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Non-Hermitian route to higher-order topology in an
acoustic crystal
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Topological phases of matter are classified based on their Hermitian Hamiltonians, whose

real-valued dispersions together with orthogonal eigenstates form nontrivial topology. In the

recently discovered higher-order topological insulators (TIs), the bulk topology can even

exhibit hierarchical features, leading to topological corner states, as demonstrated in many

photonic and acoustic artificial materials. Naturally, the intrinsic loss in these artificial

materials has been omitted in the topology definition, due to its non-Hermitian nature; in

practice, the presence of loss is generally considered harmful to the topological corner states.

Here, we report the experimental realization of a higher-order TI in an acoustic crystal, whose

nontrivial topology is induced by deliberately introduced losses. With local acoustic mea-

surements, we identify a topological bulk bandgap that is populated with gapped edge states

and in-gap corner states, as the hallmark signatures of hierarchical higher-order topology.

Our work establishes the non-Hermitian route to higher-order topology, and paves the way to

exploring various exotic non-Hermiticity-induced topological phases.
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Hermiticity lies at the foundation of quantum formulation,
as it guarantees the real-valued eigenvalues and the
orthogonality of eigenstates. These Hermitian properties

help to define topology of quantum wave functions and allow for
the classification of topological phases of matter1–4. For example,
TIs can be classified into the ten Altland-Zirnbauer classes5 based
on their Hermitian Hamiltonian’s symmetries. Topological
invariants such as the Chern number6 have been well established
in Hermitian systems, determining the topological boundary states
through the principle of bulk-boundary correspondence. In clas-
sical systems, many photonic and acoustic TIs have been proposed
to emulate the properties of TIs, especially in the classical analogs
of quantum Hall7–10, quantum spin Hall11–16 and quantum valley
Hall17–19 effects. While these classical topological systems follow
the Hermitian topology definition, they are intrinsically non-
Hermitian because of the presence of loss and/or gain. On one
hand, non-Hermiticity challenges the fundamental topological
classification20–22 and bulk-boundary correspondence23–32. On
the other hand, it has brought topological physics substantially
closer to real applications, as evidenced in the recent TI lasers33,34.

Higher-order TIs are a type of newly predicted topological
phases with a hierarchy of nontrivial topology, which host topo-
logical boundary states at “boundaries of boundaries”35–40. As a
typical example, the quadrupole higher-order TI35,36 carries a
nontrivial topology in its two-dimensional (2D) bulk; however, it
does not support one-dimensional (1D) gapless edge states as in a
conventional TI, but supports zero-dimensional (0D) corner states
at corners. Different from the tradition that topology needs to be
first understood in condensed matter systems, higher-order TIs
are realized almost entirely in classical artificial structures41–46.
This means non-Hermiticity has been an issue since the very
beginning—while higher-order topology is defined under the
Hermitian condition, almost all higher-order TIs are in non-
Hermitian systems. In the current understanding, the role of
intrinsic loss, which is non-Hermitian, is very limited and gen-
erally negative: it only makes the topological boundary states to
decay, but cannot determine the band topology, since it enters the
Hamiltonian as uniform on-site imaginary parts, which have no
effect on the real part of the dispersion, nor the eigenvectors.
Hence, it is natural to ask whether non-Hermiticity can play a
more important role in higher-order TIs. Recent theories have
answered this question positively47–53, but there has not been any
experimental demonstration up to date.

In this work, we present an experimental demonstration of a
non-Hermitian route to higher-order topology in an acoustic
crystal. In contrast to previous higher-order TIs based on Her-
mitian designs41–46, here the higher-order topology is induced by
deliberately introduced losses that are non-Hermitian. Depending
on the configuration of losses, the induced bandgap can be either
topological or trivial, which can be judged with the biorthogonal
nested-Wilson-loop approach52. With a carefully designed loss
configuration, we experimentally identify the loss-induced topo-
logical bandgap through local acoustic measurement, followed by
the direct observation of gapped edge states and mid-gap corner
states, all of which are typical features of the higher-order
topology. As a comparison, a different loss configuration can
induce a trivial bandgap, in which no in-gap mode has been
observed. Our work thus provides the experimental demonstra-
tion of non-Hermiticity-induced higher-order topological phases.

Results
The implementation of acoustic quadrupole TI. We consider a
quadrupole TI which is a typical higher-order TI. In the quad-
rupole TI, as illustrated in Fig. 1a, a quadrupole moment in the
bulk first induces dipole moments on the edges, which in turn

induce charges at the corners, forming hierarchical boundary
states35,36. A minimal model for the quadrupole TI is proposed
by Benalcazar, Bernevig, and Hughes (BBH), in which the
quadrupole phase, being Hermitian, is achieved by coupling
dimerization35,36. Recently, a modified non-Hermitian BBH
model has been proposed, showing that gain and loss can also
induce a quadrupole phase52. This is accomplished by adding an
on-site imaginary potential configuration to the BBH model, as
shown in Fig. 1b, where blue and red sites have imaginary on-site
potentials of γ1 and γ2, respectively. Note that we have set all
couplings to have the same strength, i.e., no coupling dimeriza-
tion, such that the system is gapless in the Hermitian limit (see
Supplementary Note 2 for tight-binding calculations). When γ1,2
are unequal nonzeros, a bandgap opens and a quadrupole TI
emerges. We note that the key ingredient to achieve this is the
difference between the on-site imaginary parts of the red and blue
sites, i.e., γ1 ≠ γ2. Gain medium, whose implementation requires
complex designs in acoustics54,55, is not necessary here. With this
insight, we construct an acoustic crystal to realize this tight-
binding model with only losses. The designed unit cell (lattice
constant a= 400mm) is illustrated in Fig. 1c, which consists of 16
cuboid acoustic resonators of sizes 80mm× 40 mm× 10mm,
coupled through identical thin waveguides of width 4 mm. The
wall thickness of each resonator is 6 mm. The sign of a coupling
can be chosen by the location of the thin waveguide41,42,56,57 (see
more details in Supplementary Note 3). Waveguides exhibiting
positive and negative couplings are colored in yellow and gray in
Fig. 1c, respectively. The resonators colored in blue only have a
background loss that is intrinsic to the resonators; we set it as γ1.
Besides the intrinsic loss γ1, the resonators colored in red have an
additional loss γ2− γ1, which is introduced by drilling small holes
on the sidewalls of resonators and then filling these holes with
acoustic absorbing materials (see Fig. 1d for a photo of the real
structure where small holes sealed with black absorbing materials
are clearly visible). This newly introduced loss turns the system
from a gapless phase to a gapped phase (see Supplementary Note 2
for bulk bandstructure), which, as we will demonstrate both
numerically and experimentally, is a topological quadrupole phase.

The loss-induced bulk quadrupole moment can be character-
ized in a similar way to the Hermitian case35,36, but with a
biorthogonal basis52. The hierarchy of the quadrupole topology
can be revealed by two Wilson loops. The first Wilson loop
calculation over all the bands below the bandgap gives Wannier
bands that are symmetrically distributed with respect to atomic
center, indicating the vanishing of bulk dipole moment. However,
a second Wilson loop over a certain Wannier sector gives a
quantized polarization of 1/2, which indicates that the edge
Hamiltonian is a TI with a quantized dipole moment, which is
induced by a quantized bulk quadrupole moment (see Supple-
mentary Note 2 for more details). As a consequence of the
nontrivial bulk quadrupole moment, gapped edge states and in-
gap corner states should be found in a finite sample. To see this,
we perform numerical calculations on a finite acoustic lattice and
plot the resulted eigenfrequencies in Fig. 2a. Apart from the bulk
states (gray dots), gaped edge states (yellow dots) and four
degenerate in-gap corner states (red dots), which are induced by
the bulk topology, are also found. We also plot the sum of
probabilities (using right eigenvectors) of the bulk, edge, and
corner states in Fig. 2b–d, respectively, further identifying their
existence. We note, as can be seen from Fig. 2b–d, the states
distribute all over the bulk, edges, and corners, and thus this
system does not feature non-Hermitian skin effect.

Experimental demonstrations in acoustic lattices. To demon-
strate above phenomena experimentally, we fabricate an acoustic
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lattice through stereo-lithography 3D printing, with 12 resonators
along each of x and y directions (see Fig. 3a for a photo of the
sample). Each resonator has two small holes that can be opened
or closed by two circular covers. In the experiment, the sound
waves generated by a speaker are guided into the sample through
a small hole at one side of a resonator. A microphone detects the
signals through the other hole at the other side of the same
resonator. This measurement is repeated for all the resonators of
the sample (see “Methods” and Supplementary Note 4 for more
details). We first focus on resonators in the bulk. According to
Fig. 2a, there are two branches (one around 2116 Hz and the
other around 2168 Hz) of bulk states separated by a real fre-
quency gap. In each branch, the eigenstates are further divided
into two sub-branches by an imaginary frequency gap. The states
with imaginary parts around 20 Hz mainly distribute on the
resonators without additional losses (blue sites in Fig. 1c), while
those with imaginary parts around 80 Hz mainly distribute on
the resonators with additional losses (red sites in Fig. 1c). Thus,
the measured responses from bulk resonators with additional
losses are very low in intensity, containing no useful information.
However, the responses from bulk resonators without additional
losses are relatively high, which can be used to characterize the
bulk bandgap. Here we choose a bulk resonator at the center
(labeled “3” in Fig. 3a) and plot its measured response spectrum
as the blue curve in Fig. 3b. Two peaks can be clearly observed
that correspond to the two branches of bulk states with longer
lifetime (around imaginary 20 Hz). A similar situation applies to
the resonators at edges without additional losses. We choose a

resonator in the middle of one edge (labeled “2” in Fig. 3a) and
plot its response spectrum as the yellow curve in Fig. 3b. The two
peaks correspond to the gapped edge states. In contrast to the
bulk and edge spectra, the measured spectrum on a corner
resonator (labeled “1” in Fig. 3a) only has one single peak located
around 2142 Hz, as shown by the red curve in Fig. 3b, which is
consistent with the predicted eigenfrequency of corner states (the
spectra from other corners are similar and thus are not shown).
To further demonstrate the non-Hermiticity-induced quadrupole
phase, we also plot in Fig. 3c–e the site-resolved responses
measured at peak frequencies of the corner, edge, and bulk
spectra, respectively. At 2142 Hz which corresponds to the peak
of the corner spectrum, the measured acoustic intensity at the
corners is much higher than other regions (Fig. 3c), showing the
existence of corner states. In contrast, the measured responses at
the peak frequencies (2164 and 2170 Hz) for edge and bulk
spectra are higher in the edge and bulk regions, respectively
(Fig. 3d and e). We note that there is considerable overlap
between the spatial maps for the edge states (Fig. 3d) and the bulk
states (Fig. 3e) due to the fact that the edge states and bulk states
are quite close in frequency. These experimental observations
agree well with numerical simulations presented in Fig. 2 and
Supplementary Note 6.

As a comparison, we further demonstrate that a different loss
configuration can open a trivial bandgap. The unit cell for such a
trivial lattice is shown in Fig. 4a. Although in this case additional
losses still open a bandgap, the Wannier sector polarization is
zero and only bulk states are found for a finite lattice (see Fig. 4b
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Fig. 1 Non-Hermiticity-induced quadrupole topological insulator and its acoustic implementation. a Schematic of a bulk quadrupole moment (qxy) with
its accompanying edge dipole moments (px and py) and corner charges (Q). b Tight-binding model of a unit cell that consists of 16 sites. Red (blue) sites
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NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22223-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1888 | https://doi.org/10.1038/s41467-021-22223-y |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


0 2 4 6 8 10 12
0

2

4

6

8

10

12

0 50 100
2100

2140

2180

R
e 

f (
H

z)

a

x

y

Im f (Hz)

b

c

bulk

edge

corner

0 1

 |p|2

d

Fig. 2 Eigenstates for a finite nontrivial lattice. a Numerically calculated eigenfrequencies of the nontrivial lattice with 12 resonators along x and y
directions. Gray, yellow, and red dots represent bulk, edge, and corner states, respectively. b–d Sum of probabilities for the bulk (b), edge (c), and corner
states (d), respectively.

0
0

0.5

5

1

10
510

0

0
0

0.5

5

1

10
510

0

0
0

0.5

5

1

10
510

0

2000 2100 2200 2300
0

0.2

0.4

0.6

0.8

1
 corner
 edge
 bulk

In
te

n
si

ty
 (

a
rb

. 
u

n
it

s)

0

Frequency (Hz)

x
y

a b

c d e

x
z

y

x
y

x
y

1

100 mm
1

2
3

In
te

n
si

ty
 (

a
rb

. 
u

n
it

s)

Fig. 3 Experimental observation in the nontrivial lattice. a Photo of a 3D printed lattice with 12 × 12 resonators. b Measured acoustic intensity spectra for
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for eigenfrequencies for a finite lattice). We again conducted local
acoustic measurements over all sites on a finite trivial lattice with
the same sizes as the topological one. Measured response spectra
for a resonator without additional losses in corner, edge, and bulk
regions are plotted in Fig. 4c. In contrast to the topological lattice,
now all three curves have two peaks which are located at
frequencies corresponding to the bulk states. We further plot
measured intensity around one of the peaks (2170 Hz) in Fig. 4d.
As can be seen, the acoustic energy distributes over the whole
lattice, indicating the peaks in Fig. 4c are results of the bulk states.

Discussion
In conclusion, we have designed and experimentally demonstrated
a non-Hermitian route to constructing higher-order TI in an
acoustic crystal. Topological corner states are found upon intro-
ducing additional losses to an originally gapless system. A trivial
insulator can also be created with a different loss configuration.
These results show that, being contrary to the common negative
perception, losses can play a not only positive but also a decisive
role in forming topological states. Our work points to a direction
beyond the conventional Hermitian framework of topological
physics, and offers a unique platform to study various non-
Hermiticity-induced topological phases. For example, while our
work focuses on quadrupole phases, other types of higher-order TIs
can be similarly induced on this platform. Moreover, recent
studies58–61 have shown that many phenomena are commonly
found in both acoustics and photonics. The phenomena found in
this work can also be extended to photonics where the control over
loss and gain can be more flexible. With externally controllable loss
and gain, it will be promising to construct actively reconfigurable
devices using these non-Hermiticity-induced corner states.

Methods
Numerical simulations. All the simulations were performed with COMSOL
Multiphysics, pressure acoustics module. In all simulations, the density for back-
ground medium air is set to be 1.22 kg/m3, and the real part of sound speed in air is
set to be 342.34 m/s. The losses are taken into account by the imaginary part of
sound speed c. By fitting the measured and simulated spectra of the single reso-
nators via adjusting the sound speed, c is set to be 342.34+ 2.23im/s for the
resonators only with background loss, and c= 342.34+ 14.72im/s for the reso-
nators with additional losses. To calculate the band structures, periodic boundary
conditions are used for outermost boundaries, while other boundaries are con-
sidered as hard boundaries. When calculating the eigenfrequencies of the finite
lattices (Figs. 2a and 4b), all the boundaries are considered as hard boundaries.

Experimental details. Two small air holes (r= 1.2 mm) were drilled at two sides
of each resonator, which allow for the signal input and output in experimental
measurements. A lock-in amplifier (Zurich Instrument HF2LI) connected to a
computer functioned as the signal generator and data acquisition system simul-
taneously. The incident acoustic waves were generated by a loudspeaker with a
swept signal ranging from 2000 to 2300 Hz. The acoustic fields inside the reso-
nators were measured by a 1/4-inch microphone (Brüel & Kjær, Type 4935) that
was placed at one side of each resonator and then transferred to the lock-in
amplifier via a conditioning amplifier (Brüel & Kjær, 64 NEXUS Type 2693A). For
the site-resolved response measurements (Figs. 3d–f and 4d), the input source and
microphone were placed at the two sides of the same resonator for each mea-
surement, and the measurement was repeated for all resonators to obtain the site-
resolved maps.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All numerical codes are available from the corresponding authors on reasonable request.
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Fig. 4 Experimental observation in the trivial lattice. a Photo of one unit cell for the trivial lattice. b Simulated eigenfrequencies for the trivial sample with
12 resonators along x and y directions. c Measured spectra for the sample in (a). Red, yellow, and blue lines represent the spectra measured in one
of resonators within the corner, edge, and bulk regions, respectively. dMeasured intensity profile around the spectra peak denoted by the black dashed line
in (c).
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