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The Genome-Wide Interaction Network of Nutrient Stress Genes in
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ABSTRACT Conventional efforts to describe essential genes in bacteria have typically emphasized nutrient-rich growth conditions.
Of note, however, are the set of genes that become essential when bacteria are grown under nutrient stress. For example, more than 100
genes become indispensable when the model bacterium Escherichia coli is grown on nutrient-limited media, and many of these nutri-
ent stress genes have also been shown to be important for the growth of various bacterial pathogens in vivo. To better understand the
genetic network that underpins nutrient stress in E. coli, we performed a genome-scale cross of strains harboring deletions in some 82
nutrient stress genes with the entire E. coli gene deletion collection (Keio) to create 315,400 double deletion mutants. An analysis of the
growth of the resulting strains on rich microbiological media revealed an average of 23 synthetic sick or lethal genetic interactions for
each nutrient stress gene, suggesting that the network defining nutrient stress is surprisingly complex. A vast majority of these interac-
tions involved genes of unknown function or genes of unrelated pathways. The most profound synthetic lethal interactions were be-
tween nutrient acquisition and biosynthesis. Further, the interaction map reveals remarkable metabolic robustness in E. coli through
pathway redundancies. In all, the genetic interaction network provides a powerful tool to mine and identify missing links in nutrient
synthesis and to further characterize genes of unknown function in E. coli. Moreover, understanding of bacterial growth under nutri-
ent stress could aid in the development of novel antibiotic discovery platforms.

IMPORTANCE With the rise of antibiotic drug resistance, there is an urgent need for new antibacterial drugs. Here, we studied a

group of genes that are essential for the growth of Escherichia coli under nutrient limitation, culture conditions that arguably
better represent nutrient availability during an infection than rich microbiological media. Indeed, many such nutrient stress
genes are essential for infection in a variety of pathogens. Thus, the respective proteins represent a pool of potential new targets
for antibacterial drugs that have been largely unexplored. We have created all possible double deletion mutants through a ge-
netic cross of nutrient stress genes and the E. coli deletion collection. An analysis of the growth of the resulting clones on rich
media revealed a robust, dense, and complex network for nutrient acquisition and biosynthesis. Importantly, our data reveal
new genetic connections to guide innovative approaches for the development of new antibacterial compounds targeting bacteria

under nutrient stress.
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he genome of Escherichia coli K-12 contains about 4,300 genes,

but only 303 of these are considered to be essential (1, 2).
Essential genes are conventionally defined as those required for
growth under optimal conditions, and in E. coli, they are well
documented (1, 3). Essentiality is, however, highly dependent on
genetic and environmental context.

Even within the set of conventional essential genes, there are
some that do not encode typical housekeeping functions and can
be deleted in the right genetic context (4). Toxin-antitoxin system
genes, for example, encode both lethal toxins and antitoxins to
prevent self-intoxication (5). Here, the antitoxin gene has an es-
sential phenotype but becomes dispensable in a strain where the
toxin gene has been deleted. This type of genetic interaction is a
synthetic viable interaction (6). Alternatively, synthetic lethal in-
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teractions occur when the combined deletion of two otherwise
dispensable genes leads to a nonviable phenotype (7). For in-
stance, parallel chaperone pathways in the periplasm, encoded by
surA and skp and degP, carry outer membrane proteins to the
outer membrane of E. coli (8). Deletion of either gene produces
perfectly viable cells, while deletion of both is lethal. Other exam-
ples of synthetic lethality are found in various aspects of bacterial
physiology such as DNA damage and repair (9), cell division (10),
outer membrane biogenesis (11), and metabolism (12). Itis worth
noting that synthetic interactions often involve genes that are not
linked on the chromosome and that are not related to each other.
Overall, these examples highlight instances where gene essentiality
is highly dependent on genetic context.

The growth environment also affects gene dispensability. In-
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deed, scores of genes resident in common bacterial pathogens are
essential for infection in vivo but are dispensable when cultured in
vitro (13-17). Furthermore, when E. coli is grown in nutrient-
limited media, more than 100 genes become essential (1, 18, 19),
principally those required for the synthesis of amino acids, vita-
mins, and nucleobases. Interestingly, the sets of in vivo essential
and nutrient stress genes show considerable overlap (13, 16, 17).
Ofnote, Jorth et al. (16) recently probed genes involved in metab-
olism during the infection process and found that many nutrient
stress genes, involved in biotin, pantothenate, glycine, and ty-
rosine metabolism among others, contribute to pathogen fitness
in vivo. Moreover, for the pathogen Mycobacterium tuberculosis,
the synthesis of certain vitamins is crucial for the establishment of
an infection (13, 20), and this has prompted several groups to look
for inhibitors of biotin and pantothenate biosynthesis (21).

In all, the environmental context of nutrient stress may well be
a better proxy for the conditions during an infection than rich
microbiological media. Naturally, this expands the list of potential
targets for antimicrobial therapies and facilitates whole-cell
screening and target discovery platforms that make use of sup-
pression by nutrients (22, 23). These efforts are helped by many
decades of study of bacterial physiology that have yielded an ex-
tensive understanding of individual enzymes and their biosyn-
thetic pathways. Nevertheless, relatively little is known about the
interactions of nutrient stress genes and their connections more
broadly to functions encoded in that fraction of the genome that is
not conventionally associated with nutrient stress. For example,
the mechanistic basis for the synergistic interaction between trim-
ethoprim and sulfamethoxazole, a synergistic antibiotic combina-
tion that impinges on folate biosynthesis and has been widely used
for decades, remains poorly understood (24). Indeed, genetic net-
works that underpin nutrient biosynthesis in bacteria have largely
not been probed thus far. Here, we describe an effort to cross the
set of genes necessary for the growth of the model microbe E. coli
on nutrient-limited media with all mutants in the comprehensive
gene deletion collection (Keio) (1). We have analyzed growth of
the resulting double deletion mutants on rich microbiological me-
dia, allowing us to identify hitherto unknown connections in bio-
synthesis pathways and to link functions to previously uncharac-
terized genes. Our data highlight a surprising number and density
of genetic interactions inherent in nutrient biosynthesis, includ-
ing important redundancy to buffer perturbations associated with
nutrient stress.

RESULTS

Synthetic genetic array of nutrient stress genes. In E. coli, 119
genes become essential when cells are grown in nutrient-limited
media. In order to better understand gene essentiality during nu-
trient stress, we crossed bacteria with single gene deletions of these
119 genes with mutants in the genome-scale single deletion set
(Keio) using synthetic genetic array methodology (25, 26). The
approach relies on the high-throughput engineering of double
deletion mutants by bacterial conjugation, where a query gene
deletion is combined with every single gene deletion mutant in
the Keio collection (see Fig. S1 in the supplemental material). We
conducted the conjugation on plates containing 1,536 colonies
and transferred each colony in quadruplicate onto the selection
plates to obtain 6,144 colonies per plate (Fig. 1A and Fig. S1).
Finally, we monitored the growth of every double deletion mutant
over 18 h using the method of French et al. (27).
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Our synthetic genetic array analysis was performed in biolog-
ical duplicates. The data were of high quality as evidenced by the
correlation of replicates (Fig. 1B). Synthetic genetic arrays give
information about synthetic sick/lethal gene pairs that are defined
by a growth defect that is worse than what is expected from the
accumulation of the single deletions alone. Such interactions are
defined by the so-called multiplicative rule (7, 28), where the ex-
pected growth is the product of the growth defects seen for the
individual genes. As an example, argA and artM formed a syn-
thetic lethal pair, as the relative growth of the double deletion
mutants was significantly less than the expected growth (Fig. 1C).
As also noted previously by others using synthetic genetic arrays
(25, 26), we have observed a significant effect of the distance be-
tween the position of the query gene deletion and the Keio dele-
tion on the growth of the double mutant. Indeed, ordering the
Keio clones according to their position on the chromosome cre-
ated a dip in the index plot around the position of the query
deletion (Fig. 1D). This dip is thought to be an artifact of the
recombination process. In the case of closely linked genes, it is
possible that the efficiency of recombination was not optimal or
that the recombination event excluded the kanamycin cassette
from the recipient strain (29). To correct for this dip, we modeled
the region flanking the query gene. Symmetrical logarithmic
curves were fit to the rolling median of the data in the region of the
query gene. The data are subsequently standardized to 1, by off-
setting by the value of the fit (Fig. 1E). We confirmed the accuracy
of this novel correction method by reconstructing several double
deletion mutants from corrected regions (see Fig. S3 in the sup-
plemental material).

Other genes also affected the conjugation and recombination
processes. For instance, recA formed synthetic lethal interactions
with every query gene, likely because the recipient cells are defi-
cient for recombination (30). Furthermore, some strains with
mutations in envelope biogenesis genes, such as rfaf, fabH, wecB,
or cpxA, frequently formed synthetic sick or lethal interactions.
This may have been due to an inefficient mating procedure (31,
32). Interestingly, we have also observed that the conjugation pro-
cess was less efficient in deletion mutants displaying a morpholog-
ical defect (French et al., unpublished data).

We obtained quality data for 82 of the 119 nutrient stress genes,
spanning most pathways (Fig. 2; see Table S2 in the supplemental
material). In the remaining genes, the conjugation between the
query deletion strain and the Keio clones was not efficient, result-
ing in unreliable data that were discarded from our analysis. In
total, across 315,400 double deletion mutants, we identified 1,881
synthetic sick or lethal interactions (Fig. 2; Table S2). This corre-
sponds to an average of 23 interactions per nutrient stress gene.

Some double deletion mutants also grew better than expected
by the multiplicative rule of synthetic interactions (Fig. 2). These
mutants represent beneficial interactions where a second deletion
suppresses the growth defect of the first mutation. Many of these
beneficial interactions were generalized across the nutrient stress
genes, such as the ptsH gene or the aceE gene, while others were
more specific to different pathways. For instance, all the trypto-
phan biosynthesis genes formed a beneficial interaction with the
uncharacterized gene yhdU. Overall, beneficial interactions were
not as prevalent and as informative as synthetic sick and lethal
interactions. Therefore, we have focused our analysis herein on
synthetic sick and lethal interactions.

Each nutrient stress gene was also subjected to the metabolic
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FIG1 High-throughputarray to detect synthetic sick and lethal interactions. Shown here is an example of data from the mating of the argA deletion mutant with
strains of the E. coli (Keio) deletion collection. (A) Example of a selection plate that contains 1,536 double deletion mutants in quadruplicate to give a total of 6,144
colonies per plate. (B) Replica plot of the integrated densities of two biological duplicates of the cross of the argA deletion mutant with the Keio collection. (C)
Multiplicative approach to detect synthetic sick or lethal interactions. The growth of the single deletion and double deletion mutants are relative to that of
wild-type (WT) E. coli strain BW25113. The dotted line delineates the expected growth defect from the accumulation of the single deletions as described in detail
in Materials and Methods. (D) Index plot showing the synthetic interaction value of every double deletion mutant. (E) Correction of the dip using a rolling

median as described in Materials and Methods.

suppression array of Zlitni et al. (22) in order to define metabolic
functional similarities between the genes. The metabolite suppres-
sion array is a 96-test condition supplementation system where
cells are grown in M9 minimal medium and in the presence of
added nutrients or pools thereof to define the nature of the aux-
otrophy that is generated by the deletion or with inhibitors of
nutrient biosynthesis (see Text S1 and Table S3 in the supplemen-
tal material). The nutrient stress genes were then clustered based
on their metabolic suppression profiles. A dendrogram was gen-
erated from metabolic suppression profiles, defining seven groups
that were used to cluster the genetic interaction array (Fig. 2). This
clustering method separated amino acid biosynthesis from vita-
min and purine biosynthesis (group 6) and aromatic amino acid
biosynthesis (group 3). This method further clustered genes in-
volved in the biosynthesis of similar amino acids. Indeed,
branched-chain amino acid biosynthesis genes (group 2) and cys-
teine biosynthesis genes (group 5) were grouped together, as well
as methionine and threonine, two amino acids linked to the bio-
synthesis of homoserine (group 7). Clustering in this manner,
based on biological response rather than synthetic interaction,
allowed us to identify trends in synthetic lethal interactions be-
tween groups with similar metabolic profiles. Of note, genes en-
coding the putative Sap ABC transporter sapB, sapC, and sapD
were synthetic lethal with group 3 members, suggesting that the
Sap transporter might be involved in aromatic amino acid metab-
olism. Members of group 2 formed unique synthetic lethal inter-
actions with astDE, two genes involved in arginine catabolism
(33).
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Synthetic sick and lethal interactions were used to generate a
complex network map (Fig. 3; see Table S2 in the supplemental
material), showing high neighborhood connectivity among nutri-
ent stress genes. This was especially true within most of the indi-
vidual groupings. In fact, there were only 254 genes that interacted
uniquely with nutrient stress genes, while the remaining 1,627 had
more than one connecting edge.

Profound interactions between transport and biosynthesis.
Our gene-gene interaction data highlighted different types of in-
teractions. The first category, and by far the largest one, included
interactions with a gene of unknown mechanism. Many interac-
tions were recorded with uncharacterized genes or between unre-
lated genes. While this type of interaction is of much interest, it is
hard to predict the reason behind the observed synthetic lethality.
This emphasizes that there is much more to understand behind
the physiology of bacteria. Indeed, even in a set of genes that is
relatively well characterized such as these nutrient stress genes,
most of the observed interactions occurred with partners that
would not have been suspected otherwise. Of note, Gene Ontol-
ogy (GO) term analysis of our set of synthetic sick and lethal in-
teractions was enriched in terms related to transport, cellular met-
abolic processes, and oxidation-reduction processes, including
many NADH-dependent processes (see Fig. S4 in the supplemen-
tal material). This suggests that nutrient biosynthesis is extensively
linked to the central metabolism of the cell. Overall, our data
highlight a previously unseen complexity in nutrient metabolism.

Our data also highlighted the redundancy in the genome of
E. coli dedicated to the acquisition and synthesis of amino acids
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FIG 2 Synthetic genetic array of nutrient stress genes. Metabolite suppression profiles (left) were clustered using Ward’s least variance and used to order the synthetic
interaction profiles for 82 of the nutrient-limited essential genes (right). The dendrogram was divided to yield seven distinct groupings. These groups can be generally
simplified in biosynthesis function as amino acids, folate and pyrimidine biosynthesis (group 1), nonaromatic hydrophobic-side-chain amino acid (group 2), aromatic
amino acids (group 3), pyrimidines (group 4), cysteine (group 5), purines and vitamins (group 6), and threonine and methionine (group 7). This was done to group on
the basis of metabolic responses to nutrient limitation and look for synthetic lethal interactions common to similar suppression profiles.

and nucleotides. For instance, the biosynthesis of pantothenate is
essential during growth in nutrient-limited conditions (see Fig. S5
in the supplemental material). In our synthetic genetic array, the
genes involved in the biosynthesis of pantothenate (panB, panC,
panD, and panZ) are involved in about 100 synthetic sick or lethal
interactions. However, only four genes formed synthetic lethal
interactions with all genes involved in pantothenate biosynthesis:
recA, recC, ydhT, and panF (Fig. S5A). As indicated above, recA
and recC showed a synthetic lethal phenotype because conjuga-
tion/recombination was not efficient in these mutants. The other
two genes, panF and yhdT, overlap by 10 nucleotides, suggesting
that the deletion in yhdT likely also disrupts panF. Interestingly,
panF is the transporter for pantothenate (Fig. S5B). Therefore, the
only gene that formed synthetic lethal interactions with all panto-
thenate biosynthesis genes is the transporter panF. To confirm
that panF was specifically interacting with the pantothenate bio-
synthesis genes, we created an apramycin-resistant panF deletion
mutant that we subsequently crossed with the Keio collection. As
expected, a panF deletion mutant formed synthetic lethal interac-
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tions only with genes that affected conjugation/recombination
and with the genes involved in pantothenate biosynthesis
(Fig. S5C). Taken together, these results validate that our genetic
interaction network can identify authentic synthetic lethal inter-
actions. Furthermore, these results demonstrate that pantothe-
nate biosynthesis genes are dispensable when bacteria can acquire
pantothenate from the media but that these genes are essential
when no extracellular pantothenate is available. Pantothenate bio-
synthesis represents the first step toward the biosynthesis of coen-
zyme A, and genes involved in the further transformation of pan-
tothenate into coenzyme A are essential (34). It is, therefore, not
surprising that when bacteria lose their ability to import panto-
thenate from the extracellular media, the biosynthesis of panto-
thenate becomes essential even in nutrient-rich conditions.

We have observed this type of interaction, between biosyn-
thetic and transport genes, in other instances (Table 1). In many
cases where there are no interactions between transport and bio-
synthesis, there is usually more than one transporter that can im-
port the metabolites. For example, genes involved in leucine and
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FIG 3 Genetic interaction network for nutrient stress genes. Synthetic lethal interactions are shown here, with nutrient stress gene nodes colored according to
their groupings from Fig. 2. The three-dimensional (3D) network was generated using BioLayout Express3D (1), with nutrient stress nodes sized according to

their number of edges.

isoleucine did not interact with any transporter. Both of these
amino acids can be imported by the same branched-chain amino
acid transporter BrnQ (35), but alternate systems can also trans-
port these branched-chain amino acids (36). As such, the deletion
of a single transport gene is sometimes insufficient to render nu-
trient biosynthetic enzymes essential in rich media.

We also observed synthetic lethal interactions between pairs of
genes that are redundant and lead to the biosynthesis of the same
metabolite (Table 1). For instance, metL and thrA are involved in
the biosynthesis of methionine and threonine, respectively, con-
sistent with suppression of their growth phenotypes by these
amino acids evident in the metabolic suppression array (see Ta-
ble S3 in the supplemental material). Both enzymes possess the
same enzymatic activity and are involved in the biosynthesis of
homoserine, a precursor of methionine and threonine. The ho-
moserine biosynthesis pathway is indispensable for the growth of
E. coli on rich media, as exemplified by the fact that the asd gene
has an essential phenotype (37). Indeed, our data suggest that this
is the case, as metL and thrA formed a synthetic lethal gene pair.
Another notable interaction in this category of redundant path-
ways was the glyA gene with the genes that code for the subunits of
the glycine cleavage system (gcvPHT) or for regulators of the Gev
system (gcvA and Irp) (Table 1) (38). In the metabolite suppres-
sion assay, a glyA gene deletion was rescued by the addition of
glycine (Table S3). Interestingly, the synthetic lethality observed
was not dependent on the metabolism of glycine, but on the me-
tabolism of tetrahydrofolate. GlyA and the Gev system are the only
two pathways for the recycling of tetrahydrofolate that can pro-
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duce 5,10-methylene-tetrahydrofolate, which is required for
many other cellular reactions (12).

Our synthetic interaction data are therefore enriched in inter-
actions that correspond to redundant pathways that converge to a
single metabolite. In cases such as pantothenate, the metabolism is
rather simple, consisting of a biosynthesis pathway and a transport
protein. In other cases, however, the metabolism is more complex
and involved different redundant pathways or enzymes as well as
many transport proteins. We speculate that many of the genetic
interactions with uncharacterized genes or with genes of unrelated
pathways hold similar relationships.

Glutamine biosynthesis. While most nutrient stress genes are
clearlylinked to the biosynthesis of a particular nutrient, this is not
the case for icd and gltA. Isocitrate dehydrogenase and citrate syn-
thase, encoded by the genes icd and gltA, respectively, are two
enzymes that are part of the tricarboxylic acid (TCA) cycle. They
are the only two enzymes in the TCA cycle that are essential in
nutrient-limited conditions, even though many intermediates in
the TCA cycle are linked to amino acid biosynthesis (39). In the
metabolite suppression assay, both icd and gltA deletion mutants
are suppressed by glutamate, glutamine, or pools of metabolites
containing either glutamate or glutamine (Fig. 4A; see Table S3 in
the supplemental material). This suggested that they are involved
in glutamate and glutamine biosynthesis. In fact, Icd and GItA
enzymes are responsible for two of the first steps of the TCA cycle
that lead to the formation of 2-oxoglutarate.

We tested whether supplementing with 2-oxoglutarate would
rescue the growth of the Aicd and AgltA mutants in M9 minimal
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TABLE 1 Synthetic interactions highlighting pathway redundancy

Gene Partner Function Type(s) of interaction(s)
argA artM, artP, or artQ Subunit of arginine transporter Biosynthesis and transport
argG

aroA tyrP Tyrosine transporter Biosynthesis and transport
aroC

tyrA

panB panF Pantothenate transporter Biosynthesis and transport
panC

panD

panZ

glnA gnQ, glnP, or glnH Glutamine ABC transporter Biosynthesis and transport
icd

lysA lysP Lysine transporter Biosynthesis and transport
gltA gltI, glt], gltL, or gtk Glutamate ABC transporter Biosynthesis and transport
thrA metL Aspartate kinase/homoserine dehydrogenase Redundant enzyme

nadA pncB Nicotinate phosphoribosyltransferase Redundant pathways
nadB

nadC

glyA gevHPT Glycine cleavage system Redundant pathways

glyA gevA Glycine cleavage system activator Redundant pathways

glyA Irp Leucine-responsive transcriptional regulator Redundant pathways

medium. As hypothesized, 2-oxoglutarate rescued the growth of
the Aicd and AgltA mutants in M9 minimal medium, as did glu-
tamate (Fig. 4B). We further observed this link between early steps
of the TCA cycle and glutamate/glutamine biosynthesis in our
synthetic interaction data. Indeed, icd and gltA formed synthetic
sick or lethal interactions with genes encoding subunits of the
glutamine or glutamate transporters (Table 1). These data suggest
that the early steps of the TCA cycle participate in glutamate and
glutamine biosynthesis when their availability is reduced. With
the exception of the steps where more than one enzyme can per-
form the reaction, genes encoding components of the enzymatic
processes in glutamate and glutamine biosynthesis are essential in
nutrient-limited conditions (Fig. 4C). AcnA and AcnB are
isozymes, and thus, the deletion of one of them is not enough to
abolish the reaction. Similarly, we reasoned there must be another
enzyme that catalyzes the transformation of 2-oxoglutarate into
glutamate, since the gdhA gene is not essential for growth in M9
minimal medium. We therefore crossed a gdhA deletion mutant
with the Keio collection and analyzed the growth of the double
deletions in M9 minimal medium (see Table S2 in the supplemen-
tal material). The gdhA gene formed synthetic sick/lethal interac-
tions with gltB and gltD, the two subunits of the glutamate syn-
thase that uses glutamine to transform 2-oxoglutarate into
glutamate (Fig. 4D). Interestingly, glutamate synthase can also
utilize ammonia instead of glutamine in vitro, although with a
lower affinity (40). These data suggest that glutamate synthase can
also substitute for the loss of gdhA to convert 2-oxoglutarate into
glutamate even in the absence of glutamine.

yigM is the biotin transporter BioP. Biotin transport in E. coli
is catalyzed by an orphan transporter, where the coding gene has
not yet been identified. Indeed, biotin is actively transported in
E. coli, and this biotin transport activity has been assigned to the
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orphan protein BioP (41, 42). More than 40 years ago, the gene
encoding the biotin transporter was mapped to a location between
the ilvC and metE loci (42). Since biosynthesis genes often form
synthetic lethal interactions with transporter genes, we asked
whether it was possible to identify the gene responsible for the
biotin transport function from our synthetic genetic array per-
formed with a gene involved in the biosynthesis of biotin.

In our synthetic genetic array, bioA formed synthetic sick or
lethal interactions with three genes present between the ilvC and
metE genes: wecB, yigM, and metR (Fig. 5A and B). Of these three
genes, only yigM was a gene of unknown function. Furthermore,
only yigM is predicted to be an inner membrane protein and could
potentially be a transporter. Interestingly, the yigM gene overlaps
substantially with the metR gene (Fig. 5B). It is, therefore, likely
that the synthetic lethal phenotype of the metR-bioA pair is due to
the concomitant disruption of the yigM gene by the mefR deletion
mutant. In agreement with this hypothesis, a metR deletion mu-
tant formed a synthetic lethal interaction with bioA (see Table S2
in the supplemental material). The wecB gene, involved in the
biosynthesis of the enterobacterial common antigen, is involved
in synthetic interactions across ~25% of the synthetic genetic ar-
ray. Thus, yigM was the most likely candidate for the biotin trans-
porter.

To verify the role of the yigM gene in biotin transport, we
utilized a chemical genetic approach. MACI13772 inhibits the
growth of E. coli in M9 minimal medium by inhibiting the enzy-
matic activity of BioA, a key enzyme in biotin biosynthesis (22).
We reasoned that synthetic lethality between biosynthesis and
transport would mean that MAC13772 should inhibit the growth
of the yigM deletion mutant in rich media. As expected,
MACI13772 inhibited the growth of the yigM deletion mutant in
LB, but not that of wild-type (WT) E. coli BW25113 (Fig. 5C).
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MAC13772 also inhibited the growth of the metR deletion mutant,
further confirming that the metR deletion also disrupted the yigM
gene (see Fig. S6 in the supplemental material). Interestingly, yigM
has also been previously linked to the transport of biotin (43).
Therefore, yigM encodes the biotin transporter BioP and should
be renamed bioP.

DISCUSSION

Herein, we have defined the genetic network that responds to
nutrient stress in E. coli using a synthetic genetic array approach to
engineer a genome-scale cross of strains harboring deletions in
some 82 nutrient stress genes with the entire E. coli gene deletion
collection (Keio). An analysis of the growth of the resulting double
deletion strains on rich microbiological media revealed an average
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of 23 synthetic lethal interactions for each nutrient stress gene. A
large majority of these interactions was with genes of unknown
function or with genes that have roles in unrelated pathways, in-
dicating that the network defining nutrient stress is surprisingly
complex. In total, the genetic interaction network reported here
provides a quality data set to further mine for missing links in
nutrient synthesis and to characterize additional genes of un-
known function in E. coli. Ultimately, a better understanding of
bacterial growth under nutrient stress could aid in the develop-
ment of novel antibiotic discovery platforms. For example, the
synthetic lethal interactions described here provide a large collec-
tion of target pairs that can be further explored with a strategy
where combinations of compounds that target the nutrient stress
network might lead to growth inhibition on rich media. Further-
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more, the synthetic lethal interaction data set also has potential to
facilitate mechanism of action studies of active compounds where
idiosyncratic gene-gene interactions can be phenocopied with
chemical-gene combinations.

The network described herein revealed remarkable metabolic
robustness in the way of pathway redundancies and interactions
between nutrient acquisition and biosynthesis. Indeed, bacteria
often use more than one pathway to synthesize amino acids, nu-
cleotides, and vitamins or to acquire these metabolites from the
environment. We observed many synthetic interactions between
genes that lead to a common metabolite. These synthetic interac-
tions led us, for example, to better understand the glutamate/
glutamine biosynthesis pathway and to identify the gene respon-
sible for the transport of biotin. It is therefore probable that many
synthetic interactions with genes of unknown function or genes
from unrelated pathways hold similar relationships. Some of the
most profound synthetic lethal interactions that we have observed
were between biosynthetic and transport genes. This was the case
for the biosynthesis of arginine, tyrosine, lysine, glutamate, and
glutamine as well as vitamins. This suggests that these biosynthetic
pathways are relatively simplistic, consisting of one biosynthetic
route and one transporter, and are highly efficient. This contrasts
with other pathways, such as branched-chain amino acid metab-
olism, where many transporters and different biosynthetic routes
abound, and we found fewer such gene-gene interactions.

In bacteria, synthetic genetic arrays have typically used 384-
colony density formats (25, 26, 44). To our knowledge, our work
represents the first study describing the conjugation of bacteria at
1,536-colony density and arraying bacteria at 6,144-colony den-
sity, significantly increasing throughput of this approach. More-
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over, artifactual interactions that are a consequence of the prox-
imity of query and target gene deletions are typically dealt with by
ignoring interactions that arise within 20 to 30 kb on either side of
the target gene (26). Our analysis is capable of detecting synthetic
lethal interactions in much closer proximity to the target gene by
making use of the data in these regions with a rolling median. This
rolling median analysis accounts for lower frequencies of recom-
bination that are produced in these regions.

Recently, several groups have attempted to predict synthetic
lethal gene pairs in E. coli and other pathogens using metabolic
models (45-47), and many of the predicted interactions involve
the 82 nutrient stress genes that we have tested experimentally.
Our data have confirmed only a small number of the predicted
lethal interactions, such as the interaction of panF with the pan-
tothenate biosynthesis genes panBCD, metL with thrA, and the
interaction between the NAD biosynthesis genes nadABC and the
gene pncB from the NAD salvage pathway (45, 46). Most compu-
tationally predicted lethal interactions however did not show any
synthetic phenotype. Given the large number of interactions with
uncharacterized genes, it seems likely that, in many instances, the
metabolic models were missing key information. One of the rea-
sons for this is that metabolic models are limited by gene expres-
sion data and functional annotations, and they tend to overlook
genes that are uncharacterized or that have been misannotated.
For example, most metabolic models predict a synthetic lethal
interaction between the molybdate transporter genes modABC
and the sulfate/thiosulfate transporter genes cysAUW, since the
sulfate/thiosulfate can act as an alternate molybdate transport sys-
tem (45, 46, 48). In our synthetic array, we did not identify any
interactions between the nutrient stress gene cysU and the mod-
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ABC genes. Thus, it appears likely that molybdate transport is
redundant, with a third unidentified transporter (48). In all, we
conclude that, while metabolic models are useful for hypothesis
generation, experimental data are crucial to identify synthetic le-
thal gene pairs. Indeed, our synthetic genetic array data raise many
questions owing to an incomplete understanding of bacterial nu-
trient synthesis and represent a quality repository for computa-
tional approaches that will surely provide additional hypotheses
for experimental validation.

Current antimicrobial drugs focus almost exclusively on a lim-
ited number of processes that have proven to be essential for the
growth of bacteria in nutrient-rich conditions. Nevertheless, ad-
ditional processes such as the synthesis of amino acids, vitamins,
and nucleobases become essential when bacteria are grown in vitro
on minimal microbiological media, and a variety of in vivo studies
have suggested that nutrient stress may be a better proxy for in-
fection conditions in a host. Indeed, sulfonamide drugs that target
folate synthesis in bacteria have proven to be a very successful class
of antibiotics (49). Work many years ago out of Stocker’s labora-
tory led to an understanding that enteric bacteria lacking the abil-
ity to synthesize aromatic amino acids were avirulent and made
good vaccine strains (50). Further, a large number of in vivo ge-
netic studies of bacterial virulence have implicated nutrient bio-
synthesis as a viable antibacterial target in a variety of pathogens
(13, 51-54). Where the conventional essential gene set numbers
just 303 in the model bacterium E. coli (1), those genes that are
essential under nutrient stress (119 genes) offer the potential to
considerably broaden the target base for antibiotic discovery. Suc-
cess in targeting nutrient biosynthesis will come from a thorough
understanding of both in vivo dispensability and of the genetic
network that underpins nutrient biosynthesis in bacteria.

MATERIALS AND METHODS

Strains, gene deletions, and growth conditions. Escherichia coli strain
BW25113 [F~ A(araD-araB)567 lacZ4787A:rrnB-3 LAM™  rph-1
A(rhaD-rhaB)568 hsdR514] was used in this study for standard assays and
to create single gene deletions by replacement of the gene by an apramycin
resistance cassette. Alternatively, we used kanamycin-resistant single gene
deletions from the Keio collection, a collection of all nonessential single
gene deletions made in strain BW25113 (1). Bacteria were routinely
grown at 37°C for 18 h in LB or M9-glucose and ampicillin (100 ug/ml),
apramycin (100 ug/ml), spectinomycin (100 ug/ml), or kanamycin
(50 ug/ml) if needed and unless stated otherwise.

Single gene deletions were made by homologous recombination (55,
56). Briefly, E. coli BW25113 was first transformed with the plasmid
pSim6, containing the exo, beta, and gam genes from phage A under the
control of a temperature-sensitive promoter (55). Cells were then grown
at 30°C to an optical density at 600 nm (ODy,) of 0.8, and the expression
of the A genes was induced by a 20-min heat shock at 42°C. Finally, cells
were made competent for electroporation, transformed with PCR prod-
ucts that consist of an apramycin resistance cassette flanked by 50-bp
regions of homology to the targeted gene and plated on LB agar contain-
ing apramycin (100 pg/ml). The PCR products were generated by ampli-
fying the apramycin resistance cassette from plasmid pSET152 previously
linearized with Pcil (New England Biolabs) (57). The PCR products were
obtained using Phusion polymerase (Life Technologies, Inc.) and the
apramycin amplification primers listed in Table S1 in the supplemental
material with a melting temperature (T,,) of 65°C and 45 s of elongation
(1). Apramycin amplification primers contain a 50-bp homology region
to the target gene followed by the sequence 5'-AGCAAAAGGGGATGAT
AAGTTTATC-3' for the forward primer and the sequence 5'-TCAGCC
AATCGACTGGCGAGCGG-3" for the reverse primer. Recombinants
were confirmed by two PCRs using primers upstream and downstream of
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the targeted gene (Table S1) and primers inside the apramycin cassette
(primers F [5-CAGAGATGATCTGCTCTGCCTG-3'] and R [5'-CAGG
CAGAGCAGATCATCTCTG-3']).

Synthetic genetic interaction array. The generation of double dele-
tion mutants was achieved using synthetic genetic array technology (25,
26). Briefly, apramycin-resistant single gene deletions were first rendered
competent for conjugation using pseudo-F* E. coli strains containing a
chromosomal integrative plasmid (CIP) that contains the machinery to
allow for F conjugation (25). These CIP strains also contain a spectino-
mycin resistance cassette and are auxotrophic for diaminopimelate. There
are 20 different versions of the CIP plasmids that integrate into the ge-
nome of E. coli at 10 different positions either in the clockwise or coun-
terclockwise direction (58). To promote efficient mating, we used the CIP
strain where the integration of the plasmid was the closest to the query
gene. Overnight cultures of the apramycin-resistant deletion mutants and
the appropriate CIP strains were cospotted together on LB agar contain-
ing 0.3 mM diaminopimelate in a 1:1 ratio and incubated overnight at
37°C. Hfr strains were then recovered by transferring the culture to a new
LB agar plate containing both apramycin and spectinomycin.

To create double deletion mutants, the query mutations were trans-
ferred to every clone of the Keio collection by conjugation (see Fig. S1 in
the supplemental material). First, each Hfr apramycin-resistant strain was
arrayed at 1,536-colony density on LB agar containing apramycin using
the Singer rotor HDA (Singer Instruments, United Kingdom). In parallel,
the Keio collection was also arrayed at 1,536-colony density on LB agar
plates containing kanamycin (three plates total). Using the Singer rotor
HDA, the Hfr apramycin-resistant strain and the Keio collection from the
1,536-colony plates were then cotransferred onto LB agar plates without
antibiotic selection, and the plates were incubated overnight at 30°C. Fol-
lowing incubation, the colonies were transferred to LB agar plates con-
taining both apramycin and kanamycin to select for the double deletion
mutants. Plates were incubated at 37°C for 18 h, and images were acquired
every 20 min using high-quality scanners as previously described (27).
The antibiotic selection did not have differential fitness effects on the
different mutants (Fig. S2).

Quantitative plate imaging and analysis. Mating plates were imaged
by the method of French et al. (27), using the normalization process de-
scribed therein. Briefly, plates are scanned using Epson Perfection V750
transmissive scanners. Images were analyzed using ImageJ (59), and the
amount of light absorbed by colonies during the transmissive scanning
was quantified as integrated density, a value that tracks with cell number
in a linear manner. Full details of the image acquisition and analysis are
available in the article by French et al. (27). We further normalized our
data to account for the expected growth of the double deletion mutant,
which corresponds to the product of the growth of each single mutant
compared to the growth of the WT. The “synthetic interaction value”
(SIV) then corresponds to the ratio of the observed growth (“integrated
densities”) to the expected growth. A value of 1 indicates that the mutant
grows as expected, while a value of <1 is indicative of a synthetic sick or
lethal interaction.

As others have noted (25), we observed that the proximity between the
query gene deletion and the recipient gene deletion could create artificial
synthetic lethal interactions. This occurs because the efficiency of recom-
bination decreases when the genes are close or alternatively because the
recipient antibiotic resistance cassette is flipped out during recombina-
tion. To counter this, we first ordered the genes based on their position on
the chromosome to highlight a “dip” in the index plot and then identified
the regions flanking the query gene deletion. Logarithmic curves were fit
to the data coinciding with this “dip” on either side of the Hfr knockout
(Fig. 1). The range of the logarithmic fit was determined by first examin-
ing the rolling median across the data for each individual treatment and
then identifying when the gradual decrease in integrated density occurred.
Symmetrical logarithmic curves were fit to this region, with the gene of
interest at the cusp of the dip. Finally, the fit curves were set to 1, aligning
the points affected by the dip to the rest of the data. Once data were aligned
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to 1, this provided a more typically Gaussian distribution that allowed us
to compare treatments without artifactual synthetic lethal combinations
based solely on proximity. Synthetic sick and lethal interactions were
identified usinga 2.5 standard deviation cutoff. We also recreated mutants
with double deletions of genes in this region and confirmed the accuracy
of the rolling median correction (see Fig. S3 in the supplemental mate-
rial). Genetic interaction networks were prepared using the R statistical
computing language (60) and BioLayout Express 3D (61) by the method
of French et al. (27).

Data were also mined based on the Gene Ontology information avail-
able for synthetic lethal combinations, particularly their cellular process
targets. All synthetic lethal interactions for each gene were assigned at least
one GO term, and the number of times each GO term arose as a hit was
compiled. In this manner, we are able to identify the general targets of
synthetic crosses with the Keio collection and look for enrichment in
unexpected cell processes.
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