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There is an emerging need of nanotools able to quantify the mechanical properties of single biological
entities. A promising approach is the measurement of the shifts of the resonant frequencies of ultrathin
cantilevers induced by the adsorption of the studied biological systems. Here, we present a detailed
theoretical analysis to calculate the resonance frequency shift induced by the mechanical stiffness of viral
nanotubes. The model accounts for the high surface-to-volume ratio featured by single biological entities,
the shape anisotropy and the interfacial adhesion. The model is applied to the case in which tobacco mosaic
virus is randomly delivered to a silicon nitride cantilever. The theoretical framework opens the door to a
novel paradigm for biological spectrometry as well as for measuring the Young’s modulus of biological
systems with minimal strains.

tis increasingly evident the intimate link between the mechanical properties of biological systems and its role

in fundamental biological processes and disease’. This link spans from the molecular scale to the tissue scale.

For example, the elasticity of cells has become a reliable indicator of cell transformation into cancerous or
metastatic cells*”. Similarly, recent reports have demonstrated the biological relevance of the mechanical prop-
erties of viruses. Viruses are able to dynamically modulate their mechanical properties in response to external
forces, so as to withstand those forces or to ease cell infection®. For instance, in the human immunodeficiency and
murine leukemia viruses, the stiffness largely decreases during the maturation process, acting as a mechanical
switch for the infection process®. Strikingly, a single point mutation in the capsid protein of some viruses can
significantly change their elasticity®. It is therefore fundamental the development of nanotools that enable the
accurate quantification of the nanomechanical properties of single biological entities with high throughput. These
tools can provide new insights on how the structural conformation, biological function, and mechanical prop-
erties of biomolecules and their hierarchical assemblies are related each other. The most prominent method to
measure the mechanical properties of biological entities has been so far nanoindentation with the cantilever/tip
assembly of an atomic force microscope (AFM)’. However, a number of challenges exist with the AFM for the
quantification of the mechanical properties. Mainly, the nanoindentation curves strongly depend on the nan-
ometer-scale geometry of the tip/sample contact, which in most of the cases cannot be controlled. Other dif-
ficulties include the contribution of the underlying substrate, the effect of adhesion, non-linear loading and the
lack of accurate theoretical models.

We envisage a novel biological spectrometry technique based on the measurement of several vibration modes
of ultrathin micro- and nanocantilevers for the identification of adsorbed biomolecules and biological systems by
two coordinates: the mass®*'' and its stiffness'. The use of ultrathin cantilevers with thickness below 100 nm is
justified to boost the stiffness effect. The proposed technology is feasible as ultrathin cantilevers can routinely be
fabricated and methods for the delivery of biological particles one by one to the resonator in vacuum have been
demonstrated’ . A key piece in this approach is a model that accounts for the effect of the stiffness of the
biological particles on the recorded jumps in the resonant frequencies. So far, the only model that accounts for this
effect assumes that the adsorbate length is much larger than its thickness and hence the adsorbate can effectively
be approximated by a thin layer on a cantilever region'>. The case of single biological entities, such as proteins and
viruses, is significantly more challenging. These objects have arbitrary shapes more complex than a simple thin
layer. Furthermore, they significantly deform when they adsorb on a surface due to the interfacial energy and their
low Young’s modulus. Moreover, a single biological object exhibits high surface-to-volume ratio, and thereby the
stress induced by the cantilever vibration can significantly be released through the deformation of its free surface.
Finally, the nanomechanical response may be anisotropic in the case of rod-like nanoobjects.

Here, we develop an analytical model for the accurate determination of the Young’s modulus of single
biological entities by using nanomechanical resonators that accounts for the high surface-to-volume ratio fea-
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Figure 1| Nanomechanical spectrometry of viral particles. (a) Schematic of the tobacco mosaic virus (TMV) on a cantilever showing the coordinate
system and dimensions used in this work. (b) Vibration mode shape, mass responsivity and stiffness responsivity of the first two vibration modes of the

cantilever.

tured by single biological entities, the shape anisotropy and the inter-
facial adhesion. In particular, we have modeled the effect of the
adsorption of tobacco mosaic virus (TMV) on a silicon nitride
cantilever.

Results and discussion

System description. Silicon nitride cantilevers were chosen because
they can be fabricated with very small thickness and very high yield"’.
However, the results presented here can be applied to any other
material. The chosen values of Young’s modulus, Poisson’s ratio
and density for the silicon nitride cantilevers are 104 GPa, 0.23
and 3187 Kg/m’, respectively'®>.The choice of TMV as biological
adsorbate is justified by several reasons. First, the analysis of whole
viruses by conventional mass spectrometry presents a number of
technical challenges that have proven difficult to overcome'*".
The measurement of the Young’s modulus and mass of intact
viruses by nanomechanical resonators can significantly contribute
to address relevant questions such as the viral variability, evolu-
tionary changes and infective potential. Second, the TMV is an
extensively studied virus by different techniques, and hence its
structure, mass and mechanical properties are well-established.
TMV is rod-shaped and is formed from approximately 2130
identical protein subunits wound in a 300-nm long helix with a
diameter of 18 nm'®"". A central hollow cylindrical core holds the
viral genome-a 6395-nucleotide strand of RNA. TMV has a
calculated molecular weight of 40.5 MDa that provides a mass
density of 880 kg/m’. The axial Young’s modulus of TMV has
been characterized by measuring the bending rigidity and radial
compression in AFM experiments'’'®. The experiments indicate
that the axial and radial Young’s moduli are of about 6 GPa and
1 GPa, respectively. Finally, since the TMV is rod-shaped, the
adsorption effect on the resonance frequencies of the micro-
cantilever depends on the rod orientation, which adds complexity,
but it also makes the study more general and applicable to biological
systems with oval and tubular shapes.

Figure 1(a) shows a schematic depiction of a TMV adsorbed on the
cantilever. The cantilever is oriented along the x axis with flexural
displacement along the z axis. The origins of the x and z axes are
situated at the clamping and at the upper cantilever surface, respect-

ively. The cantilever and TMV lengths are referred to as L and L,,. The
x-coordinate of the TMV center of mass is referred to as x, and the
angle between the longitudinal axes of the cantilever (x-axis) and the
virus is referred to as o. Our simulations indicate that the y-coord-
inate of the adsorption position plays a negligible role in the flexural
resonance frequencies, and therefore the TMV center of mass is
positioned at the cantilever longitudinal symmetry axis that corre-
sponds to y=0. The cantilever dimensions in our simulations are:
L=5 um, width b=500 nm and thickness h=50 nm.

Figure 1(b) shows the vibration shape together with the resonance
frequency responsivities to the mass and stiffness of the adsorbate for
the first two vibration modes of a cantilever based on the Euler-
Bernoulli beam theory'. The mass responsivity is negative and scales
with the vibration amplitude (higher kinetic energy), whereas the
stiffness responsivity is positive and scales with the vibration curv-
ature (higher potential energy). In the first vibration mode, the
region with highest amplitude is at the free end, which in turn exhi-
bits null curvature. Conversely, the region with highest curvature is at
the fixed end that in turn exhibits null amplitude. This property
enables the disentanglement of the mass and stiffness effects by
restricting the adsorption to the cantilever extremes'. Similarly,
for the second vibration mode, the stiffness and mass effects can be
uncoupled when adsorption occurs near the fixed or free end,
respectively. In addition, adsorption around the vibration node
induces a purely mechanical effect on the resonance frequency.

Effect of the Young’s modulus of the virus. Figure 2(a) shows the
numerical calculations by the finite element method (FEM) of the
relative resonance frequency shifts of the first two vibration modes as
a function of the adsorption position x, normalized to the cantilever
length, L, and the TMV orientation angle o. The computational
details are described in the Supplementary Materials (section S1).
In these simulations, we have tried to capture the most realistic shape
of the TMV adsorbed on the cantilever. It is known that TMV adopts
a “flattened” shape when it adsorbs on a surface as a result of the
attachment of as many protein moieties as possible to the surface to
minimize the surface and interfacial energies'®. In figure 2(a), we
have chosen a typical value for the work of adhesion of 70 mN/
m**?'. The resulting contact area and adhesion force are 7.4 X
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Figure 2| (a) FEM calculations of the relative resonance frequency shifts of the first two vibration modes as a function of the adsorption position x,
normalized to the cantilever length, L, and TMV orientation angle o.. The black dashed contour line corresponds to zero frequency shift. (b) Adsorption
position (xy) and TMV orientation () contours in the plane formed by axes that represent the fractional resonance frequency shift of the first two

modes, Afy/f; and Af,/f, when adsorption occurs near the clamping (x,/L<<0.1) for three values of the Young’s modulus of the TMV around the nominal
value. The left graph shows the FEM data and the right graph shows the analytical data calculated by the model based on the Euler-Bernoulli beam theory.

300 nm?* and 460 nN, respectively. The role of the adhesion-induced
deformation of the virus is analyzed in detail later. For the sake of
understanding and simplicity, we have assumed that the TMV
deformation during the cantilever vibration is mostly determined
by the axial Young’s modulus, 6 GPa, whereas the adhesion-
induced deformation is mostly determined by the radial Young’s
modulus, 1 GPa. The data in Fig. 2(a) shows that the absolute
value of the fractional frequency shifts induced by the TMV
adsorption are ~107*, which can be measured in air and more
precisely in vacuum®. The sign can be positive or negative
depending on the adsorption position as described above. More
interestingly, the frequency shift strongly depends on the TMV
orientation, o, when the TMV adsorbs on positions where the
stiffness effect dominates, whereas it exhibits an isotropic response
when the virus adsorbs on positions where the mass effect dominates.
The maximum frequency shift induced by the TMV stiffness is found
when the TMV is parallel to the x axis, whereas the minimum is
found close to the perpendicular orientation.

Let us now analyze the resonance frequency response in the frame-
work of the Euler-Bernoulli beam theory, and thereby delineate the
differences between this model and the FEM data. The resonance
frequency of the cantilever can be quantified by equaling the mean

f 2_ L .[V O'ijskl(s,-kéﬂdv
oA [ p(2 v+ w)dv

(1)

where u, vand w are the displacements in the x, y and z directions, o;;
and ¢ are the corresponding components of the stress and strain
tensors, respectively, p is the density and J; is the Kronecker delta.
Euler-Bernoulli beam theory exclusively takes into account the rel-
evant displacements and strains generated during the cantilever
vibration bending, i.e., the displacement w involved in the kinetic
energy term and the strain component ¢,, involved in the potential
energy, referred to as ¢ . Both parameters are related each other by,

h\ &*w
b _
gxx__(z—i_z)ﬁ (2)
If we now assume that the strain in the adsorbate is just a prolonga-
tion of the strain in the cantilever (eq. (2)), equation (1) largely
simplifies, and the fractional resonance frequency shift for small
adsorbates can be expressed as the sum of a negative term related

to the inertial effect and a positive term related to the bending stiff-
ness effect, respectively given by (Supplementary Section S2)"*?,

potential and kinetic energies per oscillation cycle, referred to as (Af”) ~_ ll//,,z(Co)ﬂ (3)
Rayleigh-Ritz method"?, Jo ) m 2 me
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Figure 3 | Strain distribution in the cantilever/TMV assembly. (a), (b). 3D and 2D colour intensity graphs of the strain component &,, when the

cantilever bends for the TMV oriented parallel and orthogonal to the cantilever, respectively. The 2D graphs are a slice in the xz plane of the region marked
in the 3D graph. (¢), (d). Cross-sections of the strain ¢, along the blue and red arrows marked in the 2D graphs shown in (a) and (b), respectively. The grey
region represents the cantilever. The model based on the Euler-Bernoulli beam theory is plotted as black dashed line. The strain is normalized by its value

at the surface of the cantilever (z=0) at x=x,, referred to as &.

de

(Afn> 1 ()dzw(co)zEava )
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where V is the volume, m is the mass, E is the Young’s modulus; the
subscripts ¢ and a denote the cantilever and the adsorbate, respect-
ively; { is the x-coordinate normalized by the beam length (L),

thereby {, = x—;; ¥, and f3,, are the vibration shape (eigenfunctions)

and eigenvalues of the n" mode obtained from the solution of the
Euler-Bernoulli beam equation' (Supplementary Section S2),
respectively. The eigenfunctions are normalized so that

1
J ¥, ({)*d¢=1. Finally, p is the ratio of the second moment of area
0

per unit area of the adsorbate to that of the cantilever. The function p
is related to the shape of the adsorbate cross-section and depends on
the ratio between the adsorbate and cantilever thickness referred to
-2 and

h

as 17. For adsorbates with rectangular cross-section n=1,,. =

p is given by,

prec(’/]rec) = ; + 3’17€C + 2”]7‘862 (5)
Hereinafter, the manuscript will deal with the mechanical effect of
the virus on the cantilever eigenfrequencies. So we assume that the
virus adsorbs near the cantilever clamping where the inertial effect is
negligible. Confining biological adsorption to the clamping region
has previously been demonstrated for detection of DNA hybridiza-
tion by fabricating arrays of silicon nitride microcantilevers with
sensing gold areas alternately placed on the free and fixed cantilever

ends". The Au areas act as sensing regions as they can be selectively
bio-functionalized by means of thiol chemistry. For nanomechanical
spectrometry in vacuum, we envision the use of nanostencil-based
technology for the delivery of biological systems through the aper-
tures of a thin membrane corresponding to the free and fixed end
regions of the cantilever. This concept has been previously demon-
strated for precisely positioning nanoparticles on cantilevers®.
Figure 2(b) shows the adsorption position (x,) and TMV orienta-
tion (a) contours in the plane formed by axes that represent the
relative frequency shifts of the first two modes when adsorption

occurs near the clamping (% =0.1). The left graph shows the FEM

data, whereas the right graph shows the data of the model based on
the Euler-Bernoulli beam theory (eqns. (3) and (4)), referred to as
E-B model henceforth. The figure shows the contours for three values
of the Young’s modulus of the TMV around the nominal value. The
FEM data show that the resonance frequency shifts strongly depend
on the TMV orientation with respect to the cantilever, being max-
imal when the TMV axis is parallel to the longitudinal cantilever axis
and minimal when the axes are near orthogonal. The anisotropy in
the mechanical response prevents the uncoupling of the Young’s
modulus, adsorption position, and orientation of TMV by measuring
the first two vibration modes. The determination of the stiffness of
non isotropic adsorbates thus requires of the measurement of at least
three vibration modes. This issue will be analyzed elsewhere. The E-B
model fails in the prediction of the resonance frequency responses;
firstly it provides resonance frequency shifts significantly higher than
the FEM values, and secondly the predicted dependence on the TMV
orientation is negligible, whereas the FEM simulations show a huge
dependence on «. Thus, the resonance frequencies predicted by the
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E-B model are 15-20% higher than the FEM values for «=0, and
about 12 times higher for «=90 deg.

Strain distribution in the adsorbate. To get insight into the origin of
the discrepancy between the E-B model and the FEM data, we
examine the strain distribution in the virus. For the sake of
understanding, we approximate, in the FEM simulations, the TMV
cross-section to a square with the same area than that of the TMV.
Figures 3(a) and 3(b) show the distribution of the strain component
&xx in the TMV and near cantilever region when the cantilever is
subject to flexural bending for «=0 and «=90 deg, respectively.
Figures 3(c) and 3(d) show the strain versus z at the middle of the
TMV (x=x,) and near the TMV edge, for «=0 and a=90 deg,
respectively. The strain has been normalized by its value at the top
surface of the cantilever (z=0) at x=x,, referred to as &y. We find that
the strain in the cantilever increases linearly with the coordinate z
following the Euler-Bernoulli beam theory (equation (2), black
dashed line in Figs. 3(c) and 3(d)). For o=0, this increase
continues in most of the adsorbate with the same slope except near
the edges, where the strain follows a non-linear behavior,
approximating to zero as z approaches to the upper corners of the
TMV. For a=90, the effect of the adsorbate edges is dominant, and
the strain ¢,, is much smaller than that predicted by equation (2).
To understand this behavior, it is useful to analyze the energy costs
associated to each deformation process in the adsorbate. On one
hand, the cantilever flexural bending exerts a stress on the bottom

0 0.5 1
e . s

15 o
Previous model

side of the adsorbate. The elastic energy associated to this process is
minimized when the adsorbate deforms following the cantilever
bending strain, i.e., following eq. (2). On the other hand, from equi-
librium conditions, we know that the normal component of the
strain at the surface of the adsorbate must be zero because the surface
is not subject to stress. The elastic energy associated to this process
makes that the strain tends to zero within the adsorbate. As demon-
strated below, the contribution of both mechanisms to the elastic
energy is parameterized by the ratio of adsorbate length in the can-
tilever stress direction, referred to as Ax, to the adsorbate thickness.
Ax
Thus for h_>>1 (Figs. 3(a) and 3(c)), the most important contri-
a
bution to the strain is that induced by the cantilever bending
Ax
W ~1 (Figs. 3(b) and 3(d)),
a
the free surface effect of the adsorbate is dominant, and thereby the
strain tends to zero with the distance to the cantilever.

described by eq. (2). Conversely, for

Analytical model for the strains in an adsorbate with rectangular
cross-section. We start by developing a theoretical model to predict
the effect of the stiffness of a parallelepiped on the resonance
frequencies of the cantilever. The length, width and height of the
parallelepiped are L,, b, and h,, respectively. Later, we will adapt
the model to account for the real shape adopted by the adsorbed
TMV. We assume some simplifications in order to keep the
equations as simple as possible without significant loss of accuracy.

-1 -0.5
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./
sz 8z(x,D
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Figure 4 | Distribution of the strains &, (left) and &, (right) in the adsorbate in the plane y=0. The adsorbate length is that of the TMV, and the

adsorbate cross-section is a square with the same area than the TMV cross-section. The adsorbate long axis is parallel to the cantilever longitudinal axis.
Top graphs show the strains assumed in the E-B model. Middle graphs show the strains obtained in the FEM simulations. Bottom graphs, labeled as new
model, are obtained by the zero-order term in the series given by equations (9) and (10). The strains are normalized by ¢, at the surface of the cantilever

(z=0) at x=x,, referred to as &,.
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First, the out-of-plane displacement, w, does not depend on z, so
&,;>~0. Second, the parallelepiped is oriented parallel to the
longitudinal cantilever axis, i.e., «=0. Later, we extend the model
for an arbitrary orientation. Third, we neglect the Poisson ratio of
the adsorbate. The accuracy penalty of this assumption is small, and
it largely simplifies the problem, especially for arbitrary orientations
of the adsorbate (Supplementary Section S4). Fourth, the length of
the adsorbate is much smaller than the cantilever length.
Consequently, the cantilever curvature along the adsorbate can be
approximated by its value at the adsorption center, x,. Fifth, the
strain is split into two summands, the strain induced by the
cantilever bending, SZ, and the strain released through the lateral
free edges of the adsorbate, ;. The first term is well-described by

the Euler-Bernoulli beam theory, eq. (2). The calculation of the edge-
induced strain requires solving the differential equilibrium equation
in the x direction®,

Puy(x,z)  Pu(x.z)
0x? 022

where u, is the edge-induced displacement in the x direction. We
solve the differential equation (6) by the method of separation of
variables, ie., making u.(x, z) = X(x)Z(z). We then apply the
continuity and symmetry conditions to the solution. First, the
displacement solution must be continuous across the cantilever/
adsorbate interface, which implies Z(0)=0. Second, X(x) must be
an odd function about x; (this is strictly valid for adsorbates much
shorter than the cantilever). The solution that satisfies the differential
equation and the continuity and symmetry conditions is u.(x,z) ~

sinh {K(Xi\;ixo)] sin(xz). By applying the strain-displacement rela-

=0 (6)

tionships, we obtain,

o, = f;b; =C cosh {%} sin(xz) (7)
o = %iiz - %sinh {%} cos(z) (8)

where C and x are constants to be determined by the remaining
boundary conditions. The first boundary condition dictates that
the shear stress at the top free surface (z=h,) must be zero, which
(2n+1)n
2h,

We form our solution as an infinite series for n,

¢,= > " Cycosh {% 4 sin {(2”%)“ 9} (9)

=" %sinh {% x} cos {@ 3] (10)

X — X

implies xk = , where n can be zero and any positive integer.

where 9= 2= and =

a a
coordinates scaled to the adsorbate thickness. The second

boundary condition imposes zero strain on the lateral edges of the
adsorbate. This boundary condition cannot fully be reached due to
the stress exerted by the cantilever at the corners of the adsorbate in
contact with the cantilever. The corner pathology is circumvented by

relaxing the boundary condition. Thus, we impose the minimization
hy
of the functional given by J dz(e8,+¢2.)?

XX xzxoi%ﬂ'

are the longitudinal and vertical

The functional

minimization provides the coefficients C,,,

2{4(=1)"ee+ (1 +2n)n}h sech [(Hz”)“

42 /l”] 52W(XOYO)
(2n+1)m)?

C, =~
0x?

(11)

L
where 4, = h—“ describes the energy balance between the cantilever
a

bending contribution and the adsorbate free surface contribution.

We now compare the distribution of the strains predicted by our
model with those derived from the E-B model (eq. (2)), and with
the FEM data in the plane y=0 (Fig. 4). For this comparison, we
have chosen a parallelepiped with the same length than the TMV
and with a square cross-section with area equal to the cross-sec-
tional area of the TMV. The strains are normalized by &, (&, at
x=xp, and z=0). The E-B model neglects the shear strain and
assumes that the longitudinal strain in the adsorbate is a prolonga-
tion of that in the cantilever, i.e., the strain is proportional to the
coordinate z, with the same proportionality constant than in the
cantilever (eq. (2)) (Fig. 4, top graphs). However, the FEM simula-
tions demonstrate that first, the shear strain is significant near the
adsorbate edges and, second, the longitudinal strain does not follow
the bending strain of the cantilever in a region near the lateral edges
with a characteristic length given by the adsorbate thickness (Fig. 4,
middle graphs). In this region, the bending-induced strain tends to
zero as the position approaches to the lateral edges and separates
from the cantilever. In the bottom graphs of Fig. 4, we plot
the bending strain (eq. (2)) plus our formulation for the strains
induced by the lateral free edges. The series that describe the edge-
induced strains, eqns. (9) and (10), converges very quickly. The
higher the parameter /,, the higher the rate of convergence. For
Aa > 10, just only the first term is needed to achieve a root-mean
square deviation with respect to the asymptotic limit below 3%. In
the case, A, = 1, the series can be truncated at n=>5. Since 4, ~18.8
in the case discussed in Fig. 4, we only use the zero-order term in
eqns. (9) and (10) (bottom graphs).The analytical formulation pre-
sented here, shows a good agreement with the numerical simula-
tions obtained by FEM and captures the effect of the free surface of
the adsorbate. More importantly, the deviation between the new
model and the FEM simulations in the strain distribution signifi-
cantly decreases when the elastic energy stored by the adsorbate is
calculated, that in fact, it is the critical parameter to calculate the
resonance frequency.

Effect of the Poisson’s ratio of the cantilever. The bending
cantilever strain, ¢/, induces a transversal strain sf,y due to the
finite Poisson’s ratio that, in turn, induces edge-induced strains in
the adsorbate &), and &, that are described by the same equations
YW
h{l

for &7, and &, (eqns. (9) - (11)), but replacing y by ¢= , and

*w(xo,y0) . 0*w(x0, )
0x? 0y?
curvature is simply related to the longitudinal curvature through the

L ’w *w
Poisson’s ratio of the plate, —- =~ —v——-. However, the transversal
0y? 0Ox?
strain in cantilevers is constrained in a region near the clamp with a
characteristic length given by the cantilever’s width®*°. Since this is
the relevant region to measure the mechanical properties of
adsorbates, our model must account for this effect. We have
recently found an analytical solution to this problem in the
framework of the Stoney’s equation applied to cantilevers. This
model provides the following correction to our problem?®,

by

. For an unrestrained plate, the transversal

b
0,=— % zv(l —e_7’<”>3>

XX

(12)

where p(v) = 2.28 + v — 0.18+2 The transversal strain in the
cantilever due to the Poisson’s effect involves an increase of the
strain energy in the adsorbate by a factor =1 + 0,
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Figure 5| (a) Distribution of the strain &, in the TMV/cantilever system for parallel (¢=0) and transversal (2= 90 deg) orientation of the TMV with
respect to the cantilever. The 2D slices correspond to the planes x=x, and y=0for «=0and a= 90 deg, respectively. The shown three TMV cross-sections
corresponds to three loads of 75, 460 and 920 nN that give a contact width of 3.2, 7.4 and 10 nm, respectively. (b) Width of the TMV/cantilever
contact as a function of the applied load (red symbols). The Hertz model is also represented (red solid line). In the right axis, the resulting adhesion energy
derived by the Barquin’s model for adhesive contacts between compliant cylinders and a flat surface is plotted (blue dashed line).

Resonance frequency shift induced by the adsorption of a para-
llelepiped parallel to the cantilever. Now we apply the Rayleigh-Ritz
method (eq. (1)) to calculate the stiffness contribution to the
resonance frequency shift induced by the adsorbed para-
llelepiped. The total strain energy is the sum of the contributions
arising from the cantilever bending and the adsorbate edges,
respectively given by,

E
Ub=—aJ {Sb
2 Jy,

1 2 2 2 2
UEZEEEJVH {Sfcx +8§’}’ +2<8)iz +8;z )}dV

The fractional resonance frequency shift due to the stiffness effect is
then given by,

RGECEES

A,” is the potential energy of the cantilever and

—~

}dv_ (14 0,2) Prec(ec) Ea Vah? dwix) 213)
12 Prec\Mrec)EaVa dx2

(14)

10,

i (15)

A, is the vibration amplitude. Notice that in our notation, the

negative sign of the resonance frequency shift due to edge effects is
used because the adsorbate becomes “softer” as a consequence of the
stress released through the free edges. By substituting the strain
expressions (eqns. (9) - (11)) into equation (14), we obtain a
complex solution for the resonance frequency shift in terms of
infinite series. By adopting some approximations, these series
converge to simple analytical equations (Supplementary Materials,
Section S2) that, as demonstrated below, are highly accurate to
describe our problem. We therefore obtain the following equations
for the fractional frequency shift,

<%) = (146,) Prec (00K

(5), 000 {5 ] 4 O o [Pl

= (Qe(i’[,ec,ia) +06, Qe(nrecnuu))K

(16)

I}

bq
— and,

where p, = u
a

| 4:6051 | DOI: 10.1038/srep06051



()

EaSs i o

FEM

Theor

< O
=h
S

Figure 6 | Comparison between the FEM simulations and our theoretical model of the resonance frequency shift induced by the adsorption of a TMV
particle near the clamping, at 22 —0.1. The graphs show the fractional frequency shifts of the first two vibration modes as a function of the TMV
orientation angle, o, and of the ratio of the TMV/cantilever contact width to the TMV diameter that accounts for the virus/cantilever adhesion. The colour
intensity that represents the fractional frequency shift in ppm is log scaled. The grey regions correspond with negligible stiffness-induced resonance
frequency shift, in which the inertial effect is higher and induces negative frequency shift. Notice, however, that the highest negative frequency shift is
below 2 ppm. A few contour lines are plotted for ease comparison between the FEM and theory results.

B(.) = —— <3>5(n+4 2 (18)
r]rec \/E TC nrec

1 42 ’E
and K= —4% Ea “;a , is the effective adsorbate mechanical

n
stiffness relative to the cantilever.

Effect of the parallelepiped orientation. For an arbitrary orien-
tation of the adsorbate, the problem gets more complicated, as the
cantilever bending induced stress in the adsorbate is released through
all the lateral edges. To solve this problem, it is useful to change from
the cantilever coordinate system to the adsorbate coordinate system,
i.e,, the x and y axes are the longitudinal and transversal axes of the
parallelepiped, respectively. Then, a procedure similar to that used
for the case o = 0 is followed to derive the strain tensor in the
adsorbate and calculate the resonance frequencies. The derivation
is described in the Supplementary Materials (Section S3). Here, we
provide the final simple analytical equations,

(%),

K

= (Qe(nrec’)“ﬂ) + @Vzge(nrecﬂua))cos4a + (19)

(Qe(ﬂrec,ﬂa) + @vzge(’?recala))sm‘la + Xe (Hyeobasha)sin® 20

where

(1+ @V)z T
Xe(nreca“aa;”a) = 73(11%6)1'011]’1 —U, ) —
Zﬂ,ua (4 ) (20)

(0]
7‘/ {Qe(’/’rec’;m) + Qe(nrecnua)}

It is noteworthy to notice from the above equations that the aniso-
tropy in the resonance frequency response to the stiffness of the
adsorbate arises from the effect of the free surface, whereas the
bending strain exhibits negligible dependence on the adsorbate
orientation.

Extension of the theory to the adhesive contact of a tubular nano-
structure and a cantilever. The developed model for adsorbates that
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are rectangular in cross-section is used as starting point for obtaining
a formulation for viral nanotubes such as the TMV. This goal poses a
formidable challenge because, first, the undeformed cross-section of
the virus is circular, which implies that the stress can be released
through all the free surface of the adsorbate; and second, the TMV
structure deforms due to the adhesion interactions with the
cantilever. In order to simulate the virus deformation, the FEM
calculations where performed in two steps, first the virus was
virtually deposited on an infinitely rigid support and was subject to
a uniform normal force that mimics the adhesion force and second,
the deformed shape was used for the calculation of the eigen-
frequencies of the cantilever. The assumption of infinitely rigid
support is justified as the cantilever Young’s modulus is more than
two orders of magnitude higher than that of the virus.

Figure 5(a) shows the bending strain distribution in the deformed
TMYV for «=0 and «=90 deg and for three different loads of 75, 460
and 920 nN, that give a contact width, referred to as 2a, 0f3.2,7.4 and
10 nm, respectively. The contact zone between the virus and the
cantilever is a strip of length, L, and width 2a. When the virus is
oriented parallel to the cantilever, the cantilever bending stress is
efficiently transmitted to most of the virus volume with little depend-
ence on the contact area. Only in a region near the virus ends with
length of the order the virus diameter, the strain decays to zero.
When the virus is transversally oriented, the stress exerted by the
cantilever along the contact width is significantly screened by the free
surface of the virus. In this case, the contact width plays a critical role,
and thereby the amount of bending strain within the adsorbate scales
up with the contact area. In figure 5(b), we plot the contact width, 2a,
as a function of the applied load (symbols). We compare the numer-
ical data with the benchmark Hertz model for the contact between a
cylinder and a solid flat surface®®(solid line). The Hertz model fits the
FEM data satisfactorily for low loads, in which the ratio between the
contact width and the virus radius is below 20%. For higher loads, the
Hertz model overestimates the numerical data. The deviation quad-
ratically increases with the load. The discrepancy arises from the fact
that Hertz theory assumes small deformations, and hence the geo-
metric nonlinearities that emerge in the deformation of compliant
cylinders are not considered. We relate the contact width to the
adhesion energy by applying the Barquins’s model that describes
the adhesive contact of a compliant cylinder on a flat surface®*
(dashed line). The adhesion energy in our simulation ranges from
5to 150 mN/m that are the typical values found when the interaction
between the virus and the cantilever is dominated by van der Waals
forces®'.

In order to derive the effect of the TMV stiffness on the cantilever
resonance frequency, we start with the formulation obtained for the
adsorbate with rectangular cross-section, eqns. (16) - (20). Since our
structure is a cylinder, we redefine the dimensionless aspect ratios of
the adsorbate that characterize our problem in eq. (19). First, the

L
virus thickness is parameterized by its diameter, 2R, so 4, = ﬁ and

2R
o Second, the virus deformation is

accounted by the parameter r= %. Finally, when the adsorbate is

Nrec is substituted by Neir =

transversally oriented with respect to the cantilever, the strain devel-
ops in a region of width that is of the order of the contact width (see
left graph in Fig. 5(a)). Thereby, the parameter 1, is defined as y, = r.
We start providing a solution to the resonance frequency shift

where prav(1sy 1) is the ratio of the second moment of area per
unit area of the TMV to that of the cantilever that depends on
the cross-section shape and it is described by two contributions,

3
Peir(Neiy) = 3 (4+8n,;,+5n%,), related to circular cross-section of

the undeformed virus, and Apg, that accounts for the reduction of
the second moment of area due to the virus deformation upon con-
tact. The reduction of the second moment of area arises from the fact
that the virus deforms adopting a “flattened” shape, and thereby the
center of mass of the virus approaches to the cantilever neutral axis.
The correction term due to deformation is obtained by fitting the
second moment of area obtained by FEM with a second order poly-
nomial in #;, and 7,

Apd@f = 7‘(067 + 0'8917cir);7£ir + r.2 (082 + 0'651151'7)’76# (22)

The derivation of the resonance frequency shift induced by the effect
of the TMV free surface starts with the functional form obtained for
the adsorbate with rectangular cross-section but modified with the
dimensionless parameter that characterize the TMV described
above,

(Afn)e )

( X ﬂczr’ as’ +@ Q (I/Icirnua’r))cosAa"'
. (23a)
( 4 nur’ ast +@ Q (”cir’/‘u’r))Sin o+
Q

xy(nci,,ﬂa,r)sin 20

Qx(ncir’/lﬂ’r) =

Bx(”cir’r) tanh PTMV(r]cir’r))'a (23b)
/lﬂ Bx(’?mﬁ)

B,(n, )
Q}’(”cirﬂ') = y(i/’arar) tanh |:pTMV(7]C",r) 1’:| (23(:)
r B)’(”cir’r)
: 1+0,)’ -
Qg (Neiystast) = % By (1g.or)tanh (Z r) -
(23d)

0,
7 {Qx(nciwimr) + ‘Qy(r’cir’r) }

Notice that the function B(n,..) obtained for the case of the par-
allelepiped is here split into three different functions for each angular
coefficient, By(Hcip» 1), By(Heirs 1) and By, (., 1), respectively. This
assumption arises from the higher complexity of the strain behavior
in a deformed cylinder in comparison with that in a parallelepiped.
The edge-induced strain problem for a parallelepiped is the same for
transversal and longitudinal orientations with respect to the can-
tilever, as the cross-sections in both orientations are rectangular. In
the case of a cylinder parallel to the cantilever, the edge-induced
strain problem is similar to that of parallelepiped as the cylinder
can be divided in longitudinal rectangular cross-sections. When
the cylinder is oriented perpendicularly to the cantilever, the prob-
lem is radically different as the bending strain can be released in all
the radial directions through the circular-like periphery of the virus.
We express the functions B,, B, and B, as second-order polynomials
in 5, and r. The polynomial coefficients are evaluated by performing
a non-linear least-squares fit with the FEM data,

induced by the cantilever bending using the functional form found By (1,,.r) =4.59411.36 5, +5 1, —

for the case of the adsorbate with rectangular cross-section (eq.(16)), o . o

(Af” (3.76 +20.691,;, — 3.96n,;, ) r+ (24a)
T) o 2),2
b~ (1+@v2)PTMV(’7cirJ’): (1—|—@v2) (21) (18'62’7m 18.091,;, )r
K

{Ptir(ncir) - Apdef (”cir’r) } By(V]a-,,T’) = By(’7cir) =1.72+4.05n, + 4'7117cir2 (24b)
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By (.iyo7) =2.55+6.191, +2.04n,,;,” +

(0.88—5.181,;, +4.7n,,° ) r — (24c¢)

(1.87—3.28n,,+9.87n,;,°)1*

In figure 6, we plot the fractional frequency shifts of the first two
vibration modes obtained by FEM simulations and our theoretical

model when a TMV is adsorbed near the clamp, %0 =0.1 as a func-

tion of the relative contact width (r) and the TMV orientation (o).
The plotted data demonstrate that the proposed simple analytical
model not only captures the physics of the problem, but also
remarkably fits the FEM simulations with high accuracy. In fact,
the mean deviation between the analytical formulation and the FEM
results is below 4%. For both vibration modes, the higher resonance
frequency shifts are achieved when the TMV’s orientation
approaches the parallel configuration with the cantilever. For small
values of «, the effect of the interfacial energy between the TMV and
the cantilever is very small. However, this is not the case for values
of o > 60 deg, in which the resonance frequency shift significantly
increases with the contact’s width. We find a critical angle that
corresponds with null stiffness-induced resonance frequency shift
for null contact’s width. At this critical angle, we find the highest
dependence of the resonance frequency shift on the contact’s width.
In Fig. 6, the critical angle is o = 70 deg, which significantly differs
from 90 deg, the value that one may intuitively think at which the
mechanical coupling between the cantilever and the virus is min-
imum. This intuition is correct when the Poisson ratio of the can-
tilever is zero, as the cantilever only induces strain in the x-direction
during the flexural vibration, and if the TMVs is transversally
oriented, the amount of stress transmitted to the virus scales up
with the contact’s width as observed in Fig. 5, being zero for null
adhesion. However, if the Poisson’s ratio is not zero for o = 90 deg,
even for null adhesion, the cantilever transversal strain due to the
Poisson’s effect induces stress along the transversal contact line, and
hence the cantilever experiences ‘mechanical impedance’. This effect
shifts the critical angle to lower angles, in which the vibration and
corresponding Poisson effect induced stresses cancel out each other
within the virus.

Conclusions

Here, we have presented a detailed theoretical analysis to calculate
the resonance frequency shift in microcantilevers induced by the
mechanical stiffness of adsorbed viral nanotubes. The model
accounts for the high surface-to-volume ratio featured by single
biological entities that significantly ‘screens’ the elastic energy within
the adsorbate, the anisotropy in the response due to the rod-like
shape and the interfacial adhesion that influences on the mechanical
coupling between the cantilever and the biological particle. The
developed theoretical framework provides simple analytical equa-
tions for complex adsorbate-nanocantilever scenarios that are highly
accurate when compared with finite element simulations. The model
has been applied to the case in which tobacco mosaic virus is ran-
domly delivered to a silicon nitride cantilever. However, the theory
can be easily adapted to nanomechanical resonators with different
geometries (e.g., doubly clamped beams and drums), and biological
entities with different shapes. The theoretical framework opens the
door to a novel paradigm for biological spectrometry as well as for
measuring the Young’s modulus of biological systems with minimal
strains. We envision that the mass, position and orientation-depend-
ent stiffness can be obtained by tracking the frequency of multiple
vibration modes and solving the inverse problem®'*"". In addition,
the implementation of imaging techniques that can approximately
resolve the position of the adsorbate on the cantilever can simplify

the problem and reduce the error in the calculations® .
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