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Eduardo Ruiz* and Walterio Mayol-Cuevas

Visual Information Lab, Department of Computer Science, University of Bristol, Bristol, United Kingdom

Agents that need to act on their surroundings can significantly benefit from the

perception of their interaction possibilities or affordances. In this paper we combine

the benefits of the Interaction Tensor, a straight-forward geometrical representation that

captures multiple object-scene interactions, with deep learning saliency for fast parsing

of affordances in the environment. Our approach works with visually perceived 3D

pointclouds and enables to query a 3D scene for locations that support affordances

such as sitting or riding, as well as interactions for everyday objects like the where to hang

an umbrella or place a mug. Crucially, the nature of the interaction description exhibits

one-shot generalization. Experiments with numerous synthetic and real RGB-D scenes

and validated by human subjects, show that the representation enables the prediction

of affordance candidate locations in novel environments from a single training example.

The approach also allows for a highly parallelizable, multiple-affordance representation,

and works at fast rates. The combination of the deep neural network that learns to

estimate scene saliency with the one-shot geometric representation aligns well with the

expectation that computational models for affordance estimation should be perceptually

direct and economical.

Keywords: affordance, affordance detection, visual perception, learning, cognitive robotics

1. INTRODUCTION

The concept of affordance was coined by Gibson (1979) more than five decades ago in the field
of ecological psychology. For Gibson, affordances are action opportunities in the environment
that are directly perceived by the observer. According to this, the goal of vision was to recognize
the affordances rather than independent elements or objects in the scene. In this sense, the
visual perception problem becomes that of recovering the invariant properties “offered” by
the environment.

Being un-linked from action and perhaps motivated by the top-down view adopted in computer
vision research, much of the attention given to the problem of affordances has focused on the
recovery of complex representations of the world, internal symbolic relationships or semantic
category information, which undermines the very notion of direct and economical perception
of affordances.

The idea of being able to directly determine affordances has faced many dilemmas, namely the
challenging problems of visually recovering the relevant properties of the environment in a robust
and accuratemanner. These problems are further accentuated in robotics, due to the fact that robots
need to be able to work in environments that are cluttered, unstructured, and previously unknown.
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Developing a method that is able to work under these
conditions is a difficult problem. More so when traditional
affordance detection approaches often need to recognize objects
semantically in the environment, or they need to have extensively
trained for as many cases (examples) as possible in order
to generalize to novel scenarios. Robots would benefit from
affordance detection approaches that do not rely on object
recognition, nor environment’s features costly to estimate;
dropping or relaxing such requirements in the perception system
can allow robots to have greater generalization capabilities
enabling them to accomplish their task efficiently.

We argue that in order to truly perceive affordances in the
environment in a way that is most useful for cognitive robots,
there is a need for methods that are agnostic to object categories
and free from complex feature representations; paraphrasing
Gibson, to perceive an affordance is not to classify an object
(Gibson, 1979). Furthermore, affordance detection methods for
robotic systems need to allow for fast computations and be able to
generalize to novel scenarios without lengthy and costly training
phases. We hypothesize that geometry on its own provides
enough information to robustly and generically characterize
affordances in such ways.

In previous work (Ruiz and Mayol-Cuevas, 2018), we
introduced a method to characterize interactions between a
3D scene and an object of interest (e.g., pointclouds from
synthetic models), which allows for affordance prediction in
visually perceived environments (e.g., pointclouds from RGB-D
sensors): The Interaction Tensor. In this paper, we extend our
work to allow for several dozens of affordances to be predicted
simultaneously in real-time in unknown scenarios, training from
a single example per interaction. Furthermore, we present a
method that combines the rich geometric information of the
Interaction Tensor with saliency detection learned by a deep-
learning architecture. Figure 1 shows examples of the results of
our proposed method in a previously unknown RGB-D scene.

This paper is organized as follows. Section 2 presents a review
of the related previous works in affordance perception and
learning. Section 3 presented the core of our proposed affordance
representation and the one-shot learning algorithm to detect
affordances in novel (i.e., unknown) synthetic and real RGB-D
scans of indoor environments. Section 4 introduces the hybrid
approach that allows to devise an optimized multiple-affordance
representation by leveraging a state-of-the-art deep learning
method to efficiently parse the 3D input. Section 5 presents
our experiments and evaluations. Finally, section 6 contains the
conclusions and final discussion of our work.

2. AFFORDANCE LEARNING AND
PERCEPTION

Works considering affordance perception appeared in the
computer vision and robotics communities during the early
1990s decade (e.g., Ballard and Brown, 1992; Duchon et al.,
1998). Since then, these fields have given an important amount
of attention to the study of affordances. In this section we
first review previous approaches for affordance perception and

learning; then, we summarize them and introduce the motivation
for our method. In this section we also outline the contributions
of our work in contrast with existing approaches.

2.1. The Computation of Affordances
As reviewed by Horton et al. (2012) works that incorporated
ideas from affordance perception and learning appeared early
on in robotics literature, even before affordances became a
popular topic in the area. Robotic systems with simple yet
efficient perception systems were tightly coupled to mechanisms
for planning and acting (Brooks, 1986), works that took
inspiration from ideas of reactive or behavior-based robotics
and developmental robotics. In fact, a large body of research in
affordances for robotic systems comes from the developmental
robotics field (Asada et al., 2009; Cangelosi and Schlesinger,
2015; Min et al., 2016; Jamone et al., 2018). The main idea
of many of these approaches is to learn a mapping between
percepts and actions by observing the consequences of robot
actions in the environment. Early work of Montesano et al.
(2007, 2008) studied the problem of affordance learning as a
problem of structure learning, representing affordances as the
(probabilistic) relations between actions, objects, and effects.
With such a model a robot is able to learn a mapping between
basic exploratory actions, such as tap and grasp, and the effects
that those actions have on an object. Later works have built on
Montesano’s model and have used statistical relational learning
to encode relations between (afforded) actions and percepts.
For instance, extending the model to encode the effects of
single-object actions relative to other objects, which allows the
robot to learn two-object relational affordances (Moldovan et al.,
2012), higher-level manipulation actions such as makeSpace or
moveAround (Moldovan et al., 2013), and two-armmanipulation
(Moldovan and De Raedt, 2014a). Furthermore, with a similar
model, Moldovan and De Raedt (2014b) learn co-occurrence
probabilities for occluded object search using a list of object
properties and afforded-actions.

The study of relational affordances or the effect that actions
on an object cause on another have also been studied in order
to learn tool usage. Seminal work of Stoytchev (2005) showed
that affordance representations can be used to solve tool-using
tasks by dynamically sequencing exploratory behaviors. More
relevant examples of such approaches are the works by Sinapov
and Stoytchev (2007), Tikhanoff et al. (2013), Goncalves et al.
(2014), Dehban et al. (2016), Antunes et al. (2016), and Saponaro
et al. (2017), where the focus is on learning a mapping that
allows to plan and achieve a target effect or object configuration
in a table-top manipulation scenario. More complex feature
combinations (Mar et al., 2015) andmore tool options (Mar et al.,
2017) are considered by Mar and colleagues, who additionally
take into account the way in which the tools are grasped (e.g.,
rotation around handle). Following a similar approach, based
on exploration, works have used low-level learned behaviors
to bootstrap complex affordance learning (e.g., stackability).
Examples of these methods are Ugur et al. (2014, 2015), Ugur and
Piater (2014, 2015, 2017), where a robot learns rules and object-
effect categories such as unstable, hollow, solid, inserted, etc. that
allow him to build a plan in a tower-building task.
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FIGURE 1 | Our affordance perception approach enables to go into a completely unknown environment and predict good candidate locations affording to Place,

Hang, Fill, etc. everyday objects and also human affordances such as Sitting. With the proposed approach we are able to determine over 80 affordances

simultaneously in real-time on never before seen RGB-D scenes and from a single interaction example. These results are achieved without a script of what goes where

or any prior scene knowledge yet score highly as judged by human observers.

Another important amount of research has been dedicated
to the detection and learning of grasping affordances, which is
a key skill for robots that need to interact with the world. A
good example of works in this area is Kroemer et al. (2012),
who presented a method to directly link object parts to motor
priors for manipulation. In a similar fashion, methods have been
proposed to learn grasp densities capable to generalize over
various partly-similar objects (Detry et al., 2009, 2012, 2013)
or generate grasp hypotheses for pile clearing tasks in order to
perform the grasp with the lowest risk of disturbing the pile
(Katz et al., 2014). In Song et al. (2013, 2015), an approach that
leverages Bayesian Networks is used to learn task-constrained
grasp. The work presented learns grasps that take into account
robot embodiment, task requirements, and is able to generalize
based on human demonstrations. More recently, enveloping
grasp affordances and antipodal grasps were studied in by Pas
and Platt (2016, 2018). These approaches build on geometrical
shapes fitted to pointcloud regions to generate grasp hypotheses.
By using curvature, normals and quadric surfaces fitted to
pointcloud patches, and then HOG features on pointcloud 2D
projections, a robot is able to grasp objects in cluttered scenarios
with high rates of success.

Focusing on learning what the environment affords to others,
e.g., humans, by observing them performing a task or interacting
with objects has also been widely studied. Typical examples here

can be found in Human-Robot Interaction research; for instance,
robots that learn to recognize gestures and anticipate human
actions (Saponaro et al., 2013; Jiang and Saxena, 2014). In Chan
et al. (2014), a robot learns proper grasp configurations for object
handover by observing humans using tools such as knives and
screwdrivers, in Shu et al. (2017), a robot learns social affordances
e.g., human-like behaviors, in human-robot interaction scenarios
such as waving, shaking hands.

In contrast with the methods presented so far, where the
system (e.g., robot) learns affordances by observing the effects
of the interactions, studies in affordances have also made use
of categories or examples provided to the system in the form
of labeled data (e.g., images). In this way, the problem becomes
that of learning a representation or mapping that is able to
generalize to previously unseen data. Early examples of these
are the prediction of hidden affordances such as containment
or sittable based on multiple classifiers and CAD object
models in Aldoma et al. (2012), learning a logistic regression
pushable, liftable and graspable affordances to improve object
segmentation in Kim and Sukhatme (2014), learning object
functional classes in Hinkle and Olson (2013) or containability in
Yu et al. (2015) based on physics simulations. Tool-part or object-
part affordances have also been studied using this approaches
based on collections of labeled data; for instance Myers et al.
(2015) and Rezapour Lakani et al. (2018) associated local shape
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and spatial information to affordances such as grasp, scoop,
support, pound, and cut. In Abelha and Guerin (2017), tool-
part affordances are used to find substitute tools to accomplish a
specified task bymatching against a database of manually-defined
object-task pairs.

More recently, a group of these approaches take advantage
of large collections of labeled data using deep learning methods.
These approaches treat affordance perception and learning as a
segmentation problem in computer vision and typically leverage
the ability of Convolutional Neural Networks (CNNs) to learn
features from annotated data in a fully-supervised manner
(Nguyen et al., 2016; Porzi et al., 2017) or a weakly-supervised
approach (Sawatzky et al., 2017). Further development of such
affordance segmentation works has included object detection
(Nguyen et al., 2017) with larger datasets of RGB images, as
well as object detection and recognition using multi-stream deep
neural networks (Do et al., 2018) to increase the affordance
detection performance. Deep CNNs were also used for scene
functional-region prediction by Ye et al. (2017), leveraging
object detection and recognition architectures first to generate
thousands of region proposals that are then classified according
to functional types such as sittable, turn on/off, and various types
of grasp.

2.2. A Critical Review of Affordance
Research
Although there have been many interpretations and debate
regarding the true nature of the affordance concept, to a certain
extent, roboticists seem to agree that affordances should be
a relation between two (or more) interacting entities. Many
approaches learn these relations as a symbolic representation
that enable a robotic system to plan its actions; while many of
these approaches allow for human-inspired learning stages, the
applications are limited to a small set of objects and affordances.
It is not clear how the models would apply for novel objects and
novel realistic environments.

A similar dilemma is faced by methods that solely focus on
one type of interaction, i.e., grasping or human affordances. In
spite of the remarkable progress in categorization-free affordance
learning (see Zech et al., 2017 for a recent comprehensive
review) the question remains open about the generalization of the
approaches for other types of interaction or scenarios that do not
require manipulation.

Notably, within the last couple of years, a notorious trend
has been observed for learning object or tool affordances, that
is the exploitation of large collections of labeled imagery. One
important challenge faced by these methods is that they usually
need to detect (and even recognize) object instances in the
environment; whereas deep neural networks have proved to
be a powerful tool in this area, generalization and scalability
remain as important challenges. For instance, the models would
need new annotated data and an extensive retraining process in
order to learn new affordances. Besides, the manually annotated
datasets used for training build on the assumption that objects
in the environment have a pre-defined set of affordances; making
uncertain how an agent would discover new affordances, i.e., the
absence of annotated data.

In terms of perception, many earlier approaches tackled
the problem by fitting hand-crafted features (e.g., color, shape,
size) to encode and identify objects properties and placement
(Stoytchev, 2005; Montesano et al., 2007, 2008; Moldovan
et al., 2012; Moldovan and De Raedt, 2014b). Other methods
have leveraged local 3D shape or surface features computed
over pointclouds to represent objects (or object parts) in the
environment; for instance (Aldoma et al., 2012; Kroemer et al.,
2012; Detry et al., 2013; Kaiser et al., 2014; Kim and Sukhatme,
2014; Pas and Platt, 2016). As stated previously, more recently,
perception systems have used machine learning methods over
large amounts of data to learn features directly from the input
data (Nguyen et al., 2017; Do et al., 2018) to identify classes
of objects. Overall, works investigating affordances have used a
variety of features computed usually from visual information.
Remarkably, the representation that remains present across
most approaches is the shape or geometrical information.
We believe that the perception of affordances based on 3D
geometrical information is a far more promising generalization
alternative than attempting to semantically categorize entities
in the world; after all, geometry of everyday objects is what
strongly dictates the physical interactions that are possible with
the environment.

2.3. Context of Our Contributions
In this paper we show that methods based entirely on
geometric information are capable of predicting high quality
and meaningful affordance locations for realistic environments.
In contrast to other works considering geometric information
for affordance perception (Kaiser et al., 2014, 2015, 2016,
2018; Pas and Platt, 2016, 2018), the approach that we
propose does not rely on higher-level geometric primitives nor
complex features computed on the environment (e.g., planes,
cylinders, cubes, etc.). Moreover, the general purpose nature
of the representation that we propose allows to characterize
affordances for simple objects such as a placing a mug but also
enables the representation of more complex interactions like
a human riding a motorcycle. Here, we extend our previous
work Ruiz and Mayol-Cuevas (2018) to allow several dozens
of interactions to be characterized with an unified and scalable
affordance representation.

Contrary to methods in Computer Graphics that study
functionality and shape (Zhao et al., 2014, 2016, 2017; Hu
et al., 2015), our approach takes into account visually perceived
information. We adopt a pointcloud representation which allows
us to work with data generated from robotics sensors such as
RGB-D cameras, avoiding the need for fine-grained geometries
and detailed mesh information that are typically exploited in
Computer Graphics. Furthermore, by introducing the concepts
of affordance keypoints and provenance vectors, we devise a
representation that is straightforward to compute and tolerates
well changes in geometry. This provides good generalization to
unseen scenes from a single example and enables to perform
affordance detection at high framerates, a key requirement for
robotic systems.

Inspired by recent deep learning architectures able to operate
in the 3D domain (Qi et al., 2017b), here we address key
limitations of the above approaches by incorporating a deep
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FIGURE 2 | Computation of an Interaction Tensor for Placing a bowl. (A) Simplified 2D illustration of the interaction, (B) Voronoi diagram over all points, (C) IBS shared

between interacting objects, (D) Computation of provenance vectors, which go from points on the IBS to its closest Voronoi cell centroid in the scene-object. (E)

Interaction Tensor formed by affordance keypoints (3D points and vectors).

3D saliency detection mechanism to reduce spatial search and
computation needed to produce affordance predictions. This
adopts a data-driven approach, yet without forcing affordance
categories as such. This enables us to significantly speed up the
selection of potential affordance candidate regions compared to
our previous work.

Finally, we demonstrate that we can significantly outperform
the baselines in terms of performance and speed, and we validate
our affordance predictions with human judgement.

3. OUR APPROACH TO GEOMETRIC
AFFORDANCE DETERMINATION

There are three main components of our approach: (i) the
computation of the geometrical representation of the affordance
between a pair of objects (section 3.1), (ii) the agglomeration
of these representations for multi-affordance estimation (section
3.2), and (iii) the incorporation of deep saliency for fast scene
parsing (section 4).

Our approach starts by computing what we call the Interaction
Tensor for an interaction that takes place between any two
objects. The approach is based on the Bisector Surface (Peternell,
2000); but more specifically, we take inspiration from the concept
of Interaction Bisector Surface (IBS) that has been successfully
exploited within the Computer Graphics community (Zhao et al.,
2014). In short, the Bisector Surface for any two geometric
objects is defined as the locus of equidistant points between
the objects. The IBS is a generalization of that locus when
it is computed between two or more 3D models in a scene.
Importantly, the IBS can be approximated by computing the
Voronoi diagram between objects. In this sense, the IBS is the
set of points equidistant from two sets of 3D points (i.e., two
objects). In this section, we summarize the core aspects of our
affordance descriptor; then we introduce the method that allows

us to representmultiple affordances and the algorithm to perform
one-shot prediction.

3.1. The Interaction Tensor
The Interaction Tensor (iT) is a vector field representation that
characterizes affordances between two arbitrary objects. The
key steps include an example affordance from e.g., a simulated
interaction, the computation of the IBS between an object (query-
object) and scene (or scene-object) using dense pointclouds
(from CAD models), and estimating provenance vectors. These
vectors are used in the computation of points on the bisector
surface and they go from points in the IBS to their closest
neighbor in the scene. The top row in Figure 2 illustrates the
elements and the process involved in the computation of an
affordance iT for any two given objects. For practicality, every
iT is expressed in scene-object frame coordinates, i.e., we set the
origin of every iT’s reference frame to the point in the scene-
object that is closest to the query-object during training. For
instance, the descriptor for Filling-glass in Figure 3 has its frame
origin in the faucet spout. As another example, the Placing-bowl
descriptor of Figure 2 would have a reference frame with origin
on top of table where the bowl rests.

A descriptor for any given affordance is obtained by sampling
N affordance keypoints (3D point and provenance vector) from
the iT example, each one of these keypoints has a weight
that encodes the relevance of that particular location for the
interaction. The representation is fast to compute and compact
since only the affordance keypoints and provenance vectors are
used to describe the interaction, neither query-object, scene-
object nor bisector surface are needed afterwards. Examples of
iT descriptors for the type of affordances that we study are shown
in Figure 3, where weights are depicted as the colors in the vector
fields (red is higher). The weighting scheme follows the intuition
that regions of the interaction where objects come close together
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FIGURE 3 | iT examples for a subset of the objects in our study. Top row shows iT examples for Filling objects with different geometries. Bottom row shows iT

examples for Hanging the same object (coat-hanger) on different scenes (i.e., scene-object). Despite the changes in the geometries involved in the interaction, the

tensor shows similar features across affordances. Colors in the tensors represent weighting scheme (red is higher). Arrows in vector fields are re-scaled to more clearly

display similarities.

should be more important (higher weight) for the interaction,
as opposed to those regions where the interacting objects are
further apart. As in our previous work Ruiz and Mayol-Cuevas
(2018), we leverage the weighting scheme to sample the keypoints
that form a descriptor. A keypoint xi is sampled from the dense
iT with probability proportional to its associated weight, P(xi |
w1,w2, . . . ,wn) = wi

∑n
d=1 wd

. This sampling method follows the

same intuition that locations where objects come closer together
or touch are highly relevant for the interaction, thus resulting in
higher keypoint density in those regions.

Figure 3 also serves to illustrate the robustness of the iT
representation to changes in the geometry of the interacting
objects, the top row in this figure illustrates an interaction
(filling) with two different query-objects, whereas the bottom row
in the same figure depicts descriptors for another interaction
(hanging) with two different scene-objects. Note how the
overall geometry of the descriptor remains similar across
interactions (i.e., horizontally).

3.2. Interaction Tensor Agglomeration
Our approach for scalable multiple-affordance detection, which
we call iT agglomeration, follows a one-shot learning approach,
i.e., it uses a single example from every affordance to devise
themultiple-affordance descriptor.With such representation and
algorithm, one can give an answer to questions such as “What
can I afford to do here?” on multiple point locations of an

input scene without the need to individually test affordances.
The approach allows to increase the number of affordance-
object pairs queried simultaneously at test time without heavily
compromising detection rates.

As the name suggests, our method for multiple affordance
representation accumulates or agglomerates several individual
affordance descriptors in a single pointcloud. We start by
computing as many single-affordance descriptors as required,
i.e., one for every interaction of interest. Once all descriptors
have been computed with the iT, we agglomerate them in a
single pointcloud. Note that all the descriptors share the same
coordinate frame, which is relative to a point in the scene-
object where the simulated interaction took place (i.e., training as
explained in section 3.1). Therefore, all the trained descriptors are
readily aligned. Agglomerating these descriptors is as straight-
forward as aggregating them into a single bigger pointcloud.
Once this single bigger pointcloud has been obtained, we perform
clustering by first fitting a grid of uniform-size cells covering
every single affordance keypoint. Then, we use as seed-points
only the centroids of non-empty cells. For every one of these
cells, we only keep the keypoints that are closest to the centroid
in a per-affordance basis. For instance, one cell could contain
100 keypoints, all coming from the descriptor of Placing-bowl;
after the iT clustering process is carried out, this cell will only
contain the keypoint that is closest to the cell’s centroid. Finally,
we update the centroid location using the keypoints within
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FIGURE 4 | Top row illustrates the computation of an agglomerative descriptor for 3 affordances. (A) Single-affordance keypoints are agglomerated (affordances

shown as different colors), (B) uniform-size cell grid is fitted to the pointcloud, (C) one cell can potentially contain many keypoints from multiple affordances, only the

closest keypoint (per-affordance) to the cell centroid (green) is taken into account during the update process, (D) an updated cell with the provenance vectors

associated to the keypoints kept after clustering. Bottom row sequence illustrates our affordance prediction algorithm. (E) A test-point is sampled from the input

scene (red), (F) The agglomerative representation (green) is aligned relative to this test-point, (G) The 1-NN in the scene (yellow) for every centroid in the

agglomeration, (H) An example test-vector (blue) from a cell centroid to its closest scene point, (I) A test-vector is compared against the stored provenance vectors pki
associated with affordance keypoints in that cell. In this particular cell, 3 scores are obtained.

each cell, keeping track of the provenance vectors associated
with them as well as the number of keypoints from each
affordance in each cell. We attempted more sophisticated ways
to learn the agglomeration but found the above straight forward
method to be better and faster. The top row in Figure 4

depicts the cell-updating process for iT clustering algorithm. The
clustering process leads to a reduced number of 3D points (cell
centroids) that represent a large number of affordance keypoints.
This reduced number of new keypoints and their associated
provenance vectors are used to compute and predict affordance
candidate locations at test time.

3.3. One-Shot Prediction
Previous methods employing the IBS for functionality analysis
in Zhao et al. (2014), Hu et al. (2015), Zhao et al. (2016),
Pirk et al. (2017) have relied on the computation of local
shape features on the bisector surface, these features are then
fed to a machine learning algorithm (or similarity function)
in order to retrieve or synthesize similar interactions. Then,
for any new pair of objects, they need first to perform many
costly computations to make a prediction; namely, estimate the
IBS with dense pointclouds and remove noisy data, compute
shape and topological features at various locations using mesh
information, and (typically) build histograms representing the
global shape features. Our method differentiates from these
previous works by instead approximating the iT descriptor at
prediction time (i.e., testing) via a Nearest Neighbor (NN) search;
and then directly comparing against the descriptor from the

training example. This comparison can efficiently investigate
whether there exist relevant regions such that the same (or
a similar) iT can be computed in a testing location. Notably,
our prediction algorithm requires a single training iteration per
affordance. Moreover, our method does not make use of object
data (e.g., query-object), it only requires the descriptor to predict
an interaction in a new scene.

First, in order to estimate the likelihood of an affordance for
a new test point in an input unknown scene the descriptor needs
to be aligned relative to that new location. This is achieved by
simply applying a translation; multiple orientations can be also
tested by applying the corresponding rotation. These operations
are straightforward to compute due to the fact that the descriptor
is already expressed w.r.t a point in the scene; therefore, the pose
of the affordance descriptor Xa given a test-point ti is given by

X′
a = RoTtiXa (1)

where

Ro =









cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1









,Tti =









1 0 0 tix
0 1 0 tiy
0 0 1 tiz
0 0 0 1









where θ is the angle at which the interaction should be tested
and 〈tix , tiy , tiz 〉 are simply the x, y, z coordinates of the testing
point in the scene. This operation allows us to predict affordance
candidate locations at different several orientations instead of
only the one used for the training example.
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Once the descriptor is aligned relative to the test point, the
NN-search is performed to estimate test-vectors. This is done
by computing the 1-NN in the scene for every keypoint in the
descriptor. These vectors are the approximation of provenance
vectors at test time and they are compared in order to estimate
the likelihood of the interaction via Equation (2) shown below:

sk = 1

Nk

Nk
∑

i=1

1
√

2π(wk
i )
2
e
− (1k

i )
2

2(wki )
2
, (2)

where

1
k
i =

‖Evi − Epki ‖
‖Epki ‖

, wk
i = 1− |Epki |

|Epkmax|

where Nk is the number of keypoints in affordance k, wk
i

is the weight of the i-th keypoint of affordance k, computed
proportionally to the magnitude of its corresponding provenance
vector Epki (i−th keypoint of affordance k). 1

k
i is the difference

between vectors Evi and Epki , where Evi is the test-vector
estimated with the centroid of the cell containing the i-th
keypoint. Equation (2) uses a Gaussian function to measure the
difference between vectors (magnitude and orientation), where
the acceptable variance is inversely proportional to the keypoint’s
weightwk

i . The inclusion of weights in the function allows to relax
the matching criteria for regions of the interaction that are not
very relevant (low weight), and stricter criteria for those regions
that are more relevant (i.e., higher weight). Note that for single-
affordance predictions (section 3.1) the approach remains the
same, since for that case k = 1.

The bottom row in Figure 4 illustrates the steps followed
to make affordance predictions with our proposed approach.
Following these steps allows to obtain a score (likelihood) for
every affordance for any given location in a scene; we can then
establish the threshold that produces the optimal predictions.
We do so by asking humans (via crowdsourcing) to evaluate
the predictions made by our algorithm at different scores. The
specifics on themethod to obtain the optimal score for prediction
can be found in Ruiz and Mayol-Cuevas (2018) and Ruiz
and Mayol-Cuevas (2019). In short, we chose the value that
achieves the best accuracy on human-evaluated predictions of
multiple affordances.

Notice that the search performed in the scene, i.e., the way
in which test-points are selected, involves sampling from the
input scene uniformly trying to test locations across the whole
input. It should be kept in mind that no prior assumption is
made regarding features on the scene, objects appearance nor
complex surface features likely to afford a target interaction.
In other words, the approach that we propose is agnostic to
shape and appearance features computed in advance and instead
estimates the likelihood of the affordance by hallucinating the
interaction at test-time. Also note that our prediction algorithm
does not make use of the query-objects. Our one-shot affordance
prediction only requires an input scene (to search in) and the
multiple-affordance descriptor.

Naively, one could detect several affordances by testing
individual descriptors one after the other. However, this quickly
becomes a problem; for instance, in order to detect k affordances
(with N keypoints each) at2 orientations in a single location, one
would need to search for k×N×2 nearest neighbors. Effectively
what we propose is to take advantage of the overlapping pattern
found when many affordance descriptors are agglomerated in
a single location, which leads to a great reduction in the
dimensionality of the representation and a speed-up of nearly six
times over the previous method (Ruiz and Mayol-Cuevas, 2019).

4. LEARNING AFFORDANCE SALIENCY

The Interaction Tensor is a dense representation that
characterizes the interaction between pairs of objects. Our
approach for one-shot affordance prediction relies on keypoints
that are sampled from the tensor to form a descriptor. As
described earlier, we base the sampling of keypoints on the
intuition that the 3D regions of the interaction where objects
are close to each other are more important for characterizing
the interaction, i.e., weight-driven sampling. In previous work,
and as demonstrated later in section 5, we show that a sparse
and empirically-found sampling size works well. In this section
we present our investigation regarding the use of a state-of-
the-art deep learning method to optimize a multiple-affordance
representation for 3D data, i.e., pointclouds. In short, we
capitalize on the PointNet++ architecture (Qi et al., 2017b),
which has shown noticeable results for 3D shape classification
tasks. This architecture is advantageous in our problem mainly
for two reasons: (1) its ability to capture local structures induced
by the metric space 3D points live in, and (2) its robustness
against non-uniform sampled pointclouds. In short, instead
of naive scene sampling, we employ the network’s abstraction
power and learn the specific locations in the input (scene) that
are used for interaction prediction.

4.1. Deep-Learning Affordance Pointclouds
Ideally, we want to learn an affordance representation that
efficiently accounts for the presence of multiple interactions
in a given scene. In our work, scenes are represented with
pointclouds, sensed with RGB-D cameras or computed in
simulations from a CAD model. Therefore, we want to be able
to predict all the possible interactions that any given pointcloud
affords, i.e., all the affordance classes in a pointcloud. This
contrasts with traditional approaches for deep learning on 3D
shapes, where the studied pointclouds belong to a single class
or type. In our investigation, a single pointcloud can belong to
multiple “classes” or affordance categories at the same time. In
order to learn affordances in such a scenario, we formulate the
learning problem as a multi-label multi-class classification; to
this end, we modify the PointNet++ architecture by replacing
the last softmax layer with a sigmoid layer. This adaptation
to the architecture allows us to obtain independent scores or
probabilities for every interaction that a pointcloud might afford.

A second modification to the network architecture includes
changing the sampling regions that are used to learn features at
different hierarchies and pointcloud densities. Briefly speaking,
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there are three main layer types in the original PointNet++
architecture: Sampling, Grouping, and PointNet. Sampling layers
select points (from the input) that are used as centroids of
the regions where features should be extracted. Grouping layers
gather additional data by sampling points within local regions
(computed by the previous layer), these local regions and their
centroid data are concatenated to build new (internal) point sets
which form a hierarchy. Finally, PointNet layers is where the data
from every region is encoded in the form of feature vectors by
a series of convolutions and pooling operations. In the original
implementation, the size of the local regions in Grouping layers
is set by a fixed-radius sphere centered at each local region. We
modify the network to allow the sampling regions to change on-
line in proportion to the input size instead of being of a fixed
radius. Specifically, we allow the value of these parameters to
change in proportion to 20% (at the lowest-level layer) and up to
and 40% (at the highest) of the bounding box of the pointcloud
at the input.

This follows from the fact that, as in most pointcloud
classification approaches, PointNet++ normalizes the input data
to a unit-sphere or unit-box, where having sampling regions
with fixed sizes is acceptable. However, this is not feasible
in our learning approach given that we work with real-world
scales. For instance, having a pointcloud of a chair of 1
meter-height is substantially different from a toy chair with
a height of 10 cm; the latter would not afford Sitting for a
human. For this reason, we modify the architecture to allow
the sampling regions to change proportionally to the current
training pointcloud.

We refer to this modified version of the deep network as m-
Pointnet in the remainder of this paper. Specific details on how
we train such network are described in the Results and Evaluation
section (section 5).

4.2. Scene Saliency From Affordance
Predictions
Once the network has learned to detect multiple affordances in a
given pointcloud we leverage its data abstraction capabilities by
finding the regions in the input that the network uses to make
a prediction. This is achieved by keeping track of the points
that activate neurons the most. These points suggest salient
3D locations in a given pointcloud and are analogous to the
concept of critical pointsets presented by Qi et al. (2017a). More
specifically, once the network has learned to predict correctly
multiple affordances per pointcloud, we let the network go
through the data again and we keep record of the 3D locations at
the input that give the maximum value in the lowest-level feature
map, i.e., the max-pooled features at the lowest-level PointNet
layer of the network. The network utilizes the features pooled
from those locations as a base for higher-level features and, in
turn, to compute the feature vector used to correctly classify
the affordances in a given pointcloud. We refer to these salient
regions in the input scene as scene saliency in the remainder
of this paper. Recall that we zero-mean our pointcloud dataset;
therefore, we can readily accumulate (via voting) the salient 3d
regions across multiple pointclouds. We choose as final scene

saliency the 3D locations that activated (accumulated votes) at
least 50% of the time.

Due to the fact that the iT relates points in the two interacting
objects (i.e., scene and query-object), we can simply project
salient points (from the scene) learned by the network back
into their associated iT location. Briefly speaking, for all scene-
salient points, we compute the nearest-neighbor in the iTs of
all the interactions afforded by the current pointcloud. This is
the inverse process to the one shown in Figure 2D. Given that
the iTs are very dense entities we use a grid representation (i.e.,
cell grid) to alleviate the back-projection process (blue cells in
Figure 5: Multiple-affordance representation). Once all salient
locations have been projected into their associated iT, we create a
new multiple-affordance descriptor by considering the locations
in the iT agglomeration (i.e., cells) that received projections the
most. Figure 5 illustrates the general idea behind our approach
to learning an affordance representation from scene saliency.

5. EXPERIMENTS AND RESULTS

Our investigation focuses on the perception of a subset of
affordances for indoor environments and on the algorithms that
give robots the ability to answer the perceptual question of “What
can I do here?” or “What can I afford to do here?.” The general
idea of our experiments is to apply our one-shot prediction
algorithm on an input 3D scene (pointcloud) as introduce earlier
in section 3.3 (bottom row in Figure 4). These experiments
consider 84 interactions, which include multiple household
objects from a wide range of geometries and dimensions such as
mugs, cutlery, hammers, etc, and is inspired by standard robotic
manipulation datasets such as Calli et al. (2015). We also include
human 3D models to investigate human affordances such as
Sitting. The descriptors for all these interactions are computed
as detailed earlier (section 3.1) with pointclouds from CAD
models and simulating the target interactions. Similar to previous
work (Ruiz and Mayol-Cuevas, 2018), the dense pointclouds are
generated by sampling points on every face (i.e., triangle) of the
CAD model with d = (1 − √

r1)a + √
r1(1 − r2)b + √

r1r2c,
where d is a point sampled on the triangle defined by vertices
A,B and C (with coordinates a, b, c respectively) and where r1
and r2 are random numbers sampled from a uniform distribution
between [0, 1]. The randomness allows to compute more realistic
pointclouds where point distribution is not uniform, as opposed
to alternative methods such as e.g., Poisson disk.

All the affordances that we study are of the form Place-book,
Hang-umbrella, Sit-human, etc. Keep in mind that some objects
afford more than one interaction e.g., Fill-Pitcher and Hang-
Pitcher. Also note that it is possible to consider some top-level
clustering with conventional generic labels for affordances such
as Placing, Hanging, Filling. The complete list of CAD models
for our object-affordance pairs can be found along the x-axis
in Figure 8.

It is worth reminding that our algorithm does not need the
training objects (query-object nor the scene-object) to make a
prediction. Prediction is made using a new input scene and only
the descriptor of the interactions, this descriptor suffices for the
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FIGURE 5 | (Top) The modified version of PointNet++ is trained with multiple affordance labels per training example. This dataset is built using the single affordance

predictions of the iT method. (Middle) We use the salient regions learned by the network (shown in red) in order to learn to sample from the interaction tensor. These

regions are used by the network during training/validation to correctly classify pointcloud instances. (Bottom) shows the back-projection of saliency into iT

agglomeration. (A) Scene saliency (red points) for an example pointcloud. (B) The nearest neighbor in the agglomeration (pointed by yellow arrows) is computed for

every salient point (red points) in the scene. (C) This projection is carried out for every pointcloud in the dataset, the new affordance keypoints (red points) are

comprised of the cell centroids that received projections the most.

NN-search approximation. The qualitative results that we present
in this section show the query-objects (shown in green) only to
visualize more clearly the predicted interaction.

5.1. Saliency Training and Data Collection
For these experiments we use the descriptor learned via 3D
scene saliency; thus we first train the saliency network (m-
PointNet++) with the scene dataset presented in Ruiz and

Mayol-Cuevas (2018), that comprises pointclouds of indoor
environments from synthetic data and real RGB-D scans. In
order to build a dataset suitable for training the network, we
first run the iT prediction algorithm for all the affordance-object
pairs individually. By default, the output of the algorithm is the
likelihood (score) of a point location in the scene of affording the
interaction. The pointcloud that actually allows the interaction
to take place in that location is obtained by extracting the voxel
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FIGURE 6 | Multiple-affordance detection on never before seen RGB-D environments made with our saliency-based method. Note those locations of not achievable

actions such as the coat hanger going through the oven’s window are due to the inaccuracies and challenges from the RGB-D sensor data. Most other detected

affordances are achievable despite the fact that they are obtained without a script or any other prior scene information.

surrounding the test point detected as a good location. With this
procedure, we form a dataset of 10K pointclouds per interaction.
Additionally, we generate background or “negative” examples
from affordance detections of scores lower than the optimal value
(i.e., sk = 0.5). We then process these predictions to detect
pointclouds that share multiple affordances and automatically
produce the corresponding annotations for multi-class multi-
label classification.

The 3D affordance dataset is comprised of 918K pointclouds
(10K per-affordance on average) with an 80/20 split for training
and validation. Data augmentation is performed on-line by
rotating the pointclouds around the vertical axis, adding jitter
and randomizing the points sampled at the input.Training is

carried out with cross-entropy L = −∑k
i=1 yilog(p̂i) + (1 −

yi)log(1 − p̂i) with k = 85 (84 affordances and background).
Additionally, we perform L2-norm regularization since over-
fitting was observed during preliminary experiments. In order to
train the network, we zero-mean the pointclouds, which allows
us to track scene saliency for different pointclouds relative to the
same reference frame.

5.2. Implementation Details
Training for the m-PointNet network is carried out using the
Adam optimizer with initial learning rate of 0.001, momentum
0.9, batch size 32, and a decay rate of 0.7. Batch normalization
is used for every fully connected layer and dropout with a keep
ratio of 0.5. Training is carried out for at least 250 epochs and
until convergence is achieved.

For prediction, we leverage GPU parallelization to predict
multiple affordances at multiple orientations in a single iteration
of our prediction algorithm. We achieve this by using a bigger
descriptor that includes multiple orientations; in other words, by
concatenating the affordance descriptor of 2 = 8 orientations

[evenly distributed in [0, 2π)] into one bigger descriptor. This
implementation allows us to compute the score for 8 orientations
of all affordances in a single iteration of the prediction algorithm,
e.g., a GPU core computes the score for affordance k = 1 at
θ = 0o, another for affordance k = 2 at θ = 90o, etc.

Training and prediction are performed on a desktop PC with
a single Titan X GPU.

5.3. Evaluations
Our evaluations include the effect that the parameters of our
algorithms have over the prediction rates and performance. We
present results of our baseline algorithm, i.e., iT Agglomeration
(as described in section 3.1) and our method that leverages
saliency to improve the agglomerative approach, denoted as “iT
+ Saliency” for short. We also evaluated the performance of the
adapted PointNet++ architecture when tested on its own, i.e., as
in a standard shape classification task. These results are shown as
“m-PointNet++” throughout the following subsections.

We test and show examples of our predictions on 150 scenes
(randomly selected) of ScanNet (Dai et al., 2017), comprising
living rooms, kitchens, dining rooms and offices. Qualitative
results of our predictions are shown in Figures 1, 6, 8 throughout
the paper. In these tests, we predict up to 84 affordances or
interaction possibilities in any given location of an input scene.

5.3.1. Optimal Detections

Affordances by nature are elusive to ground-truth without
subjective judgement of the likelihood of an interaction. In our
work, affordance location predictions are made by setting a
threshold to the output (score) of the algorithm. In order to
determine the threshold that produces the best results we use
Amazon Mechanical Turk; where we ask people to evaluate the
predictions made with our algorithms based on the smallest
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FIGURE 7 | Mechanical turk evaluation. ROC plots (True Positive Rate TPR vs. False Positive Rate FPR) show the family of classifiers generated by setting different

thresholds bands to the prediction score. Both approaches show a similar performance: the affordance predictions with a score above their respective threshold are

deemed as good candidates according to humans every time.

cell sizes. A total of 4.8 K example predictions were shown to
69 humans evaluators (turkers). These subjects had to select
a “winner” from two possible options showing affordance
predictions made with different scores; for instance, option 1
would show Placing-bowl with score of 0.75 and option 2 would
show Placing-bowl with score 0.6. Using these pairwise human
judgements, we fit a Bradley-Terry model Bradley and Terry
(1952) to compute the “true” ranking of human evaluations;
with this ranking we assess the performance of our algorithm.
Figure 7 shows the family of classifiers induced by setting
different threshold values at the score of the iT agglomeration
and saliency-based iT algorithms. In this figure it can be seen that
both methods achieved good performance according to human
criteria yet the optimal thresholds are different. The method
based on agglomeration and clustering of iT descriptors needs a
threshold at 0.7 in order to produce a prediction that agrees with
human criteria; on the other hand, the saliency-based method
performs similarly with a threshold at 0.5. This is related to
the fact that, as seen in the following subsection, our saliency-
based method achieves higher precision rates; meaning that we
can relax the threshold without compromising the quality of
the predictions.

5.3.2. Individual vs. Multiple Predictions

By nowwe have demonstrated that the predictionsmade with our
algorithm align well with what humans expect to afford in a given
scene/location. In an effort to further assess the performance of
our algorithms we compare our multiple affordance predictions
against those produced in a single-affordance scenario.

These “baseline” predictions are obtained by individually
testing all affordances using the single-affordance prediction
algorithm, as in Ruiz and Mayol-Cuevas (2018), for every
affordance-object pair in our study. We treat these as
ground-truth in order to compute performance metrics for
our predictions.

TABLE 1 | Average performance of the methods for multiple affordance detection

in terms of Area Under the PR Curve (AUC).

Method Cell-size [cm] AUC

iT Agglomeration + Saliency

0.5 0.6816

1 0.4588

Single 0.2722

iT Agglomeration

0.5 0.5467

1 0.3043

iT-All 0.3102

m-PointNet++ 0.1879

Our proposed combination of geometry and deep saliency (iT Agglomeration+Saliencey),

outperforms the solely geometric (iT Agglomeration), and the solely deep learning

(m-PointNet++) methods. Highlighted value shows our best performing method.

For comparison, we include two additional versions of our
algorithms. In the case of iT agglomerations, we tested keeping
all the keypoints (and their associated provenance vectors)
inside the cell during clustering. This is shown as “iT-All”
and the intention of this was to investigate the possible loss
of information caused by only considering the closest per-
affordance keypoint inside each cell. For the case of our
saliency-based method, we consider an alternative approach
where salient locations are learned individually per affordance
and then their corresponding keypoints are agglomerated to
produce a multiple-affordance representation. This saliency-
based alternative is shown as “Single.” We also show the
performance achieved by the modified PointNet++ architecture
used to learn saliency (shown as m-PointNet++) when tested on
its own. Table 1 shows the average performance of the methods
being investigated, where it can be observed that the saliency-
based method showed overall better performance.

Frontiers in Neurorobotics | www.frontiersin.org 12 July 2020 | Volume 14 | Article 45

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ruiz and Mayol-Cuevas Geometric Affordance Perception

FIGURE 8 | Precision achieved with multiple-affordance representations of cell size 0.5 cm. Important differences are noted in Placing affordances which were largely

regarded as the easiest interactions. Interestingly both approaches struggle the most with Placing big-box, which has several short-length vertical provenance vectors

(under the box) difficult to match during testing.

FIGURE 9 | Precision-Recall curves of our methods when compared with predictions made by the single-affordance algorithm. Observe that precision drops to zero

at specific recall values, this is associated with the quantization error introduced by cell clustering.

It should be noted that there is an important imbalance in
affordance data. For instance, consider a kitchen environment
for Filling affordances; there is usually one location that truly
affords these interactions: the faucet/tap. In this scenario, almost
every single location is a negative example for this affordance,
by always predicting “background” we could achieve very high
accuracy. For this reason, we evaluate with precision-recall
metrics, Figures 8, 9 show the precision and recall values
achieved with our algorithms.

It is worth mentioning that the iT agglomeration method
performed favorably even when a single training example is
considered. Then, by combining the interaction tensors with the
salient locations learned by the network we are able to improve
the performance and, as shall be shown later, more quickly assess
the interaction opportunities of a given location in the scene.

The deep network on its own denoted a rather poor performance;
when compared with single affordance predictions the network
was outperformed by all other methods. We think this highlights
the importance of the geometric features that the iT is able to
describe. Figure 8 shows per-affordance precision achieved by
our top performing methods.

From Figure 9, it is worth noting that none of our methods
achieves 100% recall, this means that we are not able to recover
or predict every possible affordance in every location. This
is the compromise we make in order to perform fast and
multiple-affordance predictions. In other words, the methods
here presented perform well if the task is to quickly evaluate the
affordance possibilities at any given location with high precision;
but, if the task is to retrieve all possible “combinations” or
every affordance that exists across all the scene while speed is
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not crucial, performing single-affordance predictions is perhaps
a better approach. In spite of this, we show next that our
predictions are equivalent to those produced by the single
affordance predictions.

5.3.2.1. Human evaluation

We assess the predictions made with our algorithms by asking
human evaluators to select from two options the one that best
depicted the intended interactions. These options consisted on:
the top-1 predictions made by the single affordance algorithm
and the top-1 predictions of our multiple-affordance method,
shown in a per-affordance basis. Additionally, among the options
shown to people we included top prediction made with a naive
baseline method that uses Iterative Closest Point (ICP)1. This
baseline computes a score from the best alignment (i.e., rigid
transformation) between a target pointcloud (interaction training
example) and the pointcloud being tested. A total of 1,200 pair-
wise comparisons were shown to 48 turkers. We found that
48% of the time people chose the multiple-affordance predictions
as the best option when compared against single-affordance
predictions. Note that a random guess is 50%, which means that
our predictions are regarded as good as the single affordance
prediction “ground truth.” On the other hand, when compared
with the ICP baseline, our predictions were chosen 87% of
the time.

5.3.3. Frame Rates and Quantization

We evaluate the effect that the size of cells in the grid has in
terms of speed or prediction time for the methods we propose.
Figure 10 shows the dimensionality of our multiple-affordance
representation and the prediction rates according to the cell
size. Looking at this figure it stands out the large reduction
that we are able to achieve with our proposed approaches: both
of them reduce the number of points in the representation
by nearly 6 times (344 vs. 60 K keypoints). The prediction
rates on the same figure show that using grids with a cell
size of 1 cm3 allows us to detect up to 84 affordances at 10
different locations per iteration on the input scene. This is
significantly faster (7x improvement) than predicting affordances
by trying 84 descriptors at test time, which would require 840
ms per test-point (average of 10 ms per affordance as reported
in Ruiz and Mayol-Cuevas, 2018). Due to the fact that our
prediction algorithm performs a NN-search in order to estimate
test-vectors and compare them against provenance vectors, the
complexity of such operation depends heavily on the dimension
of the multiple-affordance representation (i.e., the number of
centroids/keypoints). More points in the representation require
more computations; therefore, reducing the representation
allows us to perform faster evaluations at test-time. Even with
such a reduction in dimensionality our method, as shown earlier,
is able to produce top-quality affordance predictions. Figure 11
offers further examples of our predictions that show generality
and multiple affordance estimation per scene. Particularly, this
figure exemplifies a common and difficult scenario for affordance
prediction: multiple interactions afforded by the same scene or

1implementation from Rusu and Cousins (2011).

FIGURE 10 | Bar plot shows the dimensionality reduction achieved with our

methods for different cell sizes. We reduce up to six times the number of

keypoints required to make predictions. Numbers above each bar show

prediction time (milliseconds) per test-point of the input scene. For instance,

with the representation with 1 cm cells, we are able to predict up to 84

affordances in any scene location in 101 ms.

object; for instance, the tap in the kitchen which not only affords
filling multiple objects but also affords hanging. Note that our
approach deals well with this type of scenario, predictingmultiple
affordances, simultaneously and a high framerates.

It is worth mentioning that we homed in the strategy
for uniform-size grid clustering given its straightforward
implementation and performance against other alternatives
explored during the early stages of our research. For instance,
one alternative that we considered to devise amultiple-affordance
representation investigated the sampling of keypoints from the
agglomeration instead of taking into account all affordance
keypoints for clustering; however, sampling had the adverse
effect of drastically reducing the keypoints per affordance (i.e.,
under representation) in the final descriptor, which did not
allow for scalability in the number and type of affordances
in the representation. Another approach that we explored
consisted in fitting an Octree structure to the agglomeration
of affordance keypoints, which was aimed for a more efficient
representation. However, due to the variance in sparsity and
size of the affordances that we study, deciding on where to
place the leaf centroids was not a straight-forward process.
After all, these centroids would be employed during the NN-
search used for prediction. An Octree representation would
require additional steps (e.g., tree search) during prediction
in novel pointclouds. These alternative explorations while not
exhaustive in the space of their hyper-parameters did not
indicate improvements over our current formulation. Distinct
methods could provide other performance compromises, but
our straightforward agglomeration will serve as a baseline for
future investigations.

6. CONCLUSIONS AND FUTURE WORK

In this work, we developed and evaluated a scalable, real-
time approach for multiple geometric affordance prediction.
Our approach leverages advantages of the interaction tensor, a
compact geometric representation with that of scene saliency
provided by a deep learning architecture. We predict up to 84
affordances on over 150 real previously unseen scenes and in a
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FIGURE 11 | Multiple interactions afforded by the same pointcloud predicted in a never seen before scene. The predictions shown in this figure are carried out

simultaneously and at high frame rates with our approach. Note the tap in the kitchen which, in addition to afford filling a variety of objects, it also affords hanging; both

interaction possibilities rightly predicted by our method.

way that aligns well within the intrinsically subjective nature of
affordances as validated with crowd-sourced human judgement.
In such evaluation, our affordance proposals are preferred 87%
of the time over other geometric baseline methods. Furthermore,
we achieve four times better performance over a deep-learning-
only baseline and seven times faster predictions when compared
to previous art.

The current approach uses only geometry to compute the
likelihood of a location in the scene of affording an interaction.
This assumes that the sensor is able to perceive the scene
correctly; errors in the sensing could affect the performance
or quality of the predictions. One important avenue to future
work is the integration of our system with more robust ways
to sense the scene; for instance, methods to correctly perceive
reflective surfaces or outdoors environments, where RGB-D
sensors would fail. Examples of such methods are Wang et al.
(2018) orMa and Karaman (2018) for real-timemonocular dense
reconstructions. Another interesting direction for future work
is grasping affordances. Currently, our method would assume
that the query-object is already in the agent’s hand; thus, the
goal would be to detect where the agent could Place, Hang or
Fill this object; future work could investigate grasping as the
interaction between a hand and other objects, e.g., where robot’s
hand serves as a query-object that interacts with a scene-object in
the environment. Our approach enables the desirable property of
working from a single example to generalize to unknown scenes.
However a further avenue of work should include strategies for
the discovery of new affordances that can then be generalized to
new interaction pairs.

Overall, affordance perception is a fundamental ability
for agents that need to interact with their environment,
or more generally, understand the interactions that take
place (or could take place) in their surroundings. Perceiving
the world in this way can lay the basis to learn more
complex concepts. As a result of our affordance detection
rates, we see many avenues for applications of our method;
applications such as semantic scene understanding, autonomous
robotics, navigation planning and augmented reality where
scenes can be augmented using discovered affordances rather
than pre-scripted.
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