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Abstract: This study aims to investigate the impact of using untreated wastewater in irrigation.
Different scenarios of management were applied by mixing it with treated wastewater or freshwater
on groundwater quality. A hypothetical case study is presented. The numerical model of MODFLOW
is used in the simulation by applying four stages (21 scenarios) including: different values of pumping
rates, changing wastewater recharge rates, and a combination of the previous scenarios. Additionally,
protection scenario for groundwater was applied by using different values of mixing of freshwater
with wastewater. The simulation was carried out for the contamination of Chemical Oxygen Demand
COD and the concentration reached 48.6 ppm at a depth of 25 m and 19.41 ppm at a depth of 50 m in
the base case. The results showed a negative impact on groundwater quality had occurred due to
increasing the pumping rates, wastewater recharge rates, and combination between two scenarios,
which led to an increase of the contaminants in the aquifers. However, positive protection effects
occurred due to mixing the wastewater with treated wastewater. The results of COD concentration
in groundwater using treated wastewater reached 81.82, 77.88, 74.03, 70.12, and 66.15 ppm at a
depth of 25 m and 53.53, 50.95, 48.43, 45.87, and 43.28 ppm at a depth of 50 m, at concentrations of
93, 88.52, 84.14, 79.7, and 75.19 ppm with constant pumping and recharge rates of 4320 m3/d and
547.5 mm/year, respectively. The using of treated wastewater could improve the groundwater quality
to be used in the irrigation process and help to minimize groundwater contamination. Moreover,
the abstraction of the groundwater should be optimized, and the qualities of wastewater should be
constrained in agriculture to protect the groundwater quality.

Keywords: wastewater; treatment; irrigation; groundwater quality; COD

1. Introduction

Water scarcity is considered the major challenge that faces many countries around
the world [1]. It is an imbalance condition that occurs because of a lack of freshwater
resources and increasing water demand. The amount of water on the surface of the planet
is estimated at 1388 million cubic kilometers, about 97% of that amount is in the form of salt
water, and only 3% is in the form of freshwater. The largest proportion of this freshwater,
between 48 and 69%, is found in the form of permanent ice caps in the Antarctic, ice in
mountainous regions, and the Arctic. Groundwater accounts for nearly 30% of freshwater
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and less than 1% of freshwater distributed in the form of lakes and rivers on the surface of
the earth. This is evidence that about less than 1% of the total available water can be easily
accessed to meet different needs [2,3].

Water shortage imposes severe conditions on both the safety of the society and devel-
opment of the economy. The agricultural sector is the most water-consuming sector because
it consumes about 80% of the total water used, so it is the sector most affected by a water
shortage, followed by the domestic sector, as both of them witness increased consumption
over the years. This is due to the increase in population and changes in temperature,
especially its rise and the demands of the standard of living [4]. The continuing pressure
on freshwater resources is due to global climate change; it has an adverse influence on
water scarcity, particularly in arid regions with heavily populated areas [2]. The global
population growth is approximately 83 million per year, or 1.15%, as the current population
is estimated at 7.6 billion, and by 2035 it is expected to reach 8.6 billion. The United Nations
in 2017 estimated that by 2055 the rate of increase will reach 30%, which would be about
9.8 billion and by 2100 it will be 11.2 billion [5]. In the year 2050, global water use is
expected to increase by 55%. This is due to the increase in population and increasing
consumption of manufacturing and households. The reports indicated that the municipal
sector consumes about 11% of the global water and that the agricultural sector is the main
consumer of water in the world. It has also been observed that about 88% of the water
used in the household sector is discharged as wastewater, i.e., about 330 km3 annually.
The quantity that used to irrigate approximately 40 million hectares of the land area and
represents about 15% of the total cultivated land area [6]. The water need is estimated at the
present time about 4600 km3 per year for all uses and by 2050, the percentage of increase
is 20 to 30%, in order to reach 5500 to 6000 km3 annually. Globally, by 2025 the demand
for water for agricultural purposes will increase by 60% and the percentage of water used
for industrial purposes is about 20% and 10% of the total for domestic purposes. In 2010 it
was estimated that the amount of global groundwater used annually is about 800 km3, and
by 2050 probably that the increase in withdrawal will reach 1100 km3 per year, or about
39% [7]. In addition to the natural resources, the desalination and the reuse of water are
the addition methods to increase the amount of freshwater resources [2]. Groundwater is
the available source of freshwater in arid and semi-arid regions such as the countries of the
Mediterranean, especially North Africa. These areas are suffering from a rapid increase
in population, pollution, and excessive consumption of groundwater, which leads to a
severe shortage of the water resources needed. This is increasing the attention for water
quality assessments to solve major issues of aquifer problems in these areas, especially
coastal areas such as overconsumption, pollution, and salinization and to provide optimal
support for the protection of water resources in the long term [8]. Surface water resources
are very limited in arid regions, such as Egypt. Precipitation is rare in these areas with the
high rate of evaporation and the decrease in recharge. The constraints resulting from the
poverty and poor quality of groundwater in arid regions confront the use and management
of groundwater and lead to obstacles in regional and economic development [9].

The wastewater contributes with partial assistance to compensate for the water short-
age. Nearly 40% of the world’s population suffers from the lack of water needed for
irrigation, which causes agricultural losses. As a result of the water shortage, especially
in arid and semi-arid regions, wastewater is used as the main water source, and this is
due to its large quantity, as wastewater discharge reaches 400 billion cubic meters/year
globally. The concentration of wastewater varies from raw to dilute due to the different dis-
posal outlets. For example, urban wastewater from domestic, commercial, and industrial
drainage; the surface runoff of rainwater; treated wastewater through treatment plants;
and finally reclaimed or recycled water. Sewage water is considered a stable source of
water because it is not dependent on climatic conditions or rain, as it is easy to use for
agriculture throughout the year. In addition, it contains nutrients that help crops grow
and in turn reduces fertilizer costs and the use of chemicals [10]. Wastewater is usually
composed of 99% water and 1% suspended, colloidal, and dissolved solids. Organic matter,
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suspended solids, nutrients (primarily nitrogen and phosphorus), heavy metals, new toxins
(antibiotics, chemicals, care products, pesticides, phenolic compounds, antibiotic resistant
bacteria, volatile organic compounds, polycyclic aromatic hydrocarbons, and genes), and
pathogens are all believed to be found in wastewater, depending on its source (protozoans,
parasitic worms, bacteria, and viruses). Although there are numerous advantages of using
wastewater in agriculture, there are also numerous risks to this method, including various
pathogens in farmers and users of food products irrigated by wastewater; deposition of
heavy metals, salts, growth hormones, antibiotics, and other harmful substances in the soil;
poor hydraulic conductivity due to soil pores clamping with suspended wastewater solids;
and reduced quality of farm crops because toxins transported from wastewater to soil are
accumulated [11].

As a result of the increase in the population and the economy growth a shortage
of resources and an increase in pollution, so about 12% of the world’s population uses
unsuitable water from sources that are not safe. About 30% of the population in the world,
or nearly 4 billion people, live without using any methods for sanitation operations, so
in developing countries they dispose of nearly 90% of wastewater into untreated water.
Among the causes of pollution is that 730 million tons of wastewater is disposed annually
with other liquid wastes into the water. As for industrial waste, it is estimated at about
300 to 400 megatons per year. Despite the risk of using wastewater, it has become a common
and important issue for livelihoods, as it is recycled in agriculture [7].

Massive amounts of wastewater are generated daily in homes, factories, and agri-
culture. Wastewater accounts for 50–80% of residential household water consumption
with global wastewater discharge valued at 400 billion m3/year, contaminating nearly
5500 billion m3 of water annually [11]. The random disposal of human, industrial, and
sewage waste affects the physical and chemical properties of rivers. Therefore, it was
mainly established by standards of water quality to improve the current situation and
suitability of the methods of use. On this basis, any change in the chemical, physical,
and biological properties lead to a deterioration in the quality of water, its pollution, and
the imbalance of the ecosystem. Water quality includes a system of variables such as
temperature, pH, oxygen concentration, etc. and for testing the quality of water before
using it is very important for drinking purposes or for industrial, agricultural, domestic,
or commercial purposes. Therefore, the World Health Organization (WHO) and the Food
and Agriculture Organization (FAO) have set standard limits for pollutants in irrigation
and drinking water [12]. The cumulative amount of oxygen needed to fully oxidize all
organic matter to H2O and CO2 is known as the Chemical Oxygen Demand (COD). The
values of the chemical oxygen demand rise due to discharges from the drain polluted with
sewage water and agricultural wastes, and also because of the high load of organic matter
and the lack of water’s ability to self-purification. Biochemical Oxygen Demand (BOD)
can be defined as the amount of Dissolved Oxygen (DO) that is consumed in order for
the decomposition process of organic matter to take place by the microorganisms in the
water [13].

The guidelines for COD according to (WHO 2006) for drinking water is 10 mg/L,
according to Egyptian Drinking Water Quality Standards (2007) is 10 mg/L and for BOD
is 3 mg/L [14]. As an additional water supply, the re-use of wastewater for irrigation is
attracting international attention. The reuse of agricultural wastewater can be categorized
as direct and indirect re-use of wastewater. Direct reuse of wastewater means the method
where the water from the wastewater treatment system is provided directly, while indirect
re-use of wastewater is a method where wastes from wastewater treatment plant (WWTP)
or untreated wastewater is obtained downstream. The irrigation water quality is based
on the quality of the WWTP effluent when the wastewater reused directly. For indirect
case the rapid industrialization has led to an increase in number of WWTPs, which has
intensified the impacts of indirect wastewater reuse on irrigation water [15].

Water reuses and recycles for agriculture and drinking water through surface and
groundwater sources is a traditional and long-standing practice. The WHO now recom-
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mends a system that integrates elements of risk assessment and risk control to ensure water
quality for agricultural reuse [16]. The protection of wastewater reuse is a critical issue
for crop irrigation around the world. If wastewater is not properly treated until being
used for irrigation, it can damage the soil (salinization, toxicity from sodium, boron ions,
and chloride; decreased aeration and pore clogging from suspended solids in wastewater;
structural deterioration; and reduced hydraulic conductivity), as well as agricultural pro-
duction (excess nutrients cause heavy metal accumulation, biological load, and delayed or
erratic growth of the plant), in relation to groundwater (by seeping of unnecessary nitrates).
Where practicable, treated wastewater should be reused, and drainage methods should
mitigate the potential negative impacts on the atmosphere and public health. The most
appropriate treatment system for drainage before it is used as irrigation water is one that
produces an effluent that satisfies quality criteria from a microbiological and chemical
standpoint while requiring minimal operation and maintenance [11].

A number of studies indicated that activated sludge effluents would require extra
treatment in order to reduce the human health risk of agricultural water reuse. Contreras
et al. (2017) [17] performed a cross-sectional database analysis on the threat of diarrhea
and wastewater pollution in Mexico. The aim of the analysis was to include an updated
estimate of the health risk and to update the 2006 World Health Organization (WHO) rec-
ommendations for wastewater reuse. The results indicated that people who were exposed
to wastewater had a higher risk of diarrhea than those who were not [18]. Abd-Elhamid
et al. [19] evaluated the effect of different pumping schemes on the groundwater quality
due to the seepage from open polluted drains using VISUAL MODFLOW with different
depths, locations, and rates the result illustrated that the groundwater contamination is
very sensitive to over pumping and the pumping schemes should be optimized. The
benefits are the recharge of underground reservoirs substitute the lack of freshwater, the
utilization of nutrients contained in the wastewater. This leads to a decrease in the use of
fertilizers and the treatment of the groundwater aquifer in the soil. This results in a lack of
direct discharge, and supply of nutrients to water bodies [20]. Abd-Elaty et al. [21] carried
out geotechnical and numerical study for applied solutions to reduce soil and groundwater
contamination by fertilizers in arid and semi-arid regions in the Eastern Nile Delta, Egypt.
The result showed that silty clay soils are able to contain the contaminations and preserve
the groundwater quality, and, more than pumping, has a positive effect for groundwater
contamination and negative effect for soil pollution.

As for the economic features, the following were used: reduced treatment costs for
wastewater, reduced fertilizer costs, and reduced costs of freshwater; as for the negative
aspects, they are formed in the damage to human health as well as environmental damage,
as it requires a special distribution system for wastewater in order to be stored in the
seasons in which it is not used [20].

Abd-Elhamid et al. [22] developed a numerical model to evaluate efficiency of lining
materials for open polluted drains including clay, bentonite, geomembranes, and concrete
to reach 43, 89.6, 91.4, and 93% compared with the base case. Additionally, the result
showed that the geomembranes high performance for groundwater protection compare
with these materials due to high durability and low cost. Abd-Elaty et al. [23] developed
a numerical study for groundwater protection using new process techniques in the Nile
delta, Egypt, including the boundary conditions of canals and polluted drains, the location
of the polluted drain, installing a cut-off wall in the polluted drain sides, and lining
materials. Increasing the aquifer boundary conditions for canals, decreasing the head
of polluted drain, decreasing the top aquifer conductivity, and lining of the polluted
drain section can minimize the aquifer contamination while installing the cut off has a
good effect in shallow aquifers with no effect in the deep aquifer. Treated wastewater
is commonly used in the world, so it is suitable for irrigation. According to previous
studies, more than 10% of the global population consumed agricultural crops grown
through irrigation with wastewater [15]. In order to enhance the use of remaining natural
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resources of freshwater, water management, developed catchment, distribution, storage,
and appropriate infrastructure for water is essential [2].

In this study a numerical model MODFLOW is used to investigate the effect of
using untreated wastewater on groundwater quality considering different scenarios of
abstraction rates, aquifer recharge and mixing wastewater with freshwater, which improve
the water quality and protect groundwater aquifers contamination. Additionally, the study
produces good tools to improve the groundwater quality in arid and semi-arid regions,
which have shortage in water resources using different percentage of untreated wastewater
with freshwater.

2. Materials and Methods
2.1. Study Area Description and Flow Domain

The study area is simulated using a hypothetical case with total area of 4 km2 with
length and width equals to 2000 m while the depth is 100 m. It is divided into cells where the
area of a cell is 400 m2, also the domain is divided into 100 columns, 100 rows, and 20 layers.
The case study is assigned by main drain, which allocated in the middle and two canals that
exist parallel at the boundaries of the model; each of them is located 1000 m from the main
drain. Furthermore, in the middle of the distance between the drain and the canal there are
six wells distributed on each side at a distance of 500 m from drain center (See Figure 1).
The homogeneity of natural formation is used for simplification of real aquifers and the
heterogeneity plays an important role in the flow and transport process. Additionally, if
the transfer time ranges are compared to system change and are relatively short the similar
techniques can be used in the contaminant transport model. Generally, heterogeneity
refers some sort of “preferential flow”, and it is important to consider when designing
monitoring systems that determining preferential flows in heterogeneous systems is the
most important consideration [24].

Figure 1. Cross section and plan of the study area (a) section elevation A-A and (b) plan.
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2.2. Analatical Solution

The calculation of groundwater head between the river and the drain used the follow-
ing mathematical equation based on Darcy’s law [25]:

K
(

h2 − h2
0

)
− NX(L − x) +

KX
L
(
h2

0 − h2
l
) = 0 (1)

where: h: elevation of water (L) between the river and the drain, h0: the drain elevation
located on the west (L), hl: the river elevation located on the east (L), K: the hydraulic
conductivity (LT−1), N: is the porosity, and X: the distance along the aquifer from the drain
located on the west (L).

The analytical equation is based on the head between the drain and the canal, shown
in Figure 2.

Figure 2. Parameters of numerical equation.

2.3. Numerical Model

The use of numerical models is useful to identify the groundwater flow and solute
transport in aquifers. MODFLOW is used to evaluate groundwater quality and quantity
for using untreated wastewater in irrigation. The governing equation for groundwater
flow can be defined as following [26]:

∂

∂x

(
Kxx

∂h
∂x

)
+

∂

∂y

(
Kyy

∂h
∂y

)
+

∂

∂z

(
Kzz

∂h
∂z

)
+ W = SS

∂h
∂t

(2)

The solute transport model was simulated using 3-D of MT3D model and the govern-
ing equation can be written as following [27]:

∂c
∂t

=
∂

∂xi

(
Dij

∂c
∂xj

)
− ∂

∂xi
(ViC) +

qS
θ

CS +
N

∑
K−1

RK (3)

where: Kxx, Kyy, and Kzz: the hydraulic conductivity along the x, y, and z coordinate axes
(T−1), h: the potentiometric head (L), W: volumetric flux per unit volume representing
sources and/or sink of water in (T−1), SS: specific storage of the porous material (L−1),
t: time (T), C: groundwater concentration (ML−3), Dij: dispersion coefficient (L2T−1), V:
seepage velocity (LT−1), qS: water flux of sources (positive) and sinks (negative) (T−1),
CS: sources or sinks concentration (ML−3), θ: media porosity (dimensionless), and RK:
chemical reaction term (ML−3T−1).

2.3.1. Boundary Conditions

The boundary conditions of the model play a critical role for groundwater flow and
solute transport [24]. In finite domains the results of both velocity and solute concentra-
tion are affected by imposed constraints also far from the boundaries. For instance, in
trending media ignoring the influence of the boundary conditions may give erroneous
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conclusions on estimation of the transport process. The results of flow and solute transport
in finite domains may be not consistent with those obtained for an unbounded domain and
differences vary also with the different imposed constraints [28].

The water levels of the main drain are assigned below the ground surface (G.S) with
range 2.5–2.8 m. The two rivers were allocated with average water levels ranges between
0.5–0.8 m and below the G.S and the bed levels between 3–3.30 m below G.S. In the
first layer of the model the rate of annual recharge is assigned to 365 mm/year, while a
contaminant for untreated wastewater recharge of Chemical Oxygen Demand (COD) is
used in agricultural irrigation with a constant concentration equals to 97.4 mg/L [29].

2.3.2. Hydraulic Parameters

The previous studies and mathematical calculations are used in allocating the hy-
draulic parameters to the study area including hydraulic conductivity in horizontal and
vertical directions (Kx, Ky, Kz), specific storage (Ss), specific yield (Sy), effective porosity
(neff), total porosity (ntotal). The hydraulic parameters of the case study are presented in
Table 1.

Table 1. Hydraulic Parameters for the hypothetical case study.

Parameter
Hydraulic Conductivity

Ss
1/m

Sy
-

neff
-

ntotal
-Kx = Ky (Horizontal)

m/day
Kz (Vertical)

m/day

Value 5 0.5 27 × 10−7 0.2 20% 35%

2.3.3. Model Calibration

MODFLOW is used to simulate the groundwater flow and contamination in the
study area.

The heads of the groundwater calculated by the numerical model are presented in
Figure 3a, and the result compared with Equation (2) for calibration of groundwater heads.
The results of calibration are shown a good match between the two models as presented in
Figure 3b.

Figure 3. Head contour and model calibration.

The number of observation wells is 16 and examined in the current calibration where
the residual ranges between (−0.0012 to −0.001 m) with mean equals to −0.004 m and the
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absolute residual mean is 0.007 m; the root mean square is 0.008 m and normalized root
mean square is 13.808%.

The zone budget is shown in Figure 4a where the total Inflow is 23,430 m3/day and
Outflow is 23,482 m3/day and the difference (In-Out) is −52.01 m3/day. Figure 4b shows
the distribution of concentration for COD in the study area without abstraction from the
aquifer (base case). Where the extension at depth of screen at 25 m and 50 m reached
48.60, 19.41 ppm alternatively for selected observation well for contamination at distances
X = 1500 m, Y = 100 m.

Figure 4. Zone budget and aerial view concentration of COD in the study area (Base case).

Figure 5 presents the concentration for COD with dispersion coefficient for 0, 2, 4, 6, 8,
and 10 m, the concentration reached 55.94, 54.09, 52.48, 51.06, 49.77, and 48.60 ppm. The results
showed that the contamination has decreased with increasing the dispersion coefficient.

Figure 5. Relationship between COD concentration and dispersion coefficient.
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The results are accepted by results of other studies (Badaruddin et al. (2015) [30]. A
number of scenarios were performed to investigate the effect of using untreated wastewater
in irrigation, including four scenarios by increasing abstraction rates (scenario 1), increasing
recharge rates (scenario 2), combination between these scenarios (scenario 3), and mixing
untreated wastewater with treated wastewater (scenario 4) which are presented in Table 2,
also the different values of pumping rate (Qpump), recharge (R), combination, and mixing
are presented in Table 2. The management scenario is necessary for the protection of
freshwater body in arid and semi-arid regions where the water resources are limited,
and the groundwater is the main source for water supply in these areas. Therefore, this
required to mixing the freshwater by treatment with wastewater using different percentage
of mixing.

Table 2. Proposed scenarios for untreated wastewater with mixing by treated wastewater.

Stage Type Scenario No. Qpump m3/d
R mm/year C ppm % of Mixing

Untreated
Wastewater

Treated
Wastewater

Untreated
Wastewater

Treated
Wastewater Mix

Base 1 2160 365 0 97.40 0 0 0

Investigation
(I)

(I1) Aquifer
pumping rates

(Qpump)

2 2592

365 0 97.40 0 0 0
3 3024
4 3456
5 3888
6 4320

(I2) Untreated
wastewater (R)

7

2160

401.50

0 97.40 0 0 0
8 438
9 474.50
10 511
11 547.50

(I3)
Combination

12 2592 401.50

0 97.40 0 0 0
13 3024 438
14 3456 474.50
15 3888 511
16 4320 547.50

Management
(M)

(M1) Mixing

17

4320

492.75 54.75

97.40 52.98

93 61.80
18 438 109.50 88.52 58.86
19 383.25 164.25 84.14 55.95
20 328.50 219 79.70 52.99
21 273.75 273.75 75.19 50

3. Results

The different scenarios of untreated wastewater and freshwater were considered in
the current study including four scenarios, the first is pumping rate (Qpump), the second is
wastewater recharge rates (R), the third is combination, and the fourth is mixing untreated
wastewater with freshwater (treated wastewater).

3.1. Investigation of Groundwater Contamination
3.1.1. Effect of Increasing Pumping Rates

In this scenario, the impact of over pumping rates (Qpump) on groundwater quality are
studied using five values of 2592, 3024, 3456, 3888, and 4320 m3/d due to over population
and shortage in freshwater resources, while the recharge and the wastewater concentration
were remained constant by 365 mm/year and 97.4 ppm, respectively. Figure 6 shows
the distribution of contaminant COD through the study area. The results showed that
over pumping rates led to increase the distribution of COD in the groundwater and the
concentration reached 52.37, 57.29, 62.52, 68.42, and 74.49 ppm at depth 25 m and reached
21.5, 24.14, 26.66, 30.73, and 38.13 ppm at a depth of 50 m for the different pumping rates
(see Figures 10a and 11). This stage indicated that over pumping must be optimized to
protect groundwater quality for agriculture and drinking water.
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Figure 6. The distribution of COD in groundwater contamination for different pumping rates.

3.1.2. Effect of Increasing Wastewater Recharge Rates

In this scenario, the effect of increasing wastewater recharge rates (R) on the contami-
nation of the groundwater due to the shortage of surface water. Five values of recharge
rates are examined including 401.5, 438, 474.5, 511, and 547.5 mm/year while pumping
rate and the wastewater concentration were remained constant at 2160 m3/d and 97.4 ppm,
respectively. The distribution of contaminates through the current study area is presented
in Figure 7. The contamination reached to 52.73, 56.02, 59.29, 62.8, and 65.65 ppm at depth
25 m and 22.27, 24.6, 27.53, 30.73, and 32.7 ppm at a depth of 50 m (see Figures 10b and 11).
The results of this scenario illustrated that with high rates of wastewater recharge rates
led to increase the distribution of COD in groundwater contamination; moreover, using
large quantities of untreated wastewater in agricultural must be managed to protect the
groundwater contamination.

3.1.3. Effect of Combination

In this scenario, in the combination case the pumping rates increased by 20, 40, 60,
80, and 100% to be 2592, 3024, 3456, 3888, and 4320 m3/d while the untreated wastewater
recharge rates were increased by 10, 20, 30, 40, and 50% to be 401.5, 438, 474.5, 511,
and 547.5 mm/year at concentration COD of 97.4 ppm. The contamination results for
groundwater reached 56.60, 65.53, 72.55, 79.48, and 85.70 ppm at a depth of 25 m and
reached 24.79, 30.59, 36.51, 44.54, and 56.06 ppm at a depth of 50 m. The distribution of
the contamination is shown in Figure 8. Additionally, increase of the abstraction with
untreated wastewater recharge rates contribute the increase of aquifer contamination (see
Figures 10c and 11).
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3.2. Protection of Groundwater from Using Untreated Wastewater

In this scenario, management of groundwater contamination from using the untreated
wastewater in agricultural is applied by mixing it with freshwater. The untreated wastew-
ater recharge rates are decreased by 10, 20, 30, 40, and 50% to reach 492.75, 438, 383.25,
328.5, and 273.75 mm/year with constant concentration of 97.4 ppm, while the freshwater
recharge rates are increased to reach 54.75, 109.5, 164.25, 219, and 273.75 mm/year with con-
centration of 52.98 ppm [19], where the sum of the total recharge is constant 547.5 mm/year
and the pumping rates were remained constant 4320 m3/d. The change in concentration
reached 93, 88.52, 84.14, 79.7, and 75.19 ppm by mixing with freshwater by 10, 20, 30, 40,
and 50% from untreated wastewater. Using the principle of salt mass balance to estimate
the concentration of irrigation water after mixing with freshwater and the equation is as
following [31]:

(Mass flow rate of pollutants) in = (Mass flow rate of pollutants) out

QW × Cw + Qus × Cus = Qds × Cds (4)

where: Qw: Wastewater flow rate (m3/d), Cw: concentration of a pollutant (ppm), Qus:
stream flow rate (m3/d), Cus: concentration of the pollutant (ppm), Qds: downstream flow
rate m3/d, and Cds: concentration of the mix after discharge (ppm).

Figure 9 shows the distribution of contaminate through this study area for different
values of COD and the contamination reached 81.82, 77.88, 74.03, 70.12, and 66.15 ppm
at a depth of 25 m and 53.53, 50.95, 48.43, 45.87, and 43.28 ppm at a depth of 50 m.
Figures 10d and 11 show that decreasing of wastewater concentration with using the fresh-
water by treated wastewater led to decrease the distribution of COD in groundwater.
Construction of wastewater treatment plants must be extended to decrease the use of
untreated wastewater and increase the freshwater to improve the irrigation and drinking
water quality and protect the groundwater aquifer from contamination.

Figure 9. The distribution of COD in groundwater contamination for using different rates of treated wastewater recharge rates.
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Figure 10. Relation between COD concentrations at different depths and (a) pumping rates, (b) recharge rates, (c) pumping
with recharge rates, and (d) treated wastewater recharge rates.

Figure 11. Comparison between the proposed scenarios 1, 2, 3 and 4 for COD concentrations.
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4. Discussion

Using untreated and treated wastewater in arid and semi-arid regions is considered an
attempt to overcome the shortage of water resources in these areas. Results of current study
for the COD concentration at 25 and 50 m depths for different scenario are summarized
in Table 3. Figure 11 shows the distribution of COD concentration in the aquifer, which
reached 52.37, 57.29, 62.52, 68.42, and 74.49 ppm at a depth of 25 m and reached 21.5, 24.14,
26.66, 30.73, and 38.13 ppm at a depth of 50 m by using different pumping rates (Qpump) of
2592, 3024, 3456, 3888, and 4320 m3/d compared with 2160 m3/d at base case. The results
are consistent with Abd-Elhamid et al. [19] who approved that increasing pumping rates
led to increase the aquifer contamination. Additionally, Figure 11 shows the increasing of
the wastewater recharge rates (R) to 401.5, 438, 474.5, 511, and 547.5 mm/year compare
with 365 mm/year at base case led to increase the COD distribution in aquifer to 52.73,
56.02, 59.29, 62.8, and 65.65 ppm at a depth of 25 m and 22.27, 24.6, 27.53, 30.73, and
32.7 ppm at a depth of 50 m. These findings according to Abd-Elaty et al. [21] who studied
the effect of increasing fertilizers concentration and combination of pumping rates with
fertilizer rates led to increase aquifer contamination. Applying different pumping rates
with increasing wastewater recharge rates as in the combination case increased COD in
groundwater to 56.60, 65.53, 72.55, 79.48, and 85.70 ppm at a depth of 25 m and reached
24.79, 30.59, 36.51, 44.54, and 56.06 ppm at a depth of 50 m as shown in Figure 11. Finally,
as an attempt to protect the groundwater from using untreated wastewater in irrigation,
it was mixed with treated wastewater to reduce the concentration of COD to 93, 88.52,
84.14, 79.7, and 75.19 ppm. The distribution of groundwater contaminant reached 81.82,
77.88, 74.03, 70.12, and 66.15 ppm at a depth of 25 m and 53.53, 50.95, 48.43, 45.87, and
43.28 ppm at a depth of 50 m shown in Figure 11. This agrees with Abd-Elaty et al. [23] who
studied the mitigation of polluted stream by mixing with treated domestic and industrial
wastewater can decrease the polluted load in the streams, which could be used in irrigation
and protect the ground water quality.

Table 3. Results of COD concentration at 25 and 50 m depths for different scenario.

Stage Type Scenario No COD Concentration
in ppm at 25 m

COD Concentration
in ppm at 50 m

Base case 1 48.6 19.41

Aquifer pumping rate
(Qpump)

2 52.37 21.5
3 57.29 24.14
4 62.52 26.66
5 68.42 30.73
6 74.49 38.13

Untreated wastewater
(R)

7 52.73 22.27
8 56.02 24.6
9 59.29 27.53
10 62.8 30.37
11 65.65 32.7

combination

12 56.60 27.79
13 65.53 30.59
14 72.55 36.51
15 79.48 44.54
16 85.70 56.06

mixing

17 81.82 53.53
18 77.88 50.95
19 74.03 48.43
20 70.12 45.87
21 66.15 43.28

Figures 10a and 11 show the results through a liner relation between increasing
pumping rates and the concentration of COD at two depths at 25 and 50 m. The pump-
ing rates ranged between 2160–4320 m3/d and the COD concentration ranged between
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52.37–74.49 ppm for a depth of 25 m and decreased for a depth of 50 m to range between
21.5–38.13 ppm. Additionally, Figures 10b and 11 show the relation between wastewater
recharge rates and the concentration of COD for two depths at 25 and 50 m in a linear
relation. Using wastewater recharge rates ranged between 365–547.5 mm/year increases
the COD concentration from 52.73 to 65.65 at a depth of 25 m and decreased for a depth of
50 m to range between 22.27–32.7 ppm. Figures 10c and 11 show the combination between
increasing pumping rates and wastewater recharge rates and the COD concentration. The
combination of pumping rates ranged between 2160–4320 m3/d and wastewater recharge
rate with range between 365 and 547.5 mm/year increase the COD concentration from
56.60 to 85.70 ppm at a 25 m depth and from 27.79 to 56.06 ppm at a depth of 50 m. In
Figures 10d and 11 the relation between the treated wastewater recharge rates and the COD
concentration for two depths of 25 and 50 m. Mixing of treated wastewater recharge rate
with range from 54.75 to 273.75 mm/year decreased the COD concentration from 81.82 to
66.15 ppm at a depth of 25 m and for a depth of 50 m range from 53.53 to 43.28 mm/year.

Groundwater quality is defined as a combination of human and natural influences, and
one quality issue is monitored, such as saltwater intrusion, industrial spillage, agricultural
pesticides, etc. Among the most important quality issues worldwide are the physical
components (filtering and dispersion) and biochemical (cell synthesis) and geochemical
(oxidation–reduction, adsorption–desorption, and Ionic strength) [32].

Recharging the aquifer with water that has been treated and recycled will become
among the basic factors for strategic plans for water management, and this is a result of
water shortage. The existence of the pollutant inside the aquifer has a long-term impact
after the withdrawal; complementary treatment materials should not be added due to
recharge, which may be important to meet the standards. In order to make available
quantities of water resources and to develop the recharge of the aquifer, a distinction
must be made between aquifers that are prepared for drinking and those not prepared for
drinking [33]. Measures to protect groundwater sources must be anticipated and include
the following.

Preserving wetlands as they purify water, reducing the use of pesticides and chemicals,
paying attention to remediate dumping and spills, the appropriate design of landfills and
following up on their maintenance, selecting a suitable site for wastewater treatment
systems, follow up the maintenance of the petroleum storage sector, attempt to prevent
or stop underground injection, and trying to control pollution resulting from leaking
rainwater [33].

5. Conclusions

Shortage of freshwater supplies has contributed to the use of unconventional water
resources in scarcity regions including untreated wastewater without control in agricul-
ture. This will affect groundwater quality. The current study was carried out using the
numerical model of MT3D to investigate the impact of using raw wastewater in irrigation
under increasing the abstraction rates (scenario 1), wastewater concentration (scenario 2),
combination between (scenario 1, 2, and 3); additional management scenarios were applied
by mixing untreated wastewater with freshwater. The model was simulated using a square
hypothetical case of length and width equal 2000 m with 100 m in depth. This case study is
anisotropic and homogeneous. The result of the first scenario by increasing the abstraction
rates by 2592, 3024, 3456, 3888, and 4320 m3/d increased the contaminant to 52.37, 57.29,
62.52, 68.42, and 74.49 ppm at a depth of 25 m and 21.5, 24.14, 26.66, 30.73, and 38.13 ppm
at a depth of 50 m from the base case at 48.60 and 19.41 ppm at depths of 25 and 50 m,
respectively. The result revealed that using untreated wastewater in irrigation must be
controlled to protect groundwater quality in aquifer.

For second scenario, the results showed that increasing the wastewater recharge rates
led to increase the contamination to 52.73, 56.02, 59.29, 62.80, and 65.65 ppm at a depth of
25 m and 22.27, 24.60, 27.53, 30.37, and 32.70 ppm at a depth of 50 m at recharge rates of
401.5, 438, 474.5, 511, and 547.5 mm/year.
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The groundwater recharge by wastewater should be managed to protect the ground-
water from contamination. In the third stage combination of increasing the abstraction,
wastewater recharge rates increased the contamination to 56.60, 65.53, 72.55, 79.48, and
85.70 ppm at a depth of 25 m and 24.79, 30.59, 36.51, 44.45, and 56.06 ppm at a depth of
50 m from the base case at 48.60 and 19.41 ppm at depths of 25 and 50 m, respectively.
Finally, the scenario of protecting groundwater by mixing untreated wastewater with
treated wastewater to manage the contamination, where the contamination reached 81.82,
77.88, 74.03, 70.12, and 66.15 ppm at a depth of 25 m and 53.53, 50.95, 48.43, 45.87, and
43.28 ppm at a depth of 50 m from the base case at mixing values of 93, 88.52, 84.14, 79.7,
and 75.19 ppm. This scenario is the best for groundwater protection from using untreated
wastewater in agricultural that could be applied in these regions.

Author Contributions: Conceptualization, M.Z.; methodology, S.M.A.-E., I.A.-E., H.F.A.-E. and
G.M.A.; software, S.M.A.-E.; validation, I.A.-E. and S.M.A.-E.; formal analysis, M.Z. and Z.V.; investi-
gation, G.M.A.; resources, Z.V.; data curation, G.M.A.; writing—original draft preparation, I.A.-E.
and H.F.A.-E.; writing—review and editing, S.M.A.-E. and M.Z.; visualization, I.A.-E.; supervision,
Z.V.; project administration, H.F.A.-E. and G.M.A.; funding acquisition, Z.V. All authors have read
and agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their sincere appreciation to the Department of
Water and Water Structures Engineering, Faculty of Engineering, Zagazig University Egypt, for
the instrument and software facilities, as well as the Department of Environmental and Chemical
Engineering, University of Calabria, Ponte P. Bucci, 87036 Rende, Italy. This work is thankful to be
supported by project of the Ministry of Education of the Slovak Republic VEGA 1/0217/19 Research
of Hybrid Blue and Green Infrastructure as Active Elements of a Sponge City and the project of
Slovak Research and Development Agency APVV-18-0360 Active hybrid infrastructure towards to
sponge city.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cooley, H.; Ajami, N.; Ha, M.L.; Srinivasan, V.; Morrison, J.; Donnelly, K.; Christian-Smith, J. Global Water Governance in the

Twenty-First Century. In The World’s Water; Island Press: Washington, DC, USA, 2014; pp. 1–18.
2. Galama, A.H. Ion Exchange Membranes in Seawater Applications: Processes and Characteristics. Ph.D. Thesis, Wageningen Uni-

versity, Wageningen, The Netherlands, 2015.
3. Holden, J. (Ed.) Water Resources: An Integrated Approach; Routledge: London, UK, 2019.
4. Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [CrossRef]
5. Laud, R.; Kretinin, A.; Betts, S.C. An integrated model for large-scale social entrepreneurship: Addressing global water supply

problems. Glob. J. Entrepr. 2020, 4, 42–58.
6. Shahid, M.; Khalid, S.; Murtaza, B.; Anwar, H.; Shah, A.H.; Sardar, A.; Niazi, N.K. A critical analysis of wastewater use in

agriculture and associated health risks in Pakistan. Environ. Geochem. Health 2020, 1–20. [CrossRef]
7. Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 1–6. [CrossRef]
8. Kammoun, S.; Trabelsi, R.; Re, V.; Zouari, K.; Henchiri, J. Groundwater quality assessment in semi-arid regions using integrated

approaches: The case of Grombalia aquifer (NE Tunisia). Environ. Monit. Assess. 2018, 190, 87. [CrossRef]
9. Amer, R.; Ripperdan, R.; Wang, T.; Encarnación, J. Groundwater quality and management in arid and semi-arid regions: Case

study, Central Eastern Desert of Egypt. J. Afr. Earth Sci. 2012, 69, 13–25. [CrossRef]
10. Zhang, Y.; Shen, Y. Wastewater irrigation: Past, present, and future. Wiley Interdiscip. Rev. Water 2019, 6, e1234. [CrossRef]
11. Ungureanu, N.; Vlădut, , V.; Voicu, G. Water Scarcity and Wastewater Reuse in Crop Irrigation. Sustainability 2020, 12, 9055.

[CrossRef]
12. Tawati, F.; Risjani, Y.; Djati, M.S.; Yanuwiadi, B.; Leksono, A. The analysis of the physical and chemical properties of the water

quality in the rainy season in the Sumber Maron river Kepanjen, Malang Indonesia. Sci. World J. 2012, 3, 34–37.
13. Hashem, H.; Tayel, M.; Sabra, A.; Yacoub, M.; Heiba, A. Impact of the water quality of El-Rahawy Drain on some genetic and

histopathological aspects of Oreochromis niloticus. Egypt. J. Aquat. Biol. Fish. 2020, 24, 19–38. [CrossRef]

http://doi.org/10.3390/w12092347
http://doi.org/10.1007/s10653-020-00702-3
http://doi.org/10.1038/s41545-019-0039-9
http://doi.org/10.1007/s10661-018-6469-x
http://doi.org/10.1016/j.jafrearsci.2012.04.002
http://doi.org/10.1002/wat2.1234
http://doi.org/10.3390/su12219055
http://doi.org/10.21608/ejabf.2020.78272


Int. J. Environ. Res. Public Health 2021, 18, 7485 17 of 17

14. Al-Afify, A.D.G.; Othman, A.A.; Ramadan, M.F. Characterization of chemical and microbiological quality of Nile River surface
water at Cairo (Egypt). RENDICONTI Lince 2018, 29, 725–736. [CrossRef]

15. Jeong, H.; Kim, H.; Jang, T. Irrigation Water Quality Standards for Indirect Wastewater Reuse in Agriculture: A Contribution
toward Sustainable Wastewater Reuse in South Korea. Water 2016, 8, 169. [CrossRef]

16. Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.; Von Gunten, U.; Wehrli, B. Global Water Pollution and Human Health. Annu. Rev.
Environ. Resour. 2010, 35, 109–136. [CrossRef]

17. Contreras, J.D.; Meza, R.; Siebe, C.; Rodríguez-Dozal, S.; López-Vidal, Y.A.; Castillo-Rojas, G.; Amieva, R.I.; Solano-Gálvez, S.;
Mazari-Hiriart, M.; Silva-Magaña, M.A.; et al. Health risks from exposure to untreated wastewater used for irrigation in the
Mezquital Valley, Mexico: A 25-year update. Water Res. 2017, 123, 834–850. [CrossRef]

18. Choudri, B.; Charabi, Y.; Ahmed, M. Health Effects Associated with Wastewater Treatment, Reuse and Disposal. Water Environ.
Res. 2018, 90, 1759–1776. [CrossRef] [PubMed]

19. Abd-Elhamid, H.F.; Abdelaal, G.M.; Abd-Elaty, I.; Said, A.M. Evaluation of groundwater vulnerability to seepage from open
drains considering different pumping schemes in unconfined aquifers. In Proceedings of the Twenty-First International Water
Technology Conference IWTC21, Ismailia, Egypt, 28–30 June 2018; pp. 28–30.

20. Paruch, A.M. The impact of wastewater irrigation on the chemical quality of groundwater. Water Environ. J. 2014, 28, 502–508.
[CrossRef]

21. Abd-Elaty, I.; Pugliese, L.; Zelenakova, M.; Mesaros, P.; El Shinawi, A. Simulation-Based Solutions Reducing Soil and Groundwater
Contamination from Fertilizers in Arid and Semi-Arid Regions: Case Study the Eastern Nile Delta, Egypt. Int. J. Environ. Res.
Public Health 2020, 17, 9373. [CrossRef]

22. Abd-Elhamid, H.F.; Abdelaal, G.M.; Abd-Elaty, I.; Said, A.M. Efficiency of using different lining materials to protect groundwater
from leakage of polluted streams. J. Water Supply Res. Technol. 2019, 68, 448–459. [CrossRef]

23. Abd-Elaty, I.; Zelenakova, M.; Straface, S.; Vranayová, Z.; Abu-Hashim, M. Integrated Modelling for Groundwater Con-tamination
from Polluted Streams Using New Protection Process Techniques. Water 2019, 11, 2321. [CrossRef]

24. Dagan, G. Solute transport in heterogeneous porous formations. J. Fluid Mech. 1984, 145, 151. [CrossRef]
25. Lakshmanan, E. Numerical Simulation of Groundwater Flow and Solute Transport. 2005. Available online: https://www.

intechopen.com/books/groundwater-contaminant-and-resource-management/numerical-simulation-of-groundwater-flow-
and-solute-transport-in-a-karst-aquifer-with-conduits (accessed on 20 April 2021).

26. McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. US Geological
Survey; 1988. Available online: https://pubs.er.usgs.gov/publication/ofr83875 (accessed on 15 March 2021).

27. Javandel, I.; Doughty, C.; Tsang, C. Groundwater Transport: Handbook of Mathematical Models (No. LBL-8014175); Lawrence Berkeley
Lab: Berkeley, CA, USA, 1984.

28. Darvini, G. An example of solute spreading in nonstationary, bounded geological formations. Stoch. Environ. Res. Risk Assess.
2013, 28, 297–306. [CrossRef]

29. Hemdan, B.; Fouad, H.; Elhefny, H.; Kamel, M.M.; El-Liethy, M. Assessment of biological augmentation technology of hazardous
pollutants existing in drainage water in Bahr El-Baqar drain, Egypt. Egypt. J. Chem. 2019, 63, 6–7. [CrossRef]

30. Badaruddin, S.; Werner, A.; Morgan, L.K. Water table salinization due to seawater intrusion. Water Resour. Res. 2015, 51, 8397–8408.
[CrossRef]

31. Riffat, R. Fundamentals of Wastewater Treatment and Engineering; CRC Press: Boca Raton, FL, USA, 2012.
32. Gupta, R.; Srivastava, R.; Sardar, A.; Kanaujia, A. Impact of Cetp Effluents on Crops and Ground Water Quality of Jajmau Area,

Kanpur, Uttar Pradesh, India. Plant Arch. 2018, 18, 1603–1616.
33. Abdel-Shafy, H.I.; Kamel, A.H. Groundwater in Egypt issue: Resources, location, amount, contamination, protection, renewal,

future overview. Egypt. J. Chem. 2016, 59, 321–362.

http://doi.org/10.1007/s12210-018-0721-8
http://doi.org/10.3390/w8040169
http://doi.org/10.1146/annurev-environ-100809-125342
http://doi.org/10.1016/j.watres.2017.06.058
http://doi.org/10.2175/106143018X15289915807425
http://www.ncbi.nlm.nih.gov/pubmed/30126503
http://doi.org/10.1111/wej.12064
http://doi.org/10.3390/ijerph17249373
http://doi.org/10.2166/aqua.2019.032
http://doi.org/10.3390/w11112321
http://doi.org/10.1017/S0022112084002858
https://www.intechopen.com/books/groundwater-contaminant-and-resource-management/numerical-simulation-of-groundwater-flow-and-solute-transport-in-a-karst-aquifer-with-conduits
https://www.intechopen.com/books/groundwater-contaminant-and-resource-management/numerical-simulation-of-groundwater-flow-and-solute-transport-in-a-karst-aquifer-with-conduits
https://www.intechopen.com/books/groundwater-contaminant-and-resource-management/numerical-simulation-of-groundwater-flow-and-solute-transport-in-a-karst-aquifer-with-conduits
https://pubs.er.usgs.gov/publication/ofr83875
http://doi.org/10.1007/s00477-013-0749-3
http://doi.org/10.21608/ejchem.2019.20749.2244
http://doi.org/10.1002/2015WR017098

	Introduction 
	Materials and Methods 
	Study Area Description and Flow Domain 
	Analatical Solution 
	Numerical Model 
	Boundary Conditions 
	Hydraulic Parameters 
	Model Calibration 


	Results 
	Investigation of Groundwater Contamination 
	Effect of Increasing Pumping Rates 
	Effect of Increasing Wastewater Recharge Rates 
	Effect of Combination 

	Protection of Groundwater from Using Untreated Wastewater 

	Discussion 
	Conclusions 
	References

