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SUMMARY 25 
Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutics and public 26 
health intervention strategies. Viral-host interactions can guide discovery of regulators of disease 27 
outcomes, and protein structure function analysis points to several immune pathways, including 28 
complement and coagulation, as targets of the coronavirus proteome. To determine if conditions 29 
associated with dysregulation of the complement or coagulation systems impact adverse clinical 30 
outcomes, we performed a retrospective observational study of 11,116 patients who presented with 31 
suspected SARS-CoV-2 infection. We found that history of macular degeneration (a proxy for 32 
complement activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis, 33 
and hemorrhage) are risk factors for morbidity and mortality in SARS-CoV-2 infected patients – effects 34 
that could not be explained by age, sex, or history of smoking. Further, transcriptional profiling of 35 
nasopharyngeal (NP) swabs from 650 control and SARS-CoV-2 infected patients demonstrated that in 36 
addition to innate Type-I interferon and IL-6 dependent inflammatory immune responses, infection results 37 
in robust engagement and activation of the complement and coagulation pathways. Finally, we conducted 38 
a candidate driven genetic association study of severe SARS-CoV-2 disease. Among the findings, our 39 
scan identified putative complement and coagulation associated loci including missense, eQTL and sQTL 40 
variants of critical regulators of the complement and coagulation cascades. In addition to providing 41 
evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative 42 
transcriptional genetic markers of susceptibility. The results highlight the value of using a multi-modal 43 
analytical approach, combining molecular information from virus protein structure-function analysis with 44 
clinical informatics, transcriptomics, and genomics to reveal determinants and predictors of immunity, 45 
susceptibility, and clinical outcome associated with infection.  46 
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INTRODUCTION 47 
The SARS-CoV-2 pandemic has had profound economic, social, and public health impact with over 6.1 48 
million confirmed cases and over 370,000 deaths across the globe. The infection causes respiratory illness 49 
with symptoms ranging from cough and fever to difficulty breathing. While highly variable age-50 
dependent mortality rates have been widely reported, the comorbidities that drive this dependence are not 51 
fully understood. Further, with some notable exceptions1-3, molecular studies have largely focused on 52 
ACE-2, the receptor and determinant of cell entry and viral replication3. While ACE-2 expression is 53 
critical, viruses employ a wide range of molecular strategies to infect cells, avoid detection, and 54 
proliferate. In addition, viral replication and immune mediated pathology are the primary drivers of 55 
morbidity and mortality associated with SARS-CoV-2 infection4,5. Therefore, understanding how virus-56 
host interactions manifest as SARS-CoV-2 risk factors will facilitate clinical management, choice of 57 
therapeutic interventions, and setting of appropriate social and public health measures.  58 
 59 
Knowledge of the precise molecular interactions that control viral replicative cycles can delineate 60 
regulatory programs that mediate immune pathology associated with infection and provide valuable clues 61 
about disease determinants. For example, viruses, including SARS-CoV-2, deploy an array of genetically 62 
encoded strategies to co-opt host machinery. Among the strategies, viruses encode multifunctional 63 
proteins that harness or disrupt cellular functions, including nucleic acid metabolism and modulation of 64 
immune responses, through protein-protein interactions and molecular mimicry – structural similarity 65 
between viral and host proteins (for a full discussion please see accompanying paper). Recently, we 66 
employed protein structure modeling to systematically chart interactions across all human infecting 67 
viruses6 and in an accompanying paper, performed a virome-wide scan for molecular mimics. This 68 
analysis points to broad diversification of strategies deployed by human infecting viruses and identifies 69 
biological processes that underlie human disease. Of particular interest, we mapped over 140 cellular 70 
proteins that are mimicked by coronaviruses (CoV). Among these, we identified components of the 71 
complement and coagulation pathways as targets of structural mimicry across all CoV strains (see 72 
companion paper).  73 
 74 
Through activation of one of three cascades, (i) the classical pathway triggered by an antibody–antigen 75 
complex, (ii) the alternative pathway triggered by binding to a host cell or pathogen surface, and (iii) the 76 
lectin pathway triggered by polysaccharides on microbial surfaces, the complement system is a critical 77 
regulator of host defense against pathogens including viruses7. When dysregulated by germline variants or 78 
acquired through age-related effects or excessive acute and chronic tissue damage, complement activation 79 
can contribute to pathologies mediated by inflammation7-9. Similarly, inflammation-induced coagulatory 80 
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programs -- which themselves can be regulated by the complement system -- as well as crosstalk between 81 
pro-inflammatory cytokines and the coagulative and anticoagulant pathways play pivotal roles in 82 
controlling pathogenesis associated with infections. Therefore, while the age-related differences in 83 
susceptibility to SARS-CoV-2 are likely a consequence of multiple underlying variables, virally encoded 84 
structural mimics of complement and coagulation pathway components may contribute to CoV associated 85 
immune mediated pathology. Moreover, a corollary of these observations is that dysfunctions associated 86 
with complement and/or coagulation may impact clinical outcome of SARS-CoV-2 infection. For 87 
example, the companion study suggests that coagulation disorders, such as thrombocytopenia, thrombosis 88 
and hemorrhage, may represent risk factors for SARS-CoV-2 clinical outcome. Among complement-89 
associated disorders, multiple genetic and experimental evidence (including animal models of disease, 90 
histological examination of affected tissue, and germline mutational analysis) point to dysregulation of 91 
the complement system as the major driver of both early-onset, and age-related macular degeneration 92 
(AMD)8-11. A hyperinflammatory phenotype mediated by complement leads to progressive immune-93 
mediated deterioration of the central retina. While AMD, the leading cause of blindness in elderly 94 
individuals (affecting roughly 200 million people worldwide11), is likely the result of multiple 95 
pathological processes, dysregulation of complement activation has emerged as the most widely accepted 96 
cause of disease9-12.  97 
 98 
To determine if conditions associated with dysregulation of the complement or coagulation systems 99 
impact adverse clinical outcomes associated with SARS-CoV-2 infection, we conducted a retrospective 100 
observational study of 11,116 patients at New York-Presbyterian/Columbia University Irving Medical 101 
Center. In agreement with previous reports13, survival analysis identified significant risk of mechanical 102 
respiration and mortality associated with age and sex, as well as history of hypertension, obesity, type 2 103 
diabetes (T2D), and coronary artery disease (CAD). Moreover, we found that patients with history of 104 
macular degeneration (a proxy for complement activation disorders) and coagulation disorders (i.e. 105 
thrombocytopenia, thrombosis, and hemorrhage) were at significantly increased risk of adverse clinical 106 
outcomes (including mechanical respiration and death) following SARS-CoV-2 infection. Importantly, 107 
these effects could not be explained by either age or sex, nor did we find any evidence that history of 108 
smoking contributes to risk of adverse clinical outcomes associated with SARS-CoV-2 infection. 109 
Conversely, albeit in a small number of individuals, we observed that no patients with complement 110 
deficiency disorders required mechanical respiration or succumbed to their illness. In addition, 111 
transcriptional profiling of nasopharyngeal (NP) swabs from 650 control and SARS-CoV-2 infected 112 
patients demonstrates that in addition to innate Type-I interferon and IL-6 dependent inflammatory 113 
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immune responses, infection results in robust engagement and activation of the complement and 114 
coagulation pathways.  115 
 116 
Finally, a focused analysis of proximal and distal variants of complement and coagulation components 117 
using the April 2020 COVID data released by the UK Biobank revealed genetic markers associated with 118 
severe SARS-CoV-2 infection. Among our findings, we identified variants in CD55 (a negative regulator 119 
of complement activation14), CFH and C4BPA, which play central roles in complement activation and 120 
innate immunity. Importantly, analysis of the May 2020 COVID data released by the UK Biobank 121 
recapitulated these results and identified additional variants. For example, the scan revealed that variants 122 
in Alpha-2-macroglobulin (A2M), a protease inhibitor and cytokine transporter which participates in the 123 
formation of fibrin clots and regulates inflammatory cascades, were associated with adverse clinical 124 
outcome. In addition to providing evidence that complement function modulates SARS-CoV-2 infection, 125 
the data point to several putative genetic markers of susceptibility. The results highlight the value of using 126 
a multi-modal analytical approach, combining molecular information from virus protein structure-127 
function analysis with clinical informatics, transcriptomics, and genomics to reveal determinants and 128 
predictors of immunity, susceptibility, and clinical outcome associated with infection. 129 
 130 
RESULTS 131 
Comorbidity statistics and covariances in a retrospective observational clinical cohort 132 
To explore if conditions associated with dysregulation of the complement or coagulation systems impact 133 
adverse clinical outcomes associated with SARS-CoV-2, we conducted a retrospective observational 134 
study of patients treated at New York-Presbyterian/Columbia University Irving Medical Center for 135 
suspected infection (Table 1). Electronic health records (EHR) were used to define sex, age, and smoking 136 
history status as well as histories of macular degeneration, coagulatory disorders (i.e. thrombocytopenia, 137 
thrombosis, and hemorrhage), hypertension, type 2 diabetes, coronary artery disease, and obesity (see 138 
Methods). As shown in Table 1, of the 11,116 patients that presented to the hospital between February 1, 139 
2020 and April 25, 2020 with suspected SARS-CoV-2 infection, 6,398 tested positive for the virus. 140 
Among these, 88 were patients with a history of macular degeneration, four were patients with 141 
complement deficiency disorders, and 1,179 were patients with disorders associated with the coagulatory 142 
system. In addition, hypertension, coronary artery disease, diabetes, obesity, and annotated cough were 143 
represented by 1,922, 1,566, 847, 791, and 727 patients, respectively (Table 1). While CAD, 144 
hypertension, T2D, obesity, and coagulation disorders represent a group with the highest covariance, we 145 
find lower co-occurrence between these conditions and macular degeneration in both SARS-CoV-2 146 
positive and negative individuals (Figure S1). In addition to these medical histories, smoking status, past 147 
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or present, was noted for 5,079 patients (of 1,359 smokers included in the study, 723 were SARS-CoV-2 148 
positive). Finally, of patients who were put on mechanical ventilation, we observed a 35% mortality rate, 149 
and 31% of deceased patients had been on mechanical respiration.  150 
 151 
Macular degeneration and coagulation disorders are associated with SARS-CoV-2 outcomes 152 
We estimated the univariate and age- and sex-corrected risk associated with baseline clinical history of 153 
previously reported SARS-CoV-2 risk factors (including hypertension, obesity, type 2 diabetes, and 154 
coronary artery disease) as well as coagulation and complement disorders using survival analysis and Cox 155 
proportional hazards regression modeling. As shown in Figure 1 and Table 1, we identified significant 156 
risk of mechanical respiration and mortality associated with age and sex, as well as history of 157 
hypertension, obesity, and type 2 diabetes (T2D), coronary artery disease (CAD). Notably, we did not 158 
find evidence that smoking status (past or present) is a significant risk factor for either mechanical 159 
respiration or mortality. We found that those with a history of macular degeneration (a proxy for 160 
complement activation disorders) and coagulation disorders (thrombocytopenia, thrombosis, and 161 
hemorrhage) were at significantly increased risk of adverse clinical outcomes (including mechanical 162 
respiration and death) following SARS-CoV-2 infection (Figure 1, Table 1). Specifically, we observed a 163 
mechanical respiration rate of 15.9% (95% CI: 8.3-23.6; HR: 2.2, Pvalue = 0.0046) and a mortality rate of 164 
25% (95% CI: 16.0-34.0; HR 3.0, Pvalue = 4.4x10-7) among patients with a history of macular 165 
degeneration, and rates of 9.4% (95% CI: 7.7-11.1; HR 1.5, Pvalue = 9.6x10-5) and 14.7% (95% CI: 12.7-166 
16.7; HR: 2.3, Pvalue = 1.8 x10-23) for mechanical respiration and mortality, respectively, among patients 167 
with coagulation disorders (Table 1). Moreover, as shown in Figure 1b, patients with a history of macular 168 
degeneration appear to succumb to disease more rapidly than others. Critically, the contribution of age 169 
and sex was not sufficient to explain the increased risks associated with history of macular degeneration 170 
(Age/Sex-Corrected mechanical respiration HR=1.8 95% CI: 1.1-3.2, Pvalue = 0.024; Age/Sex-Corrected 171 
mortality HR=1.7 95% CI: 1.1-2.5, Pvalue = 0.022) or coagulation disorders (Age/Sex-Corrected 172 
mechanical respiration HR=1.5. 95% CI: 1.2-1.8, Pvalue = 2.4x10-4; Age/Sex-Corrected mortality 173 
HR=1.8 95% CI: 1.5-2.1, Pvalue = 3.4x10-12). Conversely, albeit in a small number of individuals, we 174 
observed that among patients with complement deficiency disorders, who are normally at increased risk 175 
of complications associated with infections, none required mechanical respiration or succumbed to their 176 
illness (Table 1, Figure 1a and 1b). Importantly, while the correlation between macular degeneration or 177 
coagulopathies and established covariates included in this study is low (as shown in Supplemental Figure 178 
S1 and Supplemental Table S1, Tanimoto coefficients between 0.038 and 0.050 and 0.25 and 0.38, 179 
respectively), further study, perhaps with larger patient cohorts, will be necessary to rule out 180 
comorbidities that may be associated with macular degeneration and coagulopathies. Together, these data 181 
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suggest that hyper-active complement and coagulative states predispose individuals to adverse outcomes 182 
associated with SARS-CoV-2 infection, and that deficiencies in complement components may be 183 
protective. Importantly, given the low incidence rate of deficiencies in either complement or coagulation 184 
pathways, further analysis with larger clinical cohorts is warranted.  185 
 186 
SARS-CoV-2 infection induces robust transcriptional regulation of complement and coagulation 187 
components. 188 
Transcriptional responses of human NP epithelial cells during viral infection can provide critical 189 
information about underlying immune programs. We leveraged whole genome RNA sequencing (RNA-190 
seq) profiles to identify differentially regulated genes and pathways in 650 NP swabs from control and 191 
SARS-CoV-2 infected patients who presented to Weill-Cornell Medical Center. As shown in Figure 2a, 192 
gene set enrichment analysis (GSEA) of HALLMARK gene sets found that SARS-CoV-2 infection (as 193 
defined by presence of SARS-CoV-2 RNA and stratified into ‘positive’, ‘low’, ‘medium’ or ‘high’ based 194 
on viral load; see Methods) induces genes related to pathways with known immune modulatory functions, 195 
including ‘inflammatory_response’, ‘interferon_alpha_response’, and ‘IL6_JAK_STAT3_signaling (FDR 196 
corrected Pvalue < 0.001; Figure 2a). Moreover, we found that among the most enriched gene sets, 197 
SARS-CoV-2 infection induces robust activation of the complement cascade (FDR corrected Pvalue < 198 
0.001), with increasing enrichment and significance with viral load (FDR corrected Pvalue < 0.0001). We 199 
extended the analysis to include all complement and coagulation associated gene sets in MsigDB and 200 
identified ‘KEGG_Complement_and_Coagulation_Cascades’, ‘GO_Coagulation’, as well as 201 
‘Reactome_initial_triggering_of_complement’ to be enriched in expression profiles of SARS-CoV-2 202 
infected samples (Qvalue < 0.05; representative GSEA profiles are shown in Figure 2b and a full list of 203 
enriched pathways and gene sets can be found at https://masonlab.shinyapps.io/CovidGenes/). As 204 
highlighted in Figure 2c-e, the pathway-level transcriptional regulation induced by SARS-CoV-2 205 
identified by GSEA is also observed at the individual gene level for upregulated and downregulated 206 
regulated transcripts as well as those that are particularly upregulated in the context of high viral load 207 
(Figure 2d, e, f, respectively). Taken together, the data demonstrate that in addition to immune factors like 208 
Type I interferons and dysregulation of IL6-dependent inflammatory responses which has been linked to 209 
poor clinical outcome13, transcriptional control of complement and coagulation cascades is a feature of 210 
SARS-CoV-2 infection. 211 
 212 
Genetic variation in complement and coagulation pathway components is associated with adverse SARS-213 
CoV-2 infection outcome 214 
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The data highlighted above provide evidence that complement and coagulation disorders play a role in 215 
SARS-CoV-2 infection outcome and that infection with this virus induces robust transcriptional 216 
regulation of complement and coagulation pathway components.  Moreover, dysfunction of complement 217 
or coagulation cascades can be the result of either acquired dysregulation, genetically encoded variants, or 218 
both. However, any genetic factors that may underlie the clinical trends we observed remain hidden due 219 
to the retrospective nature of the study and the lack of available genetic data on these patients.  On the 220 
other hand, the UK Biobank, a prospective cohort study with deep genetic, physical, and health data 221 
collected on ~500,000 individuals across the United Kingdom15,16, recently released SARS-CoV-2 222 
infection and outcome statuses for 1,474 patients, allowing for genetic and epidemiological associations 223 
to be assessed. The release in April 2020 included 669 patients who tested positive for the virus, 572 of 224 
whom required hospitalization. 225 
 226 
We conducted a candidate driven study to evaluate if genetic variation in components of complement or 227 
coagulation pathways are associated with poor SARS-CoV-2 clinical outcome. Briefly, we focused our 228 
analysis on 337,147 (181,032 female) subjects of White British descent, excluding 3rd degree and above 229 
relatedness and without aneuploidy15. Applying these restrictions to the April-2020 cohort resulted in 910 230 
patients with suspected infection (388 positive, 332 positive and hospitalized; see Methods). As detailed 231 
Supplemental Table S2, of the 805,426 genetic variants profiled in the UK Biobank, 2,888 are within a 232 
60Kb window around 102 genes with known roles in regulating complement or coagulation cascades 233 
(results that follow are robust to varying window size between 40Kb-80Kb; see Methods, Figure 3a-b). 234 
We focused our analysis on single-nucleotide polymorphisms (SNP) with minor allele frequency (MAF) 235 
above 1% and, as shown in Figure 3 and Supplemental Figure S2a-f, used an empirical permutation 236 
analysis to set the study-wide significance alpha (α) thresholds for each analysis described below (see 237 
Methods). As highlighted in Figure 3c and further detailed in Supplemental Table S2, we identified 11 238 
loci representing 7 genes with study-wide significance (α = 0.001) in the April-2020 cohort. Among 239 
these, and proximal to coagulation factor III (F3), is variant rs72729504 which we find to be associated 240 
with increased risk of adverse clinical outcome associated with SARS-CoV-2 infection (OR: 1.93). Fibrin 241 
fragment D-dimer, one of several peptides produced when cross-linked fibrin is degraded by plasmin, is 242 
the most widely used clinical marker of activated blood coagulation. Among the genetic loci that 243 
influence D-dimer levels, GWAS studies have identified mutations in F3 as having the strongest 244 
association17. Importantly, increased D-dimer levels were recently reported to correlate with poor clinical 245 
outcome in SARS-CoV-2 infected patients13. So, while the functional role of rs72729504 remains to be 246 
elucidated, our observations suggest that this locus may represent a genetic marker of SARS-CoV-2 247 
susceptibility and outcomes.  248 
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 249 
In addition to the SNP highlighted above, we identified 4 variants (rs45574833, rs61821114, rs61821041, 250 
and rs12064775) previously reported as risk alleles for AMD in the UKBB dataset18. Moreover, we find 251 
that each of these variants predisposes carriers to adverse clinical outcome (i.e. hospitalization) following 252 
SARS-CoV-2 infection (OR: 2.13-2.65). A fifth variant, rs2230199, which maps to complement C3, was 253 
shown to be linked to AMD in an independent GWAS, however, this variant has not been associated with 254 
increased AMD risk in the UK population. The three SNPs that map to C3 each appear to confer some 255 
protection associated with SARS-CoV-2 infection (OR: 0.66-0.68). In addition, two of the identified 256 
variants (rs61821114 and rs61821041) map to expression quantitative trait loci (eQTL) associated with 257 
Complement Decay-Accelerating Factor (CD55)19. This protein negatively regulates complement 258 
activation by accelerating the decay of complement proteins, thereby disrupting the cascade and 259 
preventing immune-mediated damage7. As reported by GTex Consortium data19 and highlighted in Figure 260 
3d, these eQTLs result in decreased expression of CD55, thereby relieving the restraining function of this 261 
protein. In agreement with the functional role of CD55, we observe that these variants are associated with 262 
increased risk of adverse clinical outcome associated with SARS-CoV-2 infection (OR: 2.34-2.4).  263 
 264 
Genetic association studies performed on relatively small cohorts can be prone to false positives. While 265 
permutation analyses to empirically determine statistical significance thresholds were implemented as 266 
described in Methods, we also repeated the analysis using updated UKBB data released in May, 2020 267 
which included 3,002 patients with suspected infection. Of the 1,073 that tested positive in the updated 268 
cohort, 818 required hospitalization (651 and 500 respectively, after ancestry and relatedness filtering, see 269 
Methods). Importantly, analysis of the May-2020 COVID data recapitulated 6 of 11 April-2020 findings 270 
and identified 16 additional loci with study-wide significance (α = 0.0025, Supplemental Table S2, Figure 271 
3c). Among these, the scan revealed 5 variants proximal to Alpha-2-macroglobulin (A2M), a protease 272 
inhibitor and cytokine transporter which participates in the formation of fibrin clots and regulates 273 
inflammatory cascades20. Of these, 3 (rs10842898, rs669, and rs4883215) are eQTLs associated with 274 
significant downregulation of A2M (and concomitant upregulation of A2M-AS1, the antisense RNA of 275 
A2M; data available on gtextportal.org) in multiple tissues including mucosa of the esophagus (Pvalue = 276 
1.9x10-15) as highlighted in Figure 3e. In addition to A2M, rs10842898 and rs669 are splicing quantitative 277 
trait loci (sQTLs) for Mannose-6-Phosphate Receptor (M6PR) a P-type lectin that regulates lysosomal 278 
cargo loading and participates in cellular responses to wound healing, cell growth and viral infection21 - 279 
suggesting that the SNPs identified may contribute to complex regulation of transcripts with 280 
immunological and antiviral roles.  281 
 282 
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As detailed in Supplemental Table S2, 936 of the variants that were part of the study are within haplotype 283 
blocks of analyzed genes (see Methods). Analysis focused on SNPs in complement and coagulation 284 
haplotype blocks (based on linkage disequilibrium; LD, See Methods) resulted in 16 study-wide 285 
significant SNPs (α = 0.01, Figure S3) using the April-2020 cohort, of which 8 repeated at study-wide 286 
significance (α = 0.0075, Figure S3) using the May-2020 dataset. These include rs45574833, a variant 287 
highlighted above that results in a missense mutation in C4BPA, a protein that controls activation of the 288 
classical complement pathway by mediating hydrolysis of complement factor C4b and degradation of the 289 
C3 convertase22 (see Supplemental Table S2). In addition, the haplotype-based analysis identified a link 290 
between rs731034 (an eQTL in Collectin Subfamily Member 11; COLEC11) and poor clinical outcome 291 
in both April-2020 (OR: 1.27) and May-2020 (OR: 1.33) cohorts. COLEC11, a member of the collectin 292 
family of C-type lectins, plays an important role in the innate immune system by binding to carbohydrate 293 
antigens (with a preference for fucose and mannose) on microorganisms including viruses, facilitating 294 
their recognition and removal. This eQTL variant results in significant upregulation of COLEC11 across 295 
multiple tissues including lung (Pvalue = 1x10-11) and suggests that sugar moieties on viral proteins may 296 
serve as antigenic targets of immunological responses to SARS-CoV-2 infection. Though experimental 297 
validation and functional interrogation of the variants we have identified is required to elucidate their 298 
precise pathophysiology, taken together, our observations point to genetic variation in complement and 299 
coagulation components as a contributing factor in SARS-CoV-2 mediated disease. 300 
 301 
 302 
DISCUSSION 303 
Zoonotic infections like the SARS-CoV-2 pandemic pose tremendous risk to public health and 304 
socioeconomic factors on a global scale. While the innate and adaptive arms of the immune system are 305 
exquisitely equipped to deal with noxious agents including viruses, interactions between emerging 306 
pathogens and their human hosts can manifest in unpredictable ways. In the case of SARS-CoV-2 307 
infection a combination of viral replication and immune mediated pathology are the primary drivers of 308 
morbidity and mortality. While recent analysis of coronavirus patients in China, suggests that high serum 309 
levels of interleukin-6 (IL-6), a proinflammatory cytokine, is associated with poor prognosis13 (and as 310 
shown in Figure 2, found to be transcriptionally regulated in SARS-CoV-2 patients) further delineation of 311 
the regulatory programs that mediate immune pathology associated with SARS-CoV-2 infection is 312 
necessary. As illustrated in the accompanying paper and by the results presented herein, knowledge of 313 
molecular interactions between virus and host can refine hypothesis-driven discovery of disease 314 
determinants.  315 
 316 
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Our scan for virus-encoded structural mimics across Earth’s virome pointed to molecular mimicry as a 317 
pervasive strategy employed by viruses and indicated that the protein structure space used by a given 318 
virus is dictated by the host proteome (see accompanying paper). Moreover, observations about how 319 
coronaviruses exploit this strategy provided clues about the cellular processes driving pathogenesis. 320 
Together with knowledge that CoV infections, including the SARS-CoV outbreak in 2002-2003 and the 321 
current SARS-CoV-2 outbreak13, result in hyper-coagulative phenotypes23, our protein structure-function 322 
analysis led us to hypothesize that conditions associated with complement or coagulatory dysfunction 323 
may influence outcomes of SARS-CoV-2 infections. Of these, among the most common are AMD (which 324 
is associated with hyper-activation of the complement pathway) and hyper-coagulative disorders. Their 325 
relatively high incidence rates together with SARS-CoV-2 prevalence in and around New York City made 326 
them reasonable candidates for a retrospective clinical study.  327 
 328 
As presented above, in addition to rediscovering previously identified risk factors including age, sex, 329 
hypertension, and CAD we found that history of macular degeneration or coagulatory dysfunctions 330 
predispose patients to poor clinical outcomes (including increased risk of mechanical ventilation and 331 
death) following SARS-CoV-2 infection. Complement deficiencies on the other hand, appear to be 332 
protective. Their low incidence rates, however, make for a small sample size and invite further 333 
investigation. Moreover, retrospective studies of observational data have notable limitations in their data 334 
completeness, selection biases, and methods of data capture. As a result, claims on causality cannot be 335 
made - nor can we definitively rule out other clinical factors as possible drivers. Nevertheless, in an 336 
orthogonal analysis of 650 transcriptional profiles of NP swabs, we demonstrate that in addition to 337 
immune factors like Type I interferons and dysregulation of IL-6-dependent inflammatory responses, 338 
SARS-CoV-2 infection results in engagement and robust activation of complement and coagulation 339 
cascades. Dysregulation of complement and coagulation pathways leading to pathology resulting from 340 
viral infection is not without precedent. Indeed, it has been associated with Dengue virus infection where 341 
immune mediated pathology and dysregulation of complement is correlated with disease severity and 342 

mirrors that of acute SARS-CoV-2 disease24. Moreover, though different from the variants identified in 343 

this study, polymorphisms and haplotypes in CFH have been associated with severity of Dengue 344 
infection25, suggesting that complement and coagulatory disfunctions may represent risk factors for a 345 
broader range of pathogens. 346 
 347 
Finally, since complement and coagulative dysfunctions can have both acquired and congenital etiologies, 348 
we implemented a focused, candidate-driven analysis of UK Biobank data to evaluate linkage between 349 
severe SARS-CoV-2 disease and genetic variation associated with complement and coagulation 350 
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pathways. Our analysis identified putative complement and coagulation associated loci including 351 
missense, eQTL and sQTL variants of critical regulators of the complement and coagulation cascades. 352 
Though interpretation of these findings may be limited by sample size, site-specific biases in clinical care 353 
decisions, ancestral homogeneity and population stratification in the biobank data, and socioeconomic 354 
status of affected populations, to our knowledge, this is the first study to identify complement and 355 
coagulation functions as underlying risk-factors of SARS-CoV-2 disease outcome. In addition, given an 356 
existing menu of immune-modulatory therapies that target complement and coagulation pathways, the 357 
discovery provides a rationale to investigate these options for the treatment of SARS-CoV-2 associated 358 
pathology. Indeed, the therapeutic potential of complement modulation was recently introduced and 359 
further shown to be of significant benefit in a cohort of SARS-CoV-2 patients26,27. 360 
 361 
Our study highlights the value of combining molecular information from virus protein structure-function 362 
analysis with orthogonal clinical data analysis to reveal determinants and/or predictors of immunity, 363 
susceptibility, and clinical outcome associated with infection. Such a framework can help refine large-364 
scale genomics efforts and help power genomics studies based on informed biological and clinical 365 
conjectures. While identification of CoV encoded structural mimics guided the retrospective clinical 366 
studies, a molecular and functional link between those observations and our discovery of complement and 367 
coagulation functions as risk factors for SARS-CoV-2 pathogenesis remains to be elucidated. 368 
Nevertheless, the findings advance our understanding of how SARS-CoV-2 infection leads to disease and 369 
can help explain variability in clinical outcomes. Among the implications, the data warrant heightened 370 
public health awareness for individuals most vulnerable to developing adverse SARS-CoV-2 mediated 371 
pathology.  372 
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FIGURE LEGENDS 385 
Figure 1| History of macular degeneration and coagulation disorders are associated with adverse 386 
outcomes after confirmed SARS-CoV-2 infection. a, Kaplan-Meier curves for 10 binary conditions: age 387 
over 65, male sex, macular degeneration (Macula), complement deficiency disorders (CD), coagulation, 388 
hypertension, type 2 diabetes (T2DM), obesity, coronary artery disease (CAD), and cough. The survival 389 
for the patients with the named condition are shown in orange. The shaded region indicates the 95% 390 
confidence interval. The blue survival line is for patients without the named condition. Note that none of 391 
the four patients with CD required mechanical ventilation. b, Kaplan-Meier curves for the same 10 392 
conditions as in (a). All four patients with CD survived (not statistically significant). c, Intubation rates 393 
across the binary conditions. Mortality (N=88) was highest in patients with a history of macular 394 
degeneration, followed by Type 2 Diabetes and Hypertension. d, Mortality rates across the binary 395 
conditions. Patients with a history of macular degeneration saw the highest mortality rates, followed by 396 
Age ≥ 65 and Type 2 Diabetes. e, Hazard ratios, estimated using a Cox proportional hazards model, for 397 
risk if intubation (as a validated proxy for requiring mechanical respiration). f, Similarly, hazard ratios for 398 
mortality, estimated using a Cox proportional hazards model. Hazard ratios and statistical significances 399 
are shown in Table 1. 400 
 401 
Figure 2| SARS-CoV-2 infection engages robust transcriptional regulation of complement and 402 
coagulation cascades. a, GSEA of HALLMARK gene sets was applied to RNA-seq profiles of NP swabs 403 
from 650 control and SARS-CoV-2 infected patients stratified by SARS-CoV-2 positive (green) or low 404 
(yellow), medium (orange), high (red) viral load (significantly enriched gene sets highlighted in blue;  b, 405 
Leading edge enrichment plots from GSEA analysis of MsigDB-wide gene sets are shown for 406 
HALLMARK_Complement and KEGG_Complement_and_Coagulation_Cascade gene sets with SARS-407 
CoV-2 stratification indicated by color. c, Hierarchical clustering of Z-score normalized mRNA profiles 408 
of complement and coagulation components that undergo significant (FDR corrected Pvalue < 0.01) 409 
transcriptional regulation in response to SARS-CoV-2 infection (cold and hot color scale reflects down, 410 
or up regulated expression, respectively). d-f, Violin plots (transcripts per million; TPM shown on y-axis) 411 
of highlighted differentially regulated genes are shown for upregulated (d), downregulated (e), or 412 
particularly upregulated in the context of high viral load (f).  Normalized enrichment scores (NES) and 413 
FDR-corrected Pvalues are shown. 414 
 415 
Figure 3| Targeted genetic association study identifies SNPs in complement and coagulation pathway 416 
components associated with clinical outcome of SARS-CoV-2 infection. a-b, Pvalues from a Negative 417 
Binomial distribution fit to permutation of SNPs sampled (left) and case:control phenotypes (center) 418 
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generated under the null hypothesis are shown for the April-2020 (a) or May-2020 (b) cohort (α and 419 
distance pairs as indicated; for more information see Methods). Also shown are the number of hits that 420 
pass the corresponding alpha study-wide significance threshold by distance (right) for April-2020 (a) or 421 
May-2020 (b) cohorts. c, Manhattan plots of 2,888 variants within 60kb of complement and coagulation 422 
pathway genes for analyses using the April-2020 cohort (top) and May-2020 cohort (bottom). Study-wide 423 
significance threshold shown as dashed green lines, nominal significance threshold shown as black 424 
dashed line, and SNPs color alternates by chromosome. Significant SNPs are shown as colored markers 425 
and annotated with the nearest gene by base-pair distance. SNPs shown in green are study-wide 426 
significant in both April-2020 and May-2020. SNPs shown as diamonds are also study-wide significant in 427 
haplotype-based analysis (see Methods). eQTLs are further highlighted in (d) and (e). d, eQTL 428 
relationship for rs61821114 and CD55 in thyroid19. The T allele of rs61821114 is associated with 429 
significantly lower expression of CD55. e, eQTL relationship for rs669 and A2M19. The C allele of rs669 430 
is associated with significant lower expression of A2M in 17 tissues, including the esophageal mucosa 431 
(shown) and lung.  432 
 433 
Figure S1| Covariate correlations in EHR clinical data. a, Spearman correlation between modeled 434 
covariates in patients were diagnosed or tested positive for SARS-CoV-2: age, sex, macular degeneration 435 
(macula), complement deficiency disorders (CD), coagulation disorders (coagulation), hypertension, Type 436 
2 Diabetes, obesity, and coronary artery disease (CAD). b, Spearman correlations, as in (a), for all 437 
patients (includes patients who tested negative for SARS-CoV-2). c, Tanimoto coefficients as in (a), for 438 
patients who tested positive for SARS-CoV-2 infection. Age was binarized as “Age over 65” to compute 439 
the score. d, Tanimoto coefficients as in (c) for all patients. 440 
 441 
Figure S2| Results of permutation testing and fits to negative binomial distributions for (a) April-2020 442 
phenotype permutations, (b) April-2020 SNP permutations, (c) May-2020 phenotype permutations, (d) 443 
May-2020 SNP permutations, (e) Haplotype SNPs-only April-2020 phenotype permutations, and (f) 444 
Haplotype SNPs-only May-2020 phenotype permutations. Histograms indicate the number of 445 
permutations with X significant hits (black/grey bars). Negative binomial fits are shown in red (see 446 
Methods). Chi-squared goodness-of-fit tests were performed for each distribution. Distributions which 447 
passed the goodness-of-fit test (p > 0.05) are shown in black and those that failed (p ≤ 0.05) are shown in 448 
grey. Results are visualized for 5 distances (columns) and 9 alpha thresholds (rows). All fits are available 449 
as supplement data.  450 
 451 
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Figure S3| Pvalues from a Negative Binomial distribution fit to permutation of case:control phenotypes 452 
generated under the null hypothesis are shown for the Haplotype SNPs-only analyses using the April-453 
2020 (a) or May-2020 (b) cohort. α and distance pairs as indicated; for more information see Methods. 454 
 455 
Figure S4| Percent of significant eQTLs within a given distance of the gene body. Significant eQTLs 456 
were downloaded from the GTEx Portal website for Esophagus, Lung, and Heart tissues (9 tissues total) 457 
and used the provided significance thresholds to determine significance. Shown is the percent of 458 
significant eQTLs that are within X base pairs of their target gene aggregated over 9 tissues. Over 70% of 459 
significant eQTLs are within 60 Kb of their target gene. Black dashed line represents 60 Kb, grey lines 460 
represent 40 and 80 Kb.  461 
 462 
Figure S5| Comparison of MAF distributions across sampled SNP sets. The medians, means, interquartile 463 
range, 95% confidence interval, minimum, and maximum are shown for each of the 100 samples of SNP 464 
sets (see Empirical Permutation Evaluation to set Study-wide Alpha Thresholds for details). Also shown 465 
are the same distribution statistics for the SNP set within 60Kb of complement and coagulation gene 466 
bodies (red). Each of the 100 sampled SNP sets MAF distributions were compared to the study SNP set 467 
and tested for differences using a two-sample Mann-Whitney U test. Those that were not significantly 468 
different (p > 0.05) are shown in black. Those that are significantly different (p ≤ 0.05) are shown in grey 469 
and were dropped from the analysis. 470 
  471 
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METHODS 472 
 473 
Ethics and Data Governance Approval 474 
The study is approved by the Columbia University Irving Medical Center Institutional Review Board 475 
(IRB# AAAL0601) and the requirement for an informed consent was waived. A data request associated 476 
with this protocol was submitted to the Tri-Institutional Request Assessment Committee (TRAC) of New-477 
York Presbyterian, Columbia, and Cornell and approved. The research on the UK Biobank data has been 478 
conducted using the UK Biobank Resource under Application Number 41039. The transcriptomics 479 
analysis samples were collected and processed through the Weill Cornell Medicine Institutional Review 480 
Board (IRB) Protocol 19-11021069.  481 
 482 
Retrospective Clinical Study 483 
Cohort and Study Description 484 
In this observational cohort study, we used a data warehouse derived from electronic health records 485 
(EHRs) from 11,116 patients treated at New York-Presbyterian/Columbia University Irving Medical 486 
Center for suspected cases of SARS-CoV-2 infection. For these patients we collected contemporary data 487 
from their current encounter (i.e. the encounter associated with their suspected SARS-CoV-2 infection) as 488 
well as historical data, if available, from their previous encounters. Contemporary data (data collected 489 
between February 1, 2020 and April 12, 2020) included insurance billing information, laboratory 490 
measurements, procedures, and SARS-CoV-2 diagnostic test results. These data were derived from the 491 
data warehouse tables in Epic. 6,927 patients have historical data (data collected prior to September 24, 492 
2019) available from an OMOP v5 instance stored using MySQL, which included all of the standard 493 
tables for recording condition, procedure, medication, and measurement data (among others). Of these we 494 
used the insurance billing information from the condition occurrence table and demographics from the 495 
person table. See Preparation of data for modeling for further details on data preparation. 496 
 497 
We used the contemporary data to define inclusion criteria and outcomes (requiring mechanical 498 
respiration and mortality) and used historical data to define patient comorbidities. We defined three 499 
hypothesized comorbidity covariates, macular degeneration, complement deficiency disorders, and 500 
disorders of coagulation. We used historical data to define these comorbidities, age, and sex. We did not 501 
include race and ethnicity data in the modeling as we have previously found issues with the data quality28. 502 
The race/ethnicity data we do have is included in the tables for reference. We also modeled other 503 
comorbidities previously associated with morbidity and mortality (Zhou et al and others), including 504 
history of cardiovascular disease, hypertension, obesity, and diabetes (Table 1, Table S1) -- all derived 505 
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from the historical data. Coded covariate definitions, as well as lists of which diagnosis codes are most 506 
common in each group, are available in the supplemental materials and methods. We used established 507 
institutional procedures and an institutional clinical data warehouse to extract all data from the EHR.  508 
 509 
Defining patient outcomes  510 
Outcome definitions were defined by data derived from the electronic health record between February 1, 511 
2020 and April 12, 2020. Mortality is derived from a death note filed by a resident or primary provider 512 
that records the date and time of death. Intubation was used as an intermediary endpoint and is a proxy for 513 
a patient requiring mechanical respiration. We used note types that were developed for patients with 514 
SARS-CoV-2 infection to record that this procedure was completed. We validated outcome data derived 515 
from notes against the patient’s medical record using manual review. 516 
 517 

Preparation of data for modeling 518 
We used MySQL and python libraries (pymysql, pandas) to extract and prepare the data for modeling. 519 
The code for data preparation is available in the github (https://github.com/tatonetti-520 
lab/complementcovid) as a Jupyter Notebook titled Data Setup. We begin by creating a master list of 521 
suspected covid patients. These are patients that are either diagnosed with the disease, as indicated by a 522 
ICD10 code for SARS-CoV-2 infection, in their billing data or a patient that was tested for the presence 523 
of the virus using RT-PCR as indicated by a “lab” order for the test. We found 2,821 using the former 524 
method and 11,116 patients using the latter. We then extracted birthdates, death dates (if the patient had 525 
died or a null value otherwise), and sex codes (1 for female, 2 for male). Patients which had sex codes for 526 
non-binary genders were excluded from our analysis. We then define a “first diagnosis date” for each 527 
patient as either their first diagnosis date (by billing code) or the first date that they tested positive for 528 
SARS-CoV-2, whichever comes first. Next, we calculate each patient’s age at the time of this “first 529 
diagnosis date.” Each of the outcomes and covariates are extracted from their respective tables as detailed 530 
in the github. Whenever possible, we use the highest-level ancestor code (from the structured vocabulary 531 
in OMOP) that represents the concept we want to model. We then use the concept ancestor tables to grab 532 
all the descendant codes. Note that diabetic kidney disease was considered for inclusion and so is 533 
represented in the data preparation script, however, it was never modeled. Cough is included as a 534 
covariate as a reference symptom for comparison. The last step in the preparation process was to compute 535 
the censor dates. To do, we iterated through each patient in our master list and computed their time (in 536 
days) to intubation (if they required mechanical respiration) or death (if they died). If not, then the study 537 
end date (April 25, 2020) was used as the patient’s censored time (in days). Finally, for any patients that 538 
were not SARS-CoV-2 positive, their time-to-event values were set to a null indicator to be dropped from 539 
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the dataset later. Finally, the data are all combined in a pandas (version 1.0.3) dataframe and saved to disk 540 
as a pickle file for efficient loading. 541 
 542 

Statistical Model 543 
Our patient timelines may be censored since our study cohort included patients that were being treated at 544 
the time of analysis. We performed survival analysis on the intubation orders and death using a Cox 545 
proportional-hazards model and visualized the risk using Kaplan-Meier curves using the lifelines python 546 
package (version 0.24.4). Error estimates on the Kaplan-Meier curves are estimated using Greenwood’s 547 
Exponential Formula29. We fit both univariate models and models fit on the covariate, age, and sex and 548 
used log-likelihood to assess significance. We reported Cox proportional hazards coefficients and their 549 
95% confidence intervals (Table 1). We modeled whether or not a patient had macular degeneration, a 550 
complement deficiency disorder, or a coagulation disorder as binary variables (1=yes, 0=no). Code 551 
definitions provided in Table S1. We also included other significant comorbidities suggested by previous 552 
studies, CAD, hypertension, T2DM, obesity, or smoking status as binary variables (1=yes, 0=no), sex as a 553 
binary variable (0=female, 1=male), age as quantitative variable, older age over 65 (note that age over 65 554 
is used only for illustrative purposes and is not used in multivariate modeling -- in the multivariate model 555 
age as a quantitative variable is used), and outcome as a binary variable (1=yes, 0=no). The outcome of 556 
interest was coded as 0 until the day it occurred (the date of the first intubation order following admission 557 
or the death date) or the date of analysis, whichever occurred first. Survival curves are generated for the 558 
indicated variables by setting all other variables to their respected averages within the training data. Note 559 
that we dropped patients who experienced the outcome before their initial diagnosis. This is either due to 560 
patients being hospitalized prior to infection (in the case of intubation) or errors in the coded data. We 561 
dropped 121 patients for intubation prior to infection and 12 patients for prior death. We also restricted 562 
the study to 90 days from the start date. One patient was removed for having an event outside of this 563 
range. 564 
 565 
Covariate Correlations 566 
Using the data prepared as discussed above, we computed pairwise statistical correlations between age, 567 
sex as well as history of macular degeneration, complement deficiency disorders, coagulation disorders, 568 
HTN, T2DM, obesity, and CAD. We computed them using data from all suspected patients (tested both 569 
positive and negative) as well as only those patients who tested positive. We used spearman rho and the 570 
tanimoto coefficients (1-Jaccard distance) as our measures of correlation. For the comparison using the 571 
tanimoto coefficient we binarized age as greater than or equal to 65. 572 
 573 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


19 
 

Statistical Software 574 
We used Jupyter Notebooks (jupyter-client version 5.3.4 and jupyter-core version 4.6.1) running Python 575 
3.7 and all fit models using the python lifelines package (version 0.24.4).  576 
 577 
Transcriptomic Analysis of NP swabs 578 
Sample Collection and Processing  579 
Patient specimens were collected with patients’ consent at New York Presbyterian Hospital (NYPH) and 580 

then processed for RT-PCR as described previously30. Nasopharyngeal (NP) swab specimens were 581 

collected using the BD Universal Viral Transport Media system (Becton, Dickinson and Company, 582 
Franklin Lakes, NJ) from symptomatic patients.  583 
 584 
Extraction of Viral RNA and RT-PCR detection  585 
Total viral RNA was extracted from deactivated samples using automated nucleic acid extraction on the 586 
QIAsymphony and the DSP Virus/Pathogen Mini Kit (QIAGEN).  One step reverse transcription to 587 
cDNA and real-time PCR (RT-PCR) amplification of viral targets, E (envelope) and S (spike) genes and 588 
internal control, was performed using the Rotor-Gene Q thermocyler (QIAGEN). 589 
 590 
Human Transcriptome Analysis 591 
RNA-seq reads that mapped unambiguously to the human reference genome via Kraken2 were used to 592 
detect transcriptional responses to SARS-CoV-2 infection as described previously30. Briefly, reads were 593 
trimmed with TrimGalore, aligned with STAR (v2.6.1d) to the human reference build GRCh38 and the 594 
GENCODE v33 transcriptome reference, gene expression was quantified using featureCounts, stringTie 595 
and salmon using the nf-core RNAseq pipeline. Sample QC was reported using fastqc, RSeQC, qualimap, 596 
dupradar, Preseq and MultiQC. Reads, as reported by featureCounts, were normalized using variance-597 
stabilizing transform (vst) in DESeq2 package in R and DESeq2 was used to call differential expression 598 
with either Positive cases vs Negative, or viral load (High/Medium/Low/None) as reported by RT-PCR 599 
cycle threshold (Ct) values. Transcript counts (per million) were used to rank genes and perform gene set 600 
enrichment analysis (GSEA).  601 
 602 
Reverse Transcriptase, quantitative real-time PCR (RT-PCR) 603 
The presence of SARS-CoV-2 in clinical samples was determined by RT-PCR. Briefly, primers for the E 604 
(envelope) gene (which detects all members of the lineage B of beta-CoVs), and the S (spike) gene 605 
(which specifically detect SARS-CoV-2). Samples were annotated using RT-PCR cycle threshold (Ct) 606 
value for SARS-CoV-2 primers as follows: Ct ≤ 18 were assigned "high viral load"; Ct 18 - 24 were 607 
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assigned "medium viral load"; and Ct 24 - 40 were assigned "low viral load" stratifications; Ct > 40 was 608 
classified as negative (-).  609 
 610 

Genetic Analysis of UK Biobank  611 
Data Source 612 
UK Biobank subjects that were of White British descent, in the UK Biobank PCA calculations and 613 
therefore without 3rd degree and above relatedness and without aneuploidy, were used in this study, 614 
totaling 337,147 subjects (181,032 females and 156,115 males) (Bycroft 2018). Of the nearly 500,000 615 
participants, approximately 50,000 subjects were genotyped on the UK BiLEVE Array by Affymetrix 616 
while the rest were genotyped using the Applied Biosystems UK Biobank Axiom Array, with over 617 
800,000 markers using build GRCh37 (hg19). The arrays share 95% marker coverage. We extracted 618 
markers with a minor allele frequency greater than 0.005, INFO score greater than 0.3, and Hardy-619 
Weinberg equilibrium test mid-p value greater than 10-10 using PLINK231. UKBB version 3 Imputation 620 
combined the Haplotype Research Consortium with the UK10K haplotype resource using the software 621 
IMPUTE4 (UK Biobank White paper). Association analyses were performed using a logistic regression 622 
model with additive gene dosage and covariates including age at 2018, sex, first 10 principal components 623 
(provided by the UK Biobank), and the genotyping array the sample was carried out on. We determined 624 
the alpha threshold for study-wide significance using an empirical permutation analysis (see Empirical 625 
Permutation Evaluation to set Alpha Thresholds). We performed a study-wide association analysis 626 
comparing variants for subjects that were SARS-CoV-2 positive and required hospitalization against the 627 
entire population of 337,147 subjects 628 
 629 
Targeted Gene Set Definition 630 
The union of coagulation and complement related gene sets (with immunoglobulin genes removed) that 631 
are part of MsigDB was used to define the set of 102 genes used in this study. For each gene, we used the 632 
transcriptional start and stop site from the hg19 build of the human genome to define a catchment window 633 
of 80kbp. From the 805,426 variants profiled in the UK Biobank genotyping data after quality control and 634 
QC filters using PLINK2 (see above), 3,540 variants within the transcribed region of the genes of interest 635 
or within 80kbp flanking the transcribed region, 2,888 are within 60kbp, 2,292 are within 40kbp, and 936 636 
are located in haplotype blocks with study genes. 637 
 638 
Empirical Permutation Evaluation to set Study-wide Alpha Thresholds 639 
We used permutation to estimate null distributions of the number of hits expected at 9 alpha thresholds 640 
varying from (5x10-5 to 0.05) and by varying the distance threshold from 40kb to 80kb. As shown 641 
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previously, 80% of GWAS hits are within 60Kb of the nearest gene32. Further, as shown in Supplemental 642 

Figure S4, we empirically determined that the majority of eQTLs (>70%) are within 60kb of gene bodies. 643 
We performed two sets of permutation analyses: (i) permuted the initial set of genes on which the 644 
included variant loci were chosen and (ii) permuted the case/control labels. We repeated each 100 times 645 
and used the resulting data to fit a negative binomial distribution as our estimate of the null. Additionally, 646 
we evaluated each of the sampled SNP variant sets from (i) and compared their MAF distribution with the 647 
MAF distribution of the Complement and Coagulation set. We removed any sets that were significantly 648 
different (nominal p-value < 0.05) according to a Mann-Whitney U test (52 of 100 sets were removed due 649 
to this criterion; see Supplemental Figure S5). We found that the negative binomial fit the data the best 650 
according to a goodness of fit test (Supplemental Figure S2). We used this distribution to assess statistical 651 
significance for each combination of alpha and distance values. The result is two estimates of the 652 
significance for each alpha (α), distance (d) pair, P(i)

α,d and P(ii)
α,d, from permutation analyses (i) and (ii) 653 

above, respectively. For example: 654 
 655 

X(i)
α,d ~ NB(r, p) 656 

P(i)
α,d = 1-CDFNB(r,p)(kα,d) 657 

 658 
where X(i)

α,d is the number of permutation loci with a p-value under the threshold, α. The parameters r and 659 
p of the negative binomial represent the number of successes/failures and the probability of success, 660 
respectively. Both r and p are fit using non-linear least squares (the curve_fit function in scipy.optimize) 661 
on X(i)

α,d, the count data from the permutation analyses for the given α and d. The P is then calculated 662 
using the CDF of the fitted negative binomial distribution. 663 
 664 
For the gene set permutation analysis (i.e. (i) above) we evaluated each of the 100 replicates to confirm 665 
that the minor allele frequency distribution was statistically indistinguishable from that of the complement 666 
and coagulation gene set variants. We did so by performing a Mann-Whitney U test between the two 667 
distributions and excluded any replicates that showed a significant difference (nominal p-value < 0.05). 668 
52 replicates were excluded because of this requirement (Figure SX). This MAF distribution analysis is 669 
not necessary for the case/control permutation analysis (i.e. (ii) above) as the loci are the same in each 670 
replicate and it is the case/control labels that are permuted.  671 
 672 
Finally, to set the study-wide alpha for each study we chose the greatest threshold value that was gave a P 673 
of 0.05 or less for both permutation analysis method: 674 
 675 
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max α  s.t. P(i)
α,d < 0.05 and P(ii)

α,d < 0.05. 676 
 677 
Finally, this entire process was repeated for two cohorts of patients, (a) the initial COVID cohort released 678 
by the UK Biobank in April 2020 and (b) the updated COVID cohort released in May 2020. The chosen α 679 
for April was 0.001 and the chosen α for May was 0.0025. A data file of all of the distribution fit results 680 
and their resulting chi-squared goodness-of-fit statistics is made available in the supplemental materials.  681 
 682 
We also performed this permutation significance estimation for the haplotype-derived SNP sets although 683 
the distances for all loci chosen using that method are below the minimum in this analysis of 40Kb so 684 
those results are constant with regards to distance (Figures S3a-b). The chosen α for the LD-derived SNP 685 
sets is 0.01 and 0.0075 for April and May, respectively. 686 
 687 
Haplotype block-based selection of SNPs 688 

We identified haplotype blocks based on linkage disequilibrium within the UK Biobank data genotype  689 

data of the 337,147 subjects using PLINK1.9, where the lower 90% confidence interval is greater than 690 

0.70 and the upper 90% confidence interval is at least 0.98. We identified blocks of interests, and 691 

subsequently the variants within those blocks, as those that contain any part of the genes of interest as 692 

denoted by the transcriptional start and end sites from the hg19 build of the human genome. From the 693 

805,426 variants profiles in the UK Biobank genotype data, we identified 7,281 variants within the genes 694 

of interest. After applying additional QC filters using PLINK2, 936 variants remained for analysis.    695 

 696 

Software 697 
We used PLINK v2.00a2LM 64-bit Intel (26 Aug 2019) to run the genetic association analysis. We used 698 
PLINK v1.90b6.10 64-bit (17 Jun 2019) to identify haplotype blocks based on linkage disequilibrium. We 699 
used Jupyter Notebooks (jupyter-client version 5.3.4 and jupyter-core version 4.6.1) running Python 3.7, 700 
numpy 1.18.1, and scipy 1.4.1 for the permutation analyses.  701 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


23 
 

REFERENCES 702 
 703 

1 Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design 704 
of improved alpha-ketoamide inhibitors. Science 368, 409-412, 705 
doi:10.1126/science.abb3405 (2020). 706 

2 Dai, W. et al. Structure-based design of antiviral drug candidates targeting the SARS-707 
CoV-2 main protease. Science, doi:10.1126/science.abb4489 (2020). 708 

3 Gordon, D. E. et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug 709 
Targets and Potential Drug-Repurposing. bioRxiv, 2020.2003.2022.002386, 710 
doi:10.1101/2020.03.22.002386 (2020). 711 

4 Chen, G. et al. Clinical and immunological features of severe and moderate coronavirus 712 
disease 2019. J Clin Invest, doi:10.1172/JCI137244 (2020). 713 

5 Moore, B. J. B. & June, C. H. Cytokine release syndrome in severe COVID-19. Science, 714 
doi:10.1126/science.abb8925 (2020). 715 

6 Lasso, G. et al. A Structure-Informed Atlas of Human-Virus Interactions. Cell 178, 1526-716 
1541 e1516, doi:10.1016/j.cell.2019.08.005 (2019). 717 

7 Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement System 718 
Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 6, 262, 719 
doi:10.3389/fimmu.2015.00262 (2015). 720 

8 Holers, V. M. Complement and its receptors: new insights into human disease. Annu Rev 721 
Immunol 32, 433-459, doi:10.1146/annurev-immunol-032713-120154 (2014). 722 

9 Liszewski, M. K., Java, A., Schramm, E. C. & Atkinson, J. P. Complement Dysregulation 723 
and Disease: Insights from Contemporary Genetics. Annu Rev Pathol 12, 25-52, 724 
doi:10.1146/annurev-pathol-012615-044145 (2017). 725 

10 Wu, J. & Sun, X. Complement system and age-related macular degeneration: drugs and 726 
challenges. Drug Des Devel Ther 13, 2413-2425, doi:10.2147/DDDT.S206355 (2019). 727 

11 Ambati, J., Atkinson, J. P. & Gelfand, B. D. Immunology of age-related macular 728 
degeneration. Nat Rev Immunol 13, 438-451, doi:10.1038/nri3459 (2013). 729 

12 Degn, S. E., Jensenius, J. C. & Thiel, S. Disease-causing mutations in genes of the 730 
complement system. Am J Hum Genet 88, 689-705, doi:10.1016/j.ajhg.2011.05.011 731 
(2011). 732 

13 Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with 733 
COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062, 734 
doi:10.1016/S0140-6736(20)30566-3 (2020). 735 

14 Nicholson-Weller, A. & Wang, C. E. Structure and function of decay accelerating factor 736 
CD55. J Lab Clin Med 123, 485-491 (1994). 737 

15 Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 738 
Nature 562, 203-209, doi:10.1038/s41586-018-0579-z (2018). 739 

16 Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a 740 
wide range of complex diseases of middle and old age. PLoS Med 12, e1001779, 741 
doi:10.1371/journal.pmed.1001779 (2015). 742 

17 Smith, N. L. et al. Genetic predictors of fibrin D-dimer levels in healthy adults. Circulation 743 
123, 1864-1872, doi:10.1161/CIRCULATIONAHA.110.009480 (2011). 744 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


24 
 

18 Han, X. et al. Genome-wide meta-analysis identifies novel loci associated with age-745 
related macular degeneration. J Hum Genet, doi:10.1038/s10038-020-0750-x (2020). 746 

19 Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 747 
550, 204-213, doi:10.1038/nature24277 (2017). 748 

20 Rehman, A. A., Ahsan, H. & Khan, F. H. alpha-2-Macroglobulin: a physiological guardian. 749 
J Cell Physiol 228, 1665-1675, doi:10.1002/jcp.24266 (2013). 750 

21 Gary-Bobo, M., Nirde, P., Jeanjean, A., Morere, A. & Garcia, M. Mannose 6-phosphate 751 
receptor targeting and its applications in human diseases. Curr Med Chem 14, 2945-752 
2953, doi:10.2174/092986707782794005 (2007). 753 

22 Ermert, D. & Blom, A. M. C4b-binding protein: The good, the bad and the deadly. Novel 754 
functions of an old friend. Immunol Lett 169, 82-92, doi:10.1016/j.imlet.2015.11.014 755 
(2016). 756 

23 Goeijenbier, M. et al. Review: Viral infections and mechanisms of thrombosis and 757 
bleeding. J Med Virol 84, 1680-1696, doi:10.1002/jmv.23354 (2012). 758 

24 Nascimento, E. J. et al. Alternative complement pathway deregulation is correlated with 759 
dengue severity. PLoS One 4, e6782, doi:10.1371/journal.pone.0006782 (2009). 760 

25 Pastor, A. F. et al. Complement factor H gene (CFH) polymorphisms C-257T, G257A and 761 
haplotypes are associated with protection against severe dengue phenotype, possible 762 
related with high CFH expression. Hum Immunol 74, 1225-1230, 763 
doi:10.1016/j.humimm.2013.05.005 (2013). 764 

26 Risitano, A. M. et al. Complement as a target in COVID-19? Nat Rev Immunol, 765 
doi:10.1038/s41577-020-0320-7 (2020). 766 

27 Mastaglio, S. et al. The first case of COVID-19 treated with the complement C3 inhibitor 767 
AMY-101. Clin Immunol 215, 108450, doi:10.1016/j.clim.2020.108450 (2020). 768 

28 Polubriaginof, F. C. G. et al. Challenges with quality of race and ethnicity data in 769 
observational databases. J Am Med Inform Assoc 26, 730-736, 770 
doi:10.1093/jamia/ocz113 (2019). 771 

29 Hosmer, D. W., Lemeshow, S. & May, S. Applied survival analysis : regression modeling 772 
of time-to-event data. 2nd edn,  (Wiley-Interscience, 2008). 773 

30 Butler, D. J. et al. Shotgun Transcriptome and Isothermal Profiling of SARS-CoV-2 774 
Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions. 775 
bioRxiv, 2020.2004.2020.048066, doi:10.1101/2020.04.20.048066 (2020). 776 

31 Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 777 
datasets. Gigascience 4, 7, doi:10.1186/s13742-015-0047-8 (2015). 778 

32 Brodie, A., Azaria, J. R. & Ofran, Y. How far from the SNP may the causative genes be? 779 
Nucleic Acids Res 44, 6046-6054, doi:10.1093/nar/gkw500 (2016). 780 

 781 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

7 14 21 280

S
ur

vi
va

l (
%

)

Days post SARS-CoV-2
diagnosis

7 14 21 280

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

7 14 21 2807 14 21 280

in
tu

ba
tio

n 
(%

)

Days post SARS-CoV-2
diagnosis

Intubation Mortality
a b

dc

Macula

T2D

Hypertension

CAD

Sex (Male)

Obesity

Coagulation

Age (≥65 yrs)

CD

Macula

T2D

Hypertension

CAD

Sex (Male)

Obesity

Coagulation

Age (≥65 yrs)

CD

Figure 1

95
85
75
65

95
85
75
65

95
85
75
65

95
85
75
65

Intubation rate Mortality rate

Cough
(reference)

Obesity

Hypertension

T2D

Macula

Coagulation

CAD

Hazard Ratio (95% CI)

Mortality

Cough
(reference)

Obesity

Hypertension

T2D

Macula

Coagulation

CAD

Hazard Ratio (95% CI)

Intubation

e f

Age≥65
nT = 2400
nE = 243

Sex (Male)
nT = 3175
nE = 307

Macula
nT = 88
nE = 14

CD
nT = 4
nE = 0

Coagulation
nT = 1239
nE = 126

Hypertension
nT = 1988
nE = 210

T2 Diabetes
nT = 911
nE = 111

Obesity
nT = 831
nE = 77

CAD
nT = 1698
nE = 199

Cough
nT = 725
nE = 76

Age≥65
nT = 2400
nE = 513

Sex (Male)
nT = 3175
nE = 366

Macula
nT = 88
nE = 22

CD
nT = 4
nE = 0

Coagulation
nT = 1239
nE = 212

Hypertension
nT = 1988
nE = 372

T2 Diabetes
nT = 911
nE = 191

Obesity
nT = 831
nE = 151

CAD
nT = 1698
nE = 340

Cough
nT = 725
nE = 92

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


Figure 2

CD46
F2R
CD59
PROS1
SERPINF2
FCN3
C8G
A2M
C1QC
C1QB
C1QA
CR1L
SERPING1
C4B
C4A
SERPINE1
C1S
C2
CFB
CFH
C3
TFPI
PLAT
HPSE
CD55
THBD
C5AR2
C5AR1
F5
FCN1
SERPINA1
C4BPA
CPB2
GP1BA

SARS-CoV-2 (-) low medium high
SARS-CoV-2 (+)

C2

0

5

10

15

C3

0

200

400

600

800CFB

0

20

40

60

80

CFH

0

50

100

150

200

C4A

0

5

10

15

C4B

0

5

10

15

SERPING1

0

100

200

300

0

100

200

300 C1QA

0

100

200

300 C1QB

0

200

400

600 C1QC

0

10

20

30
F5

0

200

400

600

800

1000
C5AR1

0

50

100

150 THBD

0

10

20

30 C5AR2

0

100

200

300

400 CD59

0

50

100 PROS1

0

10

20

30

40 FCN1

0

5

10 C8G

c d e

f

negative low medium high SARS-CoV-2 (+)

KEGG COMPLEMENT AND COAGULATION CASCADES

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NES: 1.97
Pvalue: <1x10-4

FDR: 6.8x10-3

FWER: 1.1x10-3

low

NES: 2.04
Pvalue: <1x10-4

FDR: 6.3x10-3

FWER: 4.0x10-4

medium

NES: 2.07
Pvalue: <1x10-4

FDR: 1.6x10-4

FWER: 2.0x10-4

high

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NES: 1.85
Pvalue: <1x10-4

FDR: 3.4x10-2

FWER: 3.4x10-2

low

NES: 2.95
Pvalue: <1x10-4

FDR: <1x10-4

FWER: <1x10-4

medium

NES: 2.51
Pvalue: <1x10-4

FDR: <1x10-4

FWER: <1x10-4

high

HALLMARK COMPLEMENT

a b

Complement

-2 0 2 4
0.0001

0.001

0.01

0.1

1

HALLMARK GENE SETS

Low
Medium
High
SARS-CoV-2 (+)

Inflammatory_response
Interferon_alpha_response
IL6_JAK_STAT3_signaling

NES

FD
R

 P
va

lu
e

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


Figure 3

N
or

m
. E

xp
re

ss
io

n

-2.0

-1.0

0

1.0

2.0

CC
(447)

CT
(22)

TT
(0)

CD55 (rs61821114)
Pvalue = 8.9 x10-7

C3

SERPINF2

SERPING1

CD55

F3
C4BPBCFH

F13A1

CFH C4BPB
SERPINF2

F5

C4BC7CFI
SERPING1

A2M

C3

C5AR1
TFPI

-lo
g 10

 (P
va

lu
e)

CD55

N
or

m
. E

xp
re

ss
io

n

-2.0

-1.0

0

1.0

2.0

TT
(241)

TC
(201)

CC
(55)

A2M (rs669)
Pvalue = 1.9 x10-15

40 50 60 70 80 40 50 60 70 80

SNP Phenotype

Kbp from geneP
va

lu
e

(n
um

. o
f S

N
P

s)

40 50 60 70 80

SNP

40 50 60 70 80

Phenotype

Kbp from geneP
va

lu
e

(n
um

. o
f S

N
P

s)

� �

�
�

A
pr

il-
20

20
M

ay
-2

02
0

a

b

c

d

e

�

nu
m

. o
f S

N
P

s

40 50 60 70 80

40 50 60 70 80

nu
m

. o
f S

N
P

s

�

Number of
significant SNPs

Number of
significant SNPs

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 6, 2020. .https://doi.org/10.1101/2020.05.05.20092452doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.05.20092452
http://creativecommons.org/licenses/by/4.0/


Table1. Cohort demographics and outcome associations in patients suspected of SARS-CoV-2 infections

All Patients Positive (C19+) Intubated and C19+ Mortality and C19+ C19+
p

Def. and C19+
g

and C19+
yp
and C19+

yp
Diabetes and 

y
C19+

y
Artery Disease and C19+

g
(Reference) and C19+

N 11,116 6,393 484 618 88 4 1,239 1,988 911 831 1698 2400 725 723
Age (IQR) 52.0 (34.7-69.5) 57.1 (41.5-72.0) 62.3 (53.0-73.3) 76.3 (69.5-86.3) 74.1 (67.2-84.6) 57.9 (49.1-70.9) 61.8 (48.2-77.0) 66.6 (56.4-78.5) 67.2 (57.9-78.2) 57.9 (43.5-71.8) 66.2 (55.9-79.6) 77.4 (70.4-83.5) 59.2 (46.6-72.0) 63.8 (54.8-74.7)

Sex (% Male) 44.8 49.7 63.4 59.2 42 50 42.1 48.5 52.5 32.9 49.8 52 53.4 61.4
Past/Current Smoker (%) 26.8 25.7 27.7 33.7 29.5 50 26.7 30.3 32.4 23.9 31 33.8 25.5 100

Data Source Historical (%) 61.7 62.9 71.3 79.6 100 100 97.9 98.4 97.4 98.6 96.2 65.6 81.9 79.9

Asian (%) 2.7 2.4 0.8 0.8 0 0 1.9 1.5 1.4 1 1.8 1.4 1.7 0.8
Black/African American (%) 21.2 22.2 21.5 17.5 17 25 20.2 20.9 23.8 21.4 21.1 22.9 18.2 24.5

White (%) 31.3 28.4 23.6 27.3 36.4 0 34.1 30.8 27.8 29.8 33.7 31.3 28.4 31.4
Other (%) 26.6 27.9 31 32.4 28.4 50 24.4 27.5 27 29.1 24.7 28.6 31 24.8

Declined (%) 18.1 19.1 23.1 22 18.2 25 19.5 19.3 20 18.7 18.7 15.8 20.7 18.5

Hispanic (%) 31.8 34.2 48.8 48.7 59.1 50 49 48.5 49.6 54.3 44.3 37 51 35.1
Not Hispanic (%) 39.5 37 27.9 28.8 25 25 30.9 30.6 29.2 26.5 34 38 25.2 40.5

Declined/Other (%) 28.7 28.8 23.3 22.5 15.9 25 20.1 20.9 21.2 19.3 21.6 25 23.7 24.3

Hypertension (%) 28.2 31.1 43.4 60.2 89.8 100 72.2 100 85.3 75.6 77.3 46.2 49.1 53.3
Type 2 Daibetes (%) 12.6 14.2 22.9 30.9 54.5 25 34.5 39.1 100 40.2 38.2 22.3 23.3 27.2

Obesity (%) 12 13 15.9 18.6 38.6 0 34.4 31.6 36.7 100 31.1 13.5 20.4 18.8
CAD (%) 26.8 26.6 41.1 55 79.5 100 65.4 66 71.2 63.5 100 40.6 40.3 46.9

Mech Ventilation 9.2 (8.7-9.8) 7.6 (6.9-8.2) 100.0 (100.0-100.0) 33.0 (29.3-36.7) 15.9 (8.3-23.6) 0.0 (0.0-0.0) 10.2 (8.5-11.9) 10.6 (9.2-11.9) 12.2 (10.1-14.3) 9.3 (7.3-11.2) 11.7 (10.2-13.2) 10.1 (8.9-11.3) 10.5 (8.3-12.7) 11.1 (8.8-13.4)
Mortality 10.2 (9.7-10.8) 9.7 (8.9-10.4) 42.1 (37.7-46.5) 100.0 (100.0-100.0) 25.0 (16.0-34.0) 0.0 (0.0-0.0) 17.1 (15.0-19.2) 18.7 (17.0-20.4) 21.0 (18.3-23.6) 13.8 (11.5-16.2) 20.0 (18.1-21.9) 21.4 (19.7-23.0) 12.7 (10.3-15.1) 15.2 (12.6-17.8)

Intub HR (95% CI) / Univar. -- -- -- -- 2.2 (1.3-3.7)** -- 1.5 (1.2-1.8)** 1.7 (1.5-2.1)** 1.9 (1.5-2.3)** 1.3 (1.0-1.7)* 2.0 (1.7-2.4)** 1.7 (1.4-2.0)** 1.5 (1.1-1.9)** 1.1 (0.9-1.5)
Intub HR (95% CI) / Age & Sex 

Corr. -- -- -- -- 1.8 (1.1-3.1)* -- 1.5 (1.2-1.8)** 1.6 (1.3-1.9)** 1.6 (1.3-2.0)** 1.5 (1.1-1.9)** 1.8 (1.5-2.2)** 1.3 (1.0-1.8) 1.4 (1.1-1.8)** 1.0 (0.7-1.3)
Death HR (95% CI) / Univar. -- -- -- -- 3.0 (2.0-4.6)** -- 2.3 (2.0-2.8)** 3.8 (3.2-4.4)** 2.9 (2.5-3.5)** 1.6 (1.3-2.0)** 3.7 (3.2-4.3)** 8.8 (7.1-10.9)** 1.3 (1.1-1.7)* 1.5 (1.2-1.9)**
Death HR (95% CI) / Age & 

Sex Corr. -- -- -- -- 1.5 (1.0-2.3)* -- 1.8 (1.5-2.1)** 2.3 (2.0-2.7)** 2.0 (1.7-2.4)** 1.9 (1.6-2.4)** 2.2 (1.9-2.6)** 1.7 (1.2-2.3)** 1.3 (1.1-1.6)* 1.1 (0.9-1.4)
* p < 0.05

** p < 0.001
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April 2020 Phenotype Permutation

Supplemental Figure S2a
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April 2020 SNP Permutation

Supplemental Figure S2b
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May 2020 Phenotype Permutation

Supplemental Figure S2c
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May 2020 SNP Permutation

Supplemental Figure S2d
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April 2020 Haplotype Phenotype Permutation

Supplemental Figure S2e
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Supplemental Figure S2f
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