5.38	91.76	91.91	-0.15	94.20	93.62	0.58
Golgi apparatus	40	3.53	80.84	82.62	-1.78	80.32	80.89	-0.57
peroxisome	32	2.82	94.15	97.94	-3.79	96.72	93.83	2.89
extracellular region	21	1.85	93.93	97.03	-3.11	95.17	95.11	0.05
ribosome	9	0.79	57.63	69.90	-12.27	67.00	67.92	-0.92
cytoskeleton	3	0.26	67.02	73.11	-6.09	100.00	100.00	0.00

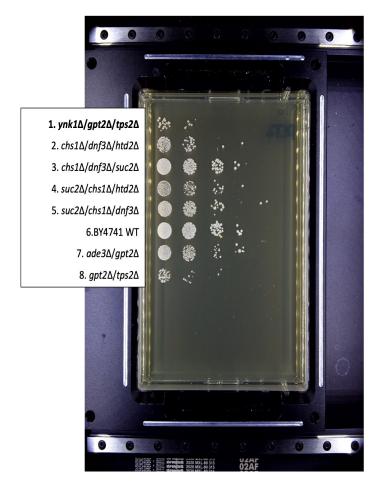
Supplementary Figure 1. For each condition, the *MMNs* active genes number using a Growth rate threshold of 1% or 10% is reported. On average less genes are required for the less strict bound. The minimal networks in minimal media are significantly larger even with the looser threshold. Notably, in SD medium the *MMNs* have more diverse sizes. Differences between the distributions in SD and YPD anaerobic media are less distinct.

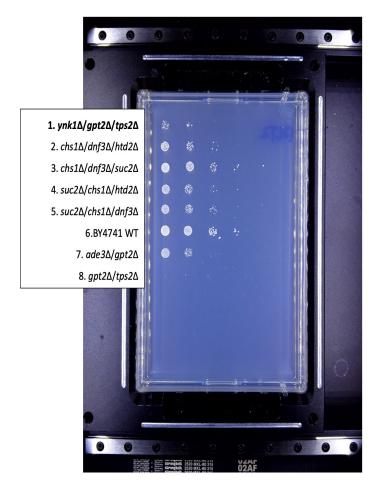


Supplementary Figure 2. We considered the genes annotated as transporter-related to highlight that, in SD medium, the number of such genes excluded from the *MMNs* is lower than in other conditions. Conversely, the number of KOs in this category is higher in SD *anaerobic* medium than that under anaerobiosis. (Supplementary Data 5 gives a full list of transporter genes and their biological functions.)

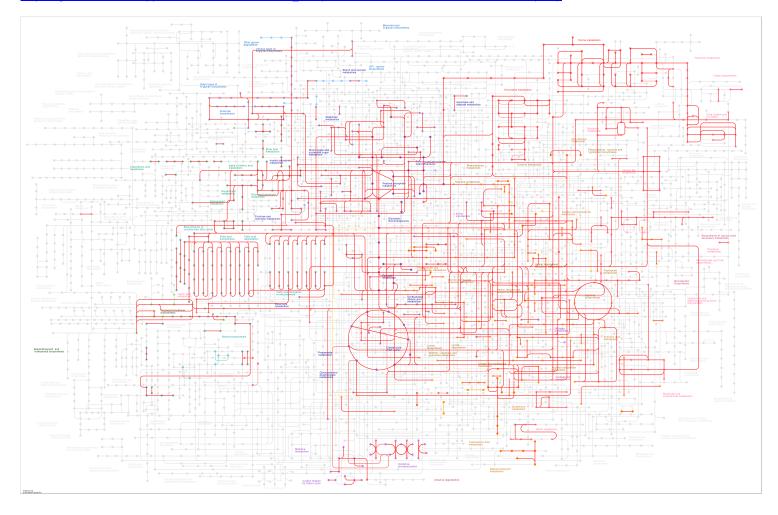


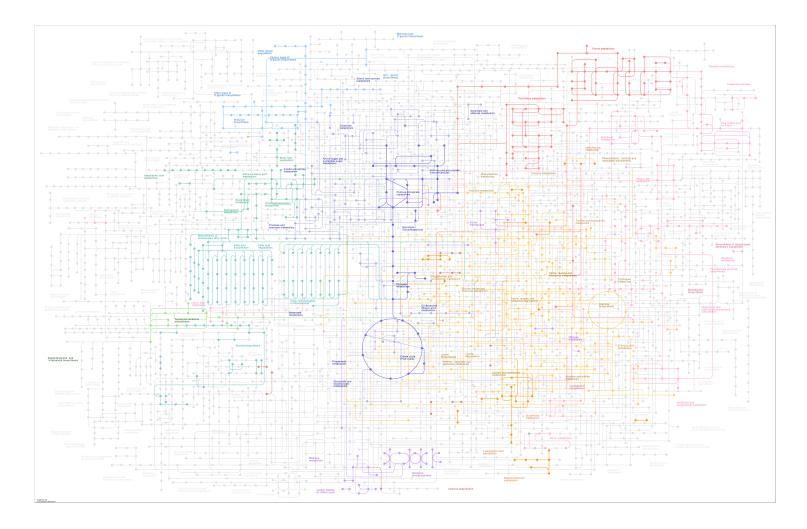

Supplementary Figure 4. Growth characteristics of double deletant strains (strains with YPD medium in the top plots, strains with SD medium in the bottom plots). Data are presented as mean values +/- SD (standard deviation), with 3 technical replicates and 2 biological replicates (except for suc2Δ/chs1Δ, for which only one transformant was recovered). Source data is provided as a single Source Data file: Fig 5 and SI Figs 4-6 Source data for experimental parts.xlsx.


Supplementary Figure 5. Growth characteristics of triple deletant strains (strains with YPD medium in the top plot, strains with SD medium in the bottom plot). Data are presented as mean values +/- SD (standard deviation), with 3 technical replicates and 2 biological replicates (except for *chs1*Δ/*dnf3*Δ/suc2Δ, for which only one transformant was recovered). Source data is provided as a single Source Data file: Fig 5 and SI Figs 4-6 Source data for experimental parts.xlsx.

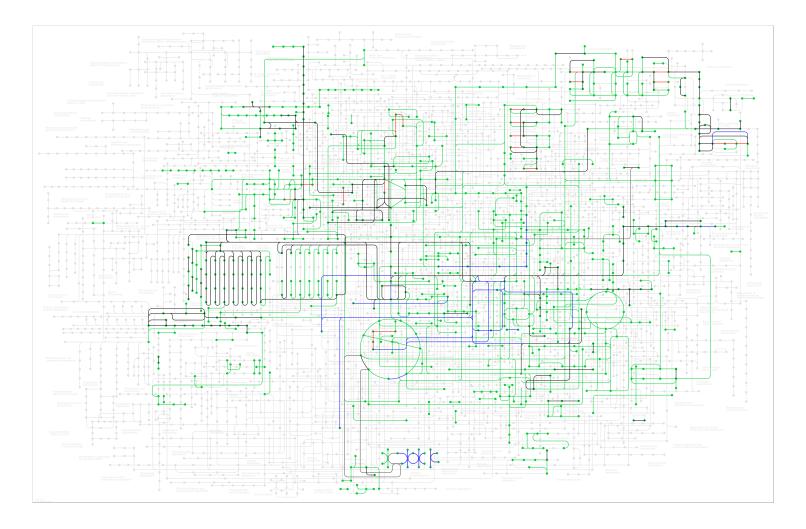


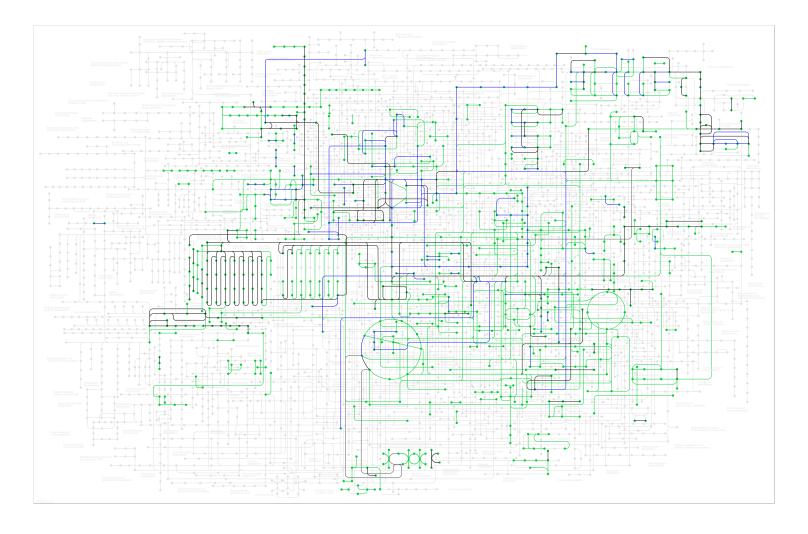
Supplementary Figure 6. Growth characteristics of quadruple deletant strains (strains with YPD medium in the top plot, strains with SD medium in the bottom plot). Data are presented as mean values +/- SD (standard deviation), with 3 technical replicates and 2 biological replicates (except for $chs1\Delta/dnf3\Delta/htd2\Delta/zta1\Delta$ and $chs1\Delta/dnf3\Delta/suc2\Delta/zta1\Delta$, for which only one transformant was recovered respectively). Source data is provided as a single Source Data file: Fig 5 and SI Figs 4-6 Source data for experimental parts.xlsx.



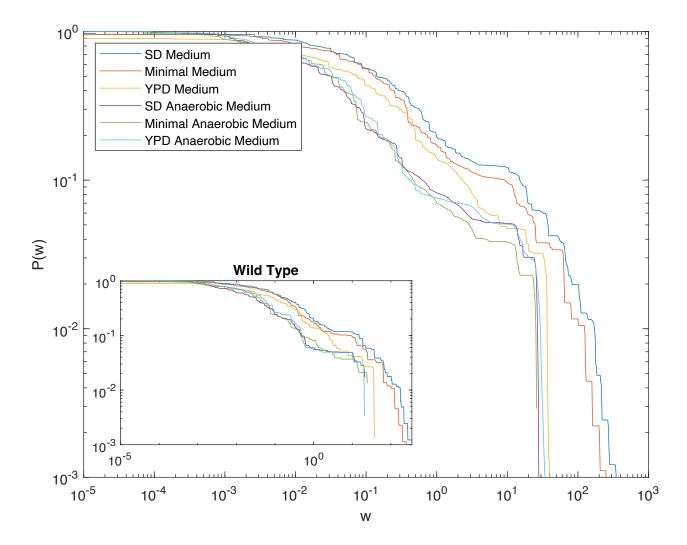

Supplementary Figure 7. Uncropped images of the growth characteristics of deletant strains (YPD medium in the left plot, SD medium in the right plot). The experiment was performed twice, yielding the same results each time.

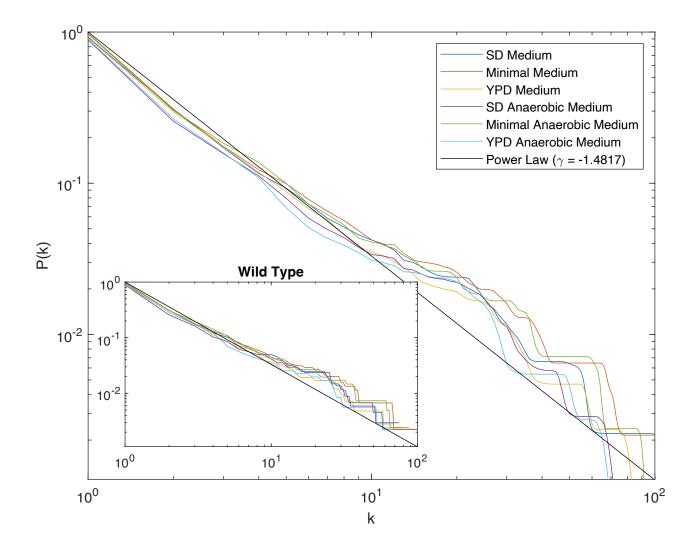
Supplementary Figure 8. *S. cerevisiae* metabolic network of the computational model used (Yeast 8.3.1). The JSON files used to generate Figs. 8-12, and which readers can use to generate their own metabolic maps may be downloaded from: https://github.com/GiuseppeNicosia1/MinimalNetwork_CompleteCode/blob/main/escher-metabolic-maps.zip

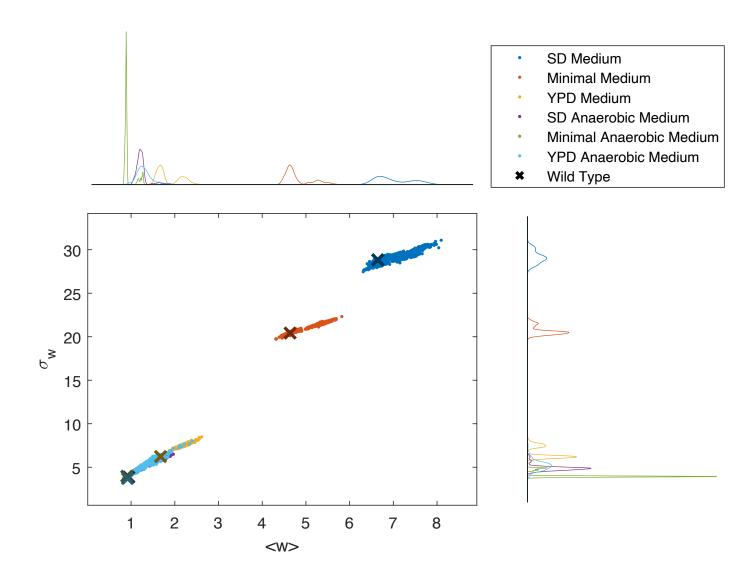



Supplementary Figure 10. This figure shows the flux change (obtained using Escher) of a single minimal metabolic network using the YPD medium. As can be appreciated from the image, some fluxes show well-marked colours (such as red), this indicates a significant difference in the flux in question between the minimal metabolic network obtained and the wild type. The fluxes coloured in red represent a higher difference of value than the fluxes coloured in blue.

Supplementary Figure 11. Metabolic map obtained from KEGG (https://www.genome.jp/kegg/). Some pathways linked to metabolic genes are highlighted: in black the essential genes in the model, in blue the Network Efficiency Determinants (*NEDs*) in aerobic conditions, in red the NEDs present in all media.


Supplementary Figure 12. Metabolic map obtained from KEGG (https://www.genome.jp/kegg/). Some pathways linked to metabolic genes are highlighted: in black the essential genes in the model, in blue the Network Efficiency Determinants (*NEDs*) in the YPD medium.




Network Topology

We have also used basic measures from the complex network theory to describe the MMNs (Fig.13-15) considered as a bipartite graph of reactions and metabolites; there are two different behaviours in the weight distributions for aerobic and anaerobic (Fig. 13), a pattern that is kept from the Wild Type networks, while the degree distributions are all similar (Fig. 14). The mean and standard deviation of the weights (Fig. 15) show how the aerobic networks in different conditions are divided in two sub-clusters.

Supplementary Figure 13. Average weight distribution in *MMNs*; aerobic and anaerobic networks have different distributions. Source data are provided as a Source Data file: SI Figs 13-15 Source Data.xlsx

Algorithm 1 Minimal Media Algorithm

```
procedure Minimal Media(minBiomass, model, tol)
   Fluxes = getExchangeReaction(model)
   i = 0
   while i < tol do
       BackUp = Fluxes
       Fluxes = remove(rand(Fluxes))
       if FBA(model, Fluxes) >= minBiomass then
           i = 0
       else
           Fluxes = BackUp
           i = i + 1
           if i == tol then
               Fluxes = exhProc(Fluxes, model, minBiomass)
               if ¬(isempty(Fluxes)) then
                   i = 0
   return Fluxes
```

Algorithm 1 automatically defines a new minimal medium; it has three input parameters: *minBiomass* is the minimum value of the biomass function to be guaranteed, *model* is the given genome-scale metabolic model with the medium to be minimized, and *tol* is the number of attempts. The algorithm sequentially sets one of the exchange reaction bounds, chosen at random, to zero i.e., removing that compound from the simulated medium. The change is kept if the predicted biomass is still above the minimum, otherwise it is restored, and the procedure is repeated. If, after a number (*tol*) of attempts, an exchange reaction to be removed is not selected, a function implementing an exhaustive procedure is called. All the residual removals are tested in it and, if a feasible one is found, is returned to the main procedure; otherwise the procedure ends and returns an empty array, since no further exchange reactions bounds can be set to zero. The glucose, oxygen (if aerobic), and water exchange reactions bounds are fixed and not considered.

Supplementary Table 7. Media composition and bounds. The table shows the *Exchange Reactions* and the corresponding Bounds for the media used in this work. And empty entry in the table indicates that the given *Exchange Reaction* is not present in a given medium.

Exchange Reaction	SD	Minimal	YPD	Bounds SD Anaerobic	Minimal An.	YPD An.
(R)-pantothenate exchange	-0.78	iviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	-0.001	-0.78	William All.	-0.001
4-aminobenzoate exchange	-0.78			-0.78		
adenine exchange	-0.78			-0.78		
ammonium exchange	-1000	-7.57	-1000	-1000	-1.66	-1000
biotin exchange	-0.78		-0.001	-0.78		-0.001
D-glucose exchange	-15	-15	-20	-15	-15	-20
folic acid exchange	-0.78			-0.78		
iron(2+) exchange	-1000	-0.01	-0.01	-1000		-0.01
L-alanine exchange	-0.1		-0.5	-0.1		-0.5
L-arginine exchange	-0.31		-0.5	-0.31		-0.5
L-asparagine exchange	-0.36		-0.5	-0.36		-0.5
L-aspartate exchange	-0.72		-0.5	-0.72		-0.5
L-cysteine exchange	-0.78		-0.5	-0.78		-0.5
L-glutamate exchange	-0.6		-0.5	-0.6		-0.5
L-glutamine exchange	-0.23			-0.23		
L-isoleucine exchange	-0.78			-0.78		
L-leucine exchange	-0.78		-0.5	-0.78		-0.5
L-lysine exchange	-0.78		-0.5	-0.78		-0.5
L-methionine exchange	-0.78		-0.5	-0.78		-0.5
L-phenylalanine exchange	-0.78			-0.78		
L-proline exchange	-0.78		-0.5	-0.78		-0.5
L-serine exchange	-0.47		-0.5	-0.47		-0.5
L-threonine exchange	-0.78		-0.5	-0.78		-0.5
L-tryptophan exchange	-0.78		-0.5	-0.78		-0.5
L-tyrosine exchange	-0.13		-0.5	-0.13		-0.5
L-valine exchange	-0.78			-0.78		
myo-inositol exchange	-0.78			-0.78		
nicotinate exchange	-0.78			-0.78		
oxygen exchange	-1000	-1000	-2			
phosphate exchange potassium exchange	-1000 -1000	-1.08	-1000	-1000 -1000	-0.24	-1000
pyridoxine exchange	-0.78			-0.78		
riboflavin exchange	-0.78		-0.001	-0.78		-0.001
sodium exchange	-1000			-1000		
sulphate exchange thiamine(1+) exchange	-1000 -0.78	-0.11	-1000 -0.001	-1000 -0.78	-0.03	-1000 -0.001
uracil exchange	-0.78		-0.5	-0.78		-0.5
water exchange	-1000	-1000	-1000	-1000	-1000	-1000
choline exchange			-0.5			-0.5
deoxycytidine exchange			-0.5			-0.5
ergosterol exchange			-0.5	-0.01		-0.5
L-glycine exchange			-0.5			-0.5
guanine exchange			-0.5			-0.5
H+ exchange			-1000			-1000
L-histidine exchange			-0.5			-0.5
palmitate exchange			-0.5			-0.5
putrescine exchange			-0.001			-0.001
spermidine exchange			-0.001			-0.001
spermine exchange			-0.001			-0.001
stearate exchange			-0.5	-0.01		-0.5
thymidine exchange			-0.5			-0.5
myristate exchange			-0.5			-0.5
lanosterol exchange				-0.01	-0.01	-0.01
palmitoleate exchange				-0.05	-0.05	-0.05
zymosterol exchange				-0.01	-0.01	-0.01
14-demethyllanosterol exchange				-0.01	-0.01	-0.01
ergosta-5,7,22,24(28)-tetraen-3beta-ol excha	ange			-0.05	-0.05	-0.05
oleate exchange	1			-0.01	-0.01	-0.01

Algorithm 2 Minimization Algorithm

```
procedure MA(pop, gen, model, minBiomass) P = initPop(pop)

for i = 1: gen do

P_t = geneticOperator(P_{i-1}, model, minBiomass) P_t = sortPop(P_t \cup P_{i-1})

P_t = P_t(1 : pop)

P_i = aging(P_t, P_{i-1}) saveResult(P_i)

R = loadResults()

minSol = findMinimalSolutions(R)

return minSol
```

The Minimization Algorithm (MA) is the algorithm used to derive the Minimal Metabolic Networks (MMNs). MA iteratively improves the initial population (*pop*) for maximizing the number of knocked out genes (KO). Every element of the population represents a candidate solution (a strain), i.e. a set of genes that are knocked out. They are represented by a logical array, with every value corresponding to a gene in given genome-scale metabolic model (*model*). If the value is equal to 0 (false), the gene is still present in the model, otherwise it is knocked out. The initial population elements are all wild type strains,

i.e. all-zeros arrays. The other two parameters of the algorithm are: *gen*, the maximum number of generations in the evolutionary cycle (in all simulations we used 5000 generations) and *minBiomass* is the minimum value of the biomass to be guaranteed.

Algorithm 3 Genetic Operator

```
function geneticOperator(P, model, minBiomass)

for all p ∈ P do
    ntrials = 0
    isFeasible = 0

while ntrials < 10 and ¬isFeasible do
    pt = selectNewRandKO(p)
    if (1 + FBA(p, model)/minBiomass) < 0.01 then
        p = pt
        isFeasible = 1
    else
        ntrials = ntrials + 1

return P</pre>
```

The Genetic Operator algorithm selects a new possible knockout over all the remaining active genes in the strain and it evaluates the new Biomass value. If the Biomass value satisfies the constraint (0.01, i.e. 1%, in the algorithm) the change is kept, and the new element-strain will enter in the new population (*P*), otherwise the searching is repeated till a feasible knockout is reached or a maximum number of trials (*10*) are performed.

Algorithm 4 Sorting Population Function

```
function sortPop(P) KOs = getKOs(P) i = 1

while \exists p \in P : no exists (p.front) do for all p \in P do

D_p = ManhattanDistance(p, P)

if no exists (q \in P : D_p(q) == 1 and KOs(q) == KOs(p) + 1 then

p.front = i

p.dist = sort(D_p, npoints)

i = i + 1

return P
```

The genetic operator constructs an offspring for every parent point in the population (P), and all these new points constitute the offspring population. The union of this and the parent population is then sorted using the Sorting Population Function. The idea of the sorting is that the points that were improved with a new knockout should be discarded. In order to do this the Hamming Distance of all the couples of points is evaluated.

Algorithm 5 Aging Function

```
function aging(P, Q, minBiomass)

for all p \in P do

if \exists q \in Q : q == p then

p.age = q.age + 1

else

p.age = 0

if 1/(1 + exp(10 - p.age/10)) < rand() then

p = Backtracking(p, minBiomass)

return P
```

All the points have a feature while in the population, their ages. The age can be defined as the numbers of the last generation in which the point has been present. If a point was not improved during the last generations of the algorithm, it is a candidate to be a minimal solution. If this is the case, there are no more knockouts that can be selected for the strain that satisfies the *minBiomass* constraint; there is no point then in keeping this point in the population. The age is then used as the variable of a sigmoid function representing the probability of a solution to be discarded from the population (*P*).