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Bi2Fe4O9(BFO) nanocubes were prepared in proportion using a simple and easy

hydrothermal method, and were then assembled on reduced graphene oxide (rGO)

multilayered sheets. The excellent microwave absorption properties of Bi2Fe4O9/rGO

nanohybrids were achieved by properly adjusting the impedance matching and getting

a high attenuation capability contributed from different ratios of the BFO and rGO.

A minimum reflection loss value of −61.5 dB at 12.8 GHz was obtained with a

Bi2Fe4O9/rGO ratio of 2:1, and the broadest bandwidth below −10 dB was up to 5.0

GHz (from 10.8 to 15.8 GHz) with a thickness of 2.4mm. Additionally, the elementary

mechanism of wave absorption performance is also investigated.

Keywords: Bi2Fe4O9(BFO) nanocubes, Bi2Fe4O9/rGO nanohybrids, wave absorption property, a potential EMW

material, hydrothermal method, a rather wide frequency band, synergy effect

INTRODUCTION

Communication equipment, such as mobile phones and fax machines, have brought great
convenience to people. At the same time, because of their electromagnetic radiation pollution,
they also bring many hidden dangers. In order to address this issue, electromagnetic (EM)
wave absorbing materials have attracted an abundance of attention from various fields (Sun
et al., 2014; Li et al., 2018a; Liu et al., 2019; Mo et al., 2019). Magnetic materials and their
composites are accepted as one of the most significant EM absorbing materials, owing much
to their high EM performance, broad frequency range response, low price, easy preparation,
and excellent chemical stability (Zhao et al., 2013; Dhawan et al., 2015; Qiu et al., 2017; Tang
et al., 2017). However, traditional magnetic metal absorbing materials (Fe, Co, Ni) with a
high complex permeability make it difficult to satisfy the impedance match in materials and
free space (Xu et al., 2018a). Unlike common magnetic metals, ferrites with a relatively high
Snoek’s limit, medium-built saturation magnetization, and coercivity have become a popular
new EM wave absorbing material (Rusly et al., 2018; Trana et al., 2019; Zhu et al., 2019).
For example, Lee et al. Prepared M-type hexaferrites BaFe12−xCoxO19 (x = 0–2), which were
synthesized by a co-precipitation technique, in which relatively high reflection loss (RL) values
with the frequency range of 0.1–15 GHz was obtained (Trana et al., 2019). Matori et al. used
a mechanical activation high energy ball milling (HEBM) method to study the EM properties
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of multiferroic BiFeO3 composites under temperatures of
700–800◦C (Rusly et al., 2018). Although ferrites have shown
immense potential as an EM wave absorbing material, single
phase ferrite can still not fully meet the characteristics of
being light weight, having a thin thickness, strong absorption,
wide absorption bandwidth, and environmental stability.
Beyond all doubt, ferrites need to be compounded with other
materials to further improve their performance in the field of
wave absorption.

To date, there are two main strategies to make ferrite
excellent microwave absorbing materials (Liu et al., 2020).
Firstly, it is possible to introduce dielectric materials into
ferrite becoming an EM compound. Lin et al. fabricated flower-
like MoS2@Bi2Fe4O9 MPs with a quite broad bandwidth of
5.0 GHz and a high reflection loss of −52.3 dB (Lin et al.,
2018). Yang et al. have successfully prepared a rGO/porous
Bi2Fe4O9 composite via a dissolution-recrystallization/reduction
process, which possesses outstanding EM wave absorption
properties and a large absorption bandwidth (Dai et al.,
2019). Zhang et al. synthesized a rGO/BiFeO3 composite
with the maximum reflection loss value of −46.7 dB (Gao
et al., 2019). Secondly, it is also possible to investigate
constructional EM materials with special particle structures
and microscopic shapes (Feng et al., 2017; Zhang et al., 2018;
Huang et al., 2019). For example, Huang et al. prepared
C/CoFe2O4 nanocomposites with a special porous structures
root in eggshell membrane, which was shown to have a
brilliant EM absorption capability (Huang et al., 2019). Well-
bedded ZnFe2O4@SiO2@rGO core-shell microspheres exhibited
an outstanding microwave absorption performance (Feng et al.,
2017). Such ferrite matrix materials have shown more excellent
EM wave absorption properties than single ferrite due to the
particular microstructure and the concept of bonding magnetic
loss to dielectric loss.

Inspired by of the vast amount of research on two dimensional
(2D) materials, rGO represents the unique characteristics
needed to acquire unparalleled chemical, physical, and electronic
properties because of the electron confinement in dimensions
(Zhu et al., 2010; Wang et al., 2011; Guo H. et al., 2013).
Furthermore, the fantastically great specific surface area and
positive electrical conductivity makes rGO an extremely ideal
material to incorporate with magnetic loss materials to acquire
effective regulation of EM parameters (Hummers and Offeman,
1958; GuoH. B. L. et al., 2013; Zhang et al., 2013, 2014; Shen et al.,
2018; Prasad et al., 2019). Han et al. created a two-step process
which involves a hydrothermal reaction and surface modification
to obtain the graphene-wrapped ZnO hollow spheres that exhibit
an maximum reflection loss of −45.1 dB (Han et al., 2014). One
Co3O4 nanosheet/rGO composite, which exhibited a reflection
loss value of −45.15 dB as well as an effective broad bandwidth
of 5.61 GHz, was synthesized (Zhang et al., 2013). Therefore, it
can be concluded that the combination of rGO and ferrites with
different microstructures is not only able to satisfy the demand
of impedance match, which offers an effective way to develop
high performance microwave absorbers, but also results in some
additional functions which facilitate their practical application in
the absorbers.

Separate from the mainstream research on the photocatalysis
(Janisse, 2013) and gas sensor properties (Mohapatra et al.,
2017) of BFO, this research focuses on the EM wave absorbing
ability of BFO. In this work, we prepared an efficient and facile
method to synthesize a large amount of three-dimensional BFO
nanocubes which easily load on the rGO nanosheets with varying
proportions. PVDF was used to function as a disperse matrix
due to the synergy effect between dielectric polymer matrixes and
parameters that could further improve the EM wave absorption
performance of the composites. The exceptional advantages
of PVDF, i.e., its flexibility, low weight, and high chemical
corrosion resistance, can also benefit the practical applications
of the BFO/rGO/PVDF composite absorber (Liu et al., 2015).
Moreover, the wave absorption ability of this material has been
significantly advanced through the introduction of rGO and the
purpose of meeting the optimal impedance match is achieved
by changing the ratio of BFO and rGO to adjust the magnetic
and dielectric properties of the compound. As expected, an
impressive reflection loss of −61.5 dB and a superior frequency
band over 5 GHz is achieved by adjusting the proportion of
Bi2Fe4O9 and rGO to a certain ratio of 2:1 when the thickness
of the absorber is just 2.4mm. Additionally, we have further
investigated themechanism of EMWabsorbing properties as well
as the influence of dielectric loss, magnetic loss, and impedance
match for the materials. To sum up, the method of synthesizing
BFO/rGO nanohybrids is simple and efficient and a great EMW
absorbing performance can be achieved with a thin thickness
which indicates that the BFO/rGO nanohybrids have great
potential in practical applications.

EXPERIMENTAL

Fabrication of the Bi2Fe4O9 Nanoparticles
and the Bi2Fe4O9/rGO Nanohybrids
Graphene Oxide (GO) was prepared by a modified Hummer’s
method (Hummers and Offeman, 1958). The synthesis of
Bi2Fe4O9 nanocubes was conducted via a simple hydrothermal
reaction (Han et al., 2006). Briefly, 125 mmol of Fe(NO3)3·9H2O
and Bi(NO3)3·5H2O was added into a 100mL steel autoclave.
Then, a KOH solution of 12 mol/L was slowly poured into the
autoclave until 70–80% of its volume stopped. Subsequently,
50 µl of concentrated hydrochloric acid was added into the
autoclave. The reaction mixture solution was constantly stirred
by the magnetic stirring apparatus for 45min. After that, the
autoclave was placed in the oven at 200◦C for 24 h. Finally, the
product was washed several times with deionized water and then
dried at 60◦C in the oven.

The Bi2Fe4O9/rGO nanohybrids were synthesized by a non
in situ composite method. Firstly, the 40mg of graphene oxide
was put in 60ml of deionized water with ultrasonic treatment
for 2 h to obtain a homogeneous dispersion. Then 525 µl of
ammonia and 33 µl of hydrazine hydrate were added into the
above solution, and then the solution was heated to 90◦C while
stirring under an oil bath condition. After stirring for 2 h, the
solution temperature was reduced to room temperature and then
the Bi2Fe4O9 nanoparticles were added into the solution, with
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constant sonicating for an extra 3 h. Finally, the black mixture
was washed several times with the deionized water after collecting
by centrifugation and then dried in an oven at 60◦C for 12 h
to acquire Bi2Fe4O9/rGO nanohybrids. The mass ratio between
Bi2Fe4O9 and rGO were 3:1, 2:1, and 1:1, respectively.

Measurements of Microwave Absorption
Properties
The test samples were prepared by mixing the Bi2Fe4O9/rGO
nanohybrids with the PVDF matrix at a different weight
ratio of 10, 20, and 30 wt%. The mixtures were subsequently
pressed into concentric annular samples (φout = 7.00mm and
φin = 3.04mm). To investigate the complex permittivity and
permeability values from 2 to 18 GHz, an Agilent N5230C PNA-L
Network Analyzer was used with a coaxial wire setup.

Characterization
The morphologies and sizes of the Bi2Fe4O9 nanocubes were
characterized using a scanning electron microscopy (SEM), a
field emission scanning electron microscopy (FE-SEM), and an
X-ray diffractometer (XRD) with CuKα radiation. To evaluate
Raman spectra, a Laser Raman spectroscopy was adopted.
Fourier transform infrared spectra (FT-IR) were obtained by a
FT-IR spectrometer (Thermo Scientific) to observe the surface
functional groups of GO and rGO. Magnetic properties of
Bi2Fe4O9 samples were detected under normal conditions by a
Vibrating Sample Magnetometer (VSM).

RESULTS AND DISCUSSION

To study the crystalline structure and phase composition of
the sample, the XRD pattern of the Bi2Fe4O9 sample can be
seen in Figure 1A. The pure Bi2Fe4O9 nanoparticles successfully
synthesized by the hydrothermal method are well-crystallized
without any impurities and attribute the orthorhombic structure
in accordance with the standard data (JSPDS card No.25-0090).
From Figure 1B, the Raman spectrum shows the typical G band
at 1,570 cm−1 and D band at 1,340 cm−1. Here, ID/IG, which
presents the intensity ratio of D band (disordered carbon) to G
band (sp2 carbon), is a common standard for determining the
degree of disorder of graphitic layers (Wang et al., 2018; Xu
et al., 2018b). According to the Raman spectra in Figure 1B,
it is not difficult to conclude that the value of ID/IG for rGO
(1.61) is higher than the value of GO (1.06), reflecting a higher
degree of in- plane defect and edge defect in the rGO due to
the reduction process. These defects are closely related to the
microwave absorption ability of the materials (Wang et al., 2013).
The FT-IR spectrum of GO and rGO are given in Figure 1C in the
range of 500–4,000 cm−1. For pure GO, the broad peak located
at about 3,350 cm−1 corresponds to O-H stretching vibrations of
hydroxyl groups and HOH hydrogen-bonded owing to residual
water (Pan et al., 2017; Zhu et al., 2019). The characteristic
peak presenting at 1,715 and 1,614 cm−1 represent the C = O
stretching vibration of carbonyl groups and the C = C skeletal
stretching vibration of aromatic carbon. As for the peak at 1,372

FIGURE 1 | (A) XRD image of Bi2Fe4O9, (B) Raman spectra, (C) FTIR spectra of GO and rGO, (D) magnetic hysteresis loops of Bi2Fe4O9 and all kinds of ratio of

BFO: rGO.
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and 1,039 cm−1, this can be considered to be carboxy C-OH
stretching vibration and epoxy C-O stretching vibration (Xu
et al., 2018b). For rGO, it is obvious that quite a few oxygen-
containing functional groups have gone, and the reduction of the
hydroxyl peak has exhibited some offset according to the FT-IR
spectra, indicating the high reduction of GO. And the new peaks
which appeared around 1,164 cm−1 are the peak of secondary
ammonia produced by hydrazine hydrate in the reduction
process. Figure 1D, The M-H curves show that the BFO sample
is a weakly magnetic substance and with the introduction
of rGO, the saturation magnetization decreases further which
indicates that dielectric loss plays an important role in
Bi2Fe4O9/rGO nanohybrids.

To further observe the microstructure and morphology
of Bi2Fe4O9 and Bi2Fe4O9/rGO nanohybrids, the SEM
samples were analyzed. Figures 2a–c present the SEM
image of the BFO sample, which shows the uniform bulk
Bi2Fe4O9 cubes with an edge length of 300–800 nm. It
is observed that the faces of the Bi2Fe4O9 structures are
basically flat, though some of these cubes have a little bit
of debris on their surface. Furthermore, cubic structure
is the only form, and the particles are more regular and
easier to prepare in large quantities. From the FESEM image
(Figure 2d) for the Bi2Fe4O9/rGO composite, we can easily
see that Bi2Fe4O9 cubes with an orderly pore distribution are
embedded on the graphene, showing a noticeable 3D bulk-
like morphology. To explore the distribution of elements,
elemental mappings of Bi2Fe4O9/rGO nanohybrids are
displayed in Figures S1c, S2. The elemental mapping images
indicate that Bi, Fe, O, and C disperse homogeneously in
Bi2Fe4O9/rGO nanohybrids. The good dispersion of these
nanocubes in rGO may contribute significantly to the EM wave
absorption properties.

FIGURE 2 | SEM image (a,b,c) of Bi2Fe4O9 nanocube, FESEM image (d) of

Bi2Fe4O9/rGO nanohybrids.

MICROWAVE ABSORPTION
PERFORMANCE

To explore the EM wave absorption performance of BFO
nanocubes and BFO/rGO nanohybrids, various proportions of
the products were mixed with PVDF to form the compounds via
a hot-press process (Zhang et al., 2016). The complex permittivity
εr (εr = ε′ - jε′′) and complex permeability (µr = µ′ - jµ′′)
for several materials are presented in Figure 3. Among them,
the complex permittivity real part ε′ represents the storage
capability of electric energy and the permittivity imaginary part
ε′′ represents the loss capability of electric energy; complex
permeability real part µ′ stands for the storage capability of
magnetic energy and permeability imaginary part µ′′ stands for
the dissipation of magnetic energy (Zhou et al., 2017). It can
be concluded that the values of ε′ and ε′′ for all content in
the BFO/rGO nanohybrids are much bigger than that of pure
phase of BFO in Figures 3A,B. As shown in Figures 3C,D, the
decline of µ′ and µ′′ for BFO nanoparticles is smooth; at the
same time, the decline ofµ′ andµ′′ for all BFO/rGO nanohybrids
is also smooth from 6 to 18 GHz, but the value of µ′ and µ′′

for BFO/rGO nanohybrids shows a sharp decline with increasing
frequency from 2 to 6 GHz. The variation curves of the complex
permittivity and complex permeability are quite untidy. We
suspect this peculiar phenomenon is related to the magnetic
loss mechanism.

According to the transmission line theory, the reflection loss
(RL) was calculated to study the EM microwave absorption
properties, where normalized input characteristic impedance
(Zin) is calculated as:(Raghvendra et al., 2018)

Zin =
√

µr

εr
tanh

[

j
(

2fπd/c
)]√

µrεr (1)

R = 20log

∣

∣

∣

∣

zin-1

zin+ 1

∣

∣

∣

∣

(2)

Where c is the velocity of light in free space, d is the thickness of
the absorber, and f is the frequency.

From observation, it is clearly shown that the dielectric
loss values of all contents of the BFO/rGO nanohybrids
are higher than their magnetic loss values in Figures 4A,B.
Moreover, the dielectric loss values with the filler loading
of 20 wt% BFO and 20 wt% BFO/rGO illustrate that the
dielectric loss values are enhancedmarkedly after combining with
rGO. There are two dominant common dielectric polarization
mechanisms which included space charge polarization and
dipolar polarization in the gigahertz frequency range. According
to Maxwell-Wagner theory, interfacial polarization, which is
also famous as space charge polarization occurs frequently in
the composites, were composed of components with various
conductivity and permittivity (Zhang et al., 2014). Compared
with the weak dielectric loss performance of single BFO,
rGO has an excellent dielectric loss due to the dipoles and
some residual oxygen functional groups, including epoxy,
hydroxyl, and carbonyl groups, which generatemore polarization
centers and stronger polarization relaxations(Feng et al., 2017).
Apparently, BFO/rGO/PVDF composites with two kinds of
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FIGURE 3 | Frequency dependence of the (A) real part and (B) imaginary part of permittivity, (C) real part and (D) imaginary part of permeability of Bi2Fe4O9/rGO

nanohybrids with different BFO ratios.

FIGURE 4 | Frequency dependence of dielectric loss (A) and magnetic loss (B) of samples.

interfaces produced more interfacial polarization than the single
interface of the BFO/PVDF composite. Because of the existence
of electrophilic fluorine in its molecular structure, PVDF is
also a strong dipole material (Prasad et al., 2019). All these
conditionsmean BFO/rGO have higher dielectric loss values than
BFO, which promoted the EM wave absorption. However, the
maximum reflection loss peak is not the same frequency as that of
the dielectric loss values, which indicates the main dielectric loss
mechanism for BFO/rGO nanohybrids includes both dielectric
loss and magnetic loss.

For a typical ferrite material, magnetic loss is usually
concerned with eddy current effect, natural ferromagnetic

resonance, domain wall resonance, and hysteresis (Li et al.,
2018b). Generally, the domain wall resonance only operates at
a megahertz frequency range and the hysteresis loss could be
negligible in a weak field. Hence, the analysis of magnetic loss
for BFO/rGO composites should focus on eddy current effect
and natural ferromagnetic resonance. The eddy current loss is
calculated by the nether equation:. If the eddy current loss is the
reason for the magnetic loss, the C0 (C0 = µ′′(µ′)−2 f−1) would
remain constant in the corresponding frequency range (Liu et al.,
2019). From the variation tendency of magnetic loss (shown
in Figure 4B), it can be found that it is same with the decline
of µ′ and µ”. The decline of magnetic loss for all BFO/rGO
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FIGURE 5 | The frequency dependence of (A) |Zin/Zo| and (B) attenuation coefficient (α) for BFO nanocube and Bi2Fe4O9/rGO nanohybrids with a Bi2Fe4O9/rGO

ratio of 1:1, 2:1, and 3:1.

FIGURE 6 | Illustration of microwave wave absorption mechanisms of the Bi2Fe4O9/rGO nanohybrids.

nanohybrids is smooth from 6 to 18 GHz, but the value of
magnetic loss shows a sharp decline with increasing frequency
from 2 to 6 GHz, which indicates that the main magnetic loss
is the eddy current loss. The natural ferromagnetic resonance is
related to the enhancement of anisotropic energy (Ha), which can
be calculated by the following equation: (Guo et al., 2012)

Ha =
4 |K1|
3µ0Ms

(3)

where |K1| is the anisotropic coefficient and Ms is the saturation
magnetization (Zhang et al., 2014). From Figure 2d, the Ms
value of BFO is higher than that of BFO/rGO, which means

the anisotropic energy of BFO/rGO composites is stronger. The
higher anisotropic energy results in the improvement of EM
absorption performance, particularly at high frequencies (Zhang
et al., 2013, 2014). The results confirmed that eddy current loss
and natural ferromagnetic resonance play a common role in
regulating the magnetic loss of the BFO/rGO sample.

It is well-known that a good electromagnetic wave absorber
must satisfy the two conditions of impedance matching and
attenuation characteristic. Impedance matching ratio can be
easily understood, as the incident electromagnetic wave can
be propagated to the efficient absorber and be converted into
heat energy or dissipation through interference, rather than
reflecting directly on the surface of absorbers (Chen et al.,
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FIGURE 7 | 3D image maps of the reflection loss of all composites (w = 10 wt %). (A,B,C) for Bi2Fe4O9/rGO nanohybrids with a Bi2Fe4O9/rGO ratio of 1:1, 2:1, and

3:1.

2017; Fang et al., 2017; Li et al., 2018c; Xu et al., 2019). The
|Zin/Zo| value, which can be calculated by the above Equation
(1), shows impedance matching performance (Chen et al., 2017).
The frequency dependence of the |Zin/Zo| value (d = 2.4mm)
of various samples can be observed in Figure 5A. Compared
with the value of sample BFO, the value of sample BFO/rGO
with a ratio of 2:1 is close to 1 in the high frequency region,
which means that it has a relatively good impedance matching
in the corresponding frequency range. Through Figure 5A, it
is also proven that it is possible to get a better impedance
matching by introducing rGO and changing the ratio of
BFO and rGO.

Another factor which is associated with a desirable
electromagnetic wave absorption property is electromagnetic
attenuation capability, which can be represented by attenuation
constant α on the following equation: (Xiang et al., 2014)

α =
√
2πf

c
×

√

(µ,,ε,, − µ,ε,) +
√

(µ,,ε,, − µ,ε,)2 + (µ,ε,, − µ,,ε,)2

(4)

Where f is the frequency of the EMW and c is the velocity
of light. Hence, excellent microwave absorption performance
is related to the combination of impedance matching and
high attenuation ability. According to the different ratios of
BFO and rGO, adjusting the appropriate basic electromagnetic
parameters is conducive to improving the microwave absorption

performance. As shown in Figure 5B, because the high dielectric
loss and eddy current loss in high frequency, the α value
of BFO/rGO samples show an increase trend which BFO
samples do not have with increasing frequency. It is also
obvious to see the attenuation coefficient value of sample
BFO/rGO with a ratio of 1:1 is pretty high; however, it does
not have a good microwave absorption performance due to
its bad impedance matching. Therefore, the combination of
impedance matching and high attenuation ability is an effective
way to get an excellent microwave absorption performance as
shown in Figure 6. The suitable fundamental electromagnetic
parameters are adjusted by changing the contents of the
BFO and rGO, which are beneficial to enhancing microwave
absorption performance.

Figures 7A–C show the three-dimensional images of
calculated theoretical RLs of the BFO/rGO nanohybrids at
different thicknesses (1–5mm) in the frequency range of 2–18
GHz with the filler loading of 10 wt% with the ratio of BFO/rGO,
1:1, 2:1; and 3:1, respectively. Meanwhile, it is not hard to see that
we can regulate the ability of BFO/rGO composites to absorb
electromagnetic waves by adjusting the ratio of the BFO and
rGO. Since the reflection loss properties are very sensitive to
the content of rGO in BFO/rGO nanohybrids, Figure 8 shows
the calculated RLs for the BFO/rGO absorber with thicknesses
varying from 1 to 5mm in the frequency range of 2–18 GHz
with the filler loading of 5, 10, 15, and 20 wt% with a BFO/rGO
ratio of 2:1. Compared with Figure 8 and Figure S3, with the
introduction of rGO, the microwave absorption performances
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FIGURE 8 | RL curves of the composites with the thickness of 1–5mm in the frequency range of 2–18 GHz for Bi2Fe4O9/rGO nanohybrids with Bi2Fe4O9/rGO ratio of

2:1 under different filler loading. (A): 5% wt, (B): 10% wt, (C): 15% wt, (D): 20% wt.

of composites are largely enhanced. Meanwhile, all the minimal
RL values are <-10 dB in Figures 8A–C with thicknesses of
2–5mm. When the ratio of BFO/rGO is 1:1, optimal RL value
reaches −40 dB at a pretty high frequency with a relatively
small bandwidth in Figure S4c, but the minimum RLs gradually
turn to a low frequency range with the increasing thickness.
The effective absorption bandwidth below −10 dB for the three
absorbers can cover 4.0–18.0 GHz in Figure 8C and Figures S4c,
S5c, respectively. From Figure 8B, one outstanding microwave
absorption property with an optimal RL value of −61.5 dB and
a broad effective bandwidth of 5 GHz (10.8–15.8 GHz), and a
thin matched thickness of 2.4mm, is achieved with the ratio
BFO/rGO of 2:1. It is not difficult to see that the microwave
absorbing ability of the BFO/rGO nanohybrids at various
frequencies can be regulated by changing the ratio of the rGO
and BFO through Figure 8 and Figures S4, S5. Furthermore, we
can conclude that, with the increase of thicknesses of 2–5mm in
Figure 8 and Figures S4, S5, the maximum peak value develops
to a low frequency when increasing the thickness, which indicates
BFO/rGO/PVDF composites will become a potential excellent
microwave absorption material.

CONCLUSION

We have synthesized three-dimensional bulk Bi2Fe4O9

nanocubes using a simple hydrothermal method, and the

Bi2Fe4O9 nanoparticles successfully loaded on graphene
forming a BFO/rGO/PVDF composite absorber. It is
proven that it is a positive way to obtain a potential EMW
material by combining BFO, rGO, and PVDF. Specifically,
the introduction of rGO sheets and PVDF dramatically
ameliorated the impedance matching of BFO because of
the synergy effect between multiple components. When
the ratio of Bi2Fe4O9 to rGO reaches 2:1 with an absorber
thickness of 2.4mm, the composite reaches −61.5 dB at
12.8 GHz, possessing a rather wide frequency band of 10.8–
15.8 GHz (RL <-10 dB). Moreover, the thickness of the
absorber is a pivotal factor in practical applications, meaning
that Bi2Fe4O9/rGO nanohybrids are very significant for
developing thin EM wave absorbing materials. Therefore, the
composite has a broad application prospect in the field of
microwave absorption.
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