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Abstract
Thrombocytopenia is independently related with increased mortality in severe septic 
patients. Renin- angiotensin system (RAS) is elevated in septic subjects; accumulating 
studies show that angiotensin II (Ang II) stimulate the intrinsic apoptosis pathway 
by promoting reactive oxygen species (ROS) production. However, the mechanisms 
underlying the relationship of platelet apoptosis and RAS system in sepsis have not 
been fully elucidated. The present study aimed to elucidate whether the RAS was 
involved in the pathogenesis of sepsis- associated thrombocytopenia and explore the 
underlying mechanisms. We found that elevated plasma Ang II was associated with 
decreased platelet count in both patients with sepsis and experimental animals ex-
posed to lipopolysaccharide (LPS). Besides, Ang II treatment induced platelet apop-
tosis in a concentration- dependent manner in primary isolated platelets, which was 
blocked by angiotensin II type 1 receptor (AT1R) antagonist losartan, but not by angi-
otensin II type 2 receptor (AT2R) antagonist PD123319. Moreover, inhibiting AT1R by 
losartan attenuated LPS- induced platelet apoptosis and alleviated sepsis- associated 
thrombocytopenia. Furthermore, Ang II treatment induced oxidative stress level in a 
concentration- dependent manner in primary isolated platelets, which was partially 
reversed by the AT1R antagonist losartan. The present study demonstrated that 
elevated Ang II directly stimulated platelet apoptosis through promoting oxidative 
stress in an AT1R- dependent manner in sepsis- associated thrombocytopenia. The 
results would helpful for understanding the role of RAS system in sepsis- associated 
thrombocytopenia.
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1  | INTRODUC TION

Sepsis describes the life- threatening systemic inflammatory state 
and organ dysfunction caused by a dysregulated host response to 
infection.1 Evidence is growing that platelets are important blood 
elements responsible for homeostasis maintenance and fighting in-
fections.2,3 Platelets contain and release a large number of immune 
molecules that directly impact the development and resolution of 
inflammation.4,5 The changes of quality and quantity of platelets are 
closely associated with the morbidity and mortality of infectious 
diseases.2,4,6 As a frequent laboratory abnormality in patients with 
sepsis, thrombocytopenia is found to be independently related to 
increased mortality in severe sepsis patients.2,7 Hence, rectification 
of thrombocytopenia is needed to avoid the potentially lethal com-
plications of severe sepsis.

Although the consumption of platelets has been used to in-
terpret sepsis- associated thrombocytopenia frequently,8 evi-
dence of platelet apoptosis has also been found during sepsis, 
such as increased apoptotic vesicles and surface activation mark-
ers.9 Peptidoglycan, a component of bacterial cell wall, triggers 
apoptosis of platelets by showing cell membrane scrambling, 
activated caspase- 3 and depolarized mitochondria.10 Moreover, 
Escherichia coli and Staphylococcus bacterial isolated from the 
septic patients can directly trigger the process of intrinsic apop-
totic cell death in platelets in vitro.11,12 However, the mecha-
nisms underlying platelet apoptosis in sepsis have not been fully 
elucidated.

The renin- angiotensin system (RAS) has been implicated in prevent-
ing systemic hypotension during the development of septic shock.13,14 
Furthermore, angiotensin II (Ang II) has been recognized as a key player 
in several biological processes, including coagulation, apoptosis and 
inflammatory response.15,16 Doerschug et al17 have reported that 
plasma Ang II is elevated in septic patients as compared to volunteers. 
Moreover, the level of Ang II elevation correlates with organ failure and 
with measures of microvascular dysregulation. Notably, accumulating 
studies in various cell types have demonstrated that Ang II stimulates 
the intrinsic pathway of apoptotic cell death by promoting intracellular 
reactive oxygen species (ROS) production.15,18,19 Therefore, this study 
hypothesized that thrombocytopenia in patients with sepsis was asso-
ciated with increased plasma Ang II and that treatment with angioten-
sin II receptor blocker (ARB) would attenuate sepsis- induced platelet 
apoptosis and improve septic thrombocytopenia in a murine model of 
lipopolysaccharide (LPS)- induced endotoxemia.

2  | MATERIAL S AND METHODS

2.1 | Plasma of healthy volunteers and patients with 
sepsis

Septic patients were all recruited in Xinhua Hospital from January 
2018 to June 2019. Healthy adults that underwent routine physi-
cal examinations were recruited as healthy volunteers. More details 
were provided in Supporting information.

F I G U R E  1   Plasma Ang II correlates 
inversely with platelet count in patients 
with sepsis. Platelet count (A), plasma 
renin activity (B) and plasma Ang II 
(C) levels in septic patients (n = 42) 
and healthy volunteers (n = 11). (D) 
Correlation analysis between plasma Ang 
II levels and platelet count. *P <0.05, 
**P <0.01
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2.2 | Endotoxemia model and drug treatment

Male, 7- 9- weeks- old mice were used in this study. Purified LPS was 
injected intraperitoneally (i.p.) (5 mg/kg) as described previously.20 
The angiotensin II type 1 receptor (AT1R) antagonist losartan and 
ROS scavenger N- acetyl- l- cysteine (NAC) were dissolved in sterile 
pyrogen- free saline. Both losartan (10- 30 mg/kg) and NAC (100 mg/
kg) were treated i.p. 30 minutes prior to the treatment of LPS. For 
Kaplan- Meier survival curve, mice were challenged with a lethal 
dose of LPS (30 mg/kg) by i.p. injection with or without pre- treated 
with losartan i.p. in 30 minutes. Then, mice were monitored carefully 
for lethality per 6 h for up to 48 hours. More details were provided in 
the supplementary data.

2.3 | Measurements of plasma renin activity and 
Ang II concentration

The plasma renin activity (PRA) and Ang II concentration were meas-
ured by Radioimmunoassay Kit. Details were provided in Supporting 
information.

2.4 | Platelet counts

Platelet numbers were determined using an automated counter (XS- 
500i; Sysmex, Kobe, Japan).

2.5 | Mouse platelet isolation and  
treatment

Mouse platelets were isolated by a modified method as previously 
described.21,22 Details were described in Supporting information. 
For in vitro studies, platelet pellets were resuspended in serum- 
free M199 Medium with 5 × 107 cells in each group.23 Freshly iso-
lated platelets were then treated with or without Ang II (50, 100 
or 200 nmol l−1),24,25 NAC (5 mmol l−1), losartan (10 μmol l−1) or 
PD123319 (10 μmol l−1) for 24 hours.

2.6 | Western blot analysis

The washed platelets were homogenized, and proteins were used 
to perform Western blot assay. Details were described in the sup-
plementary data.

2.7 | Measurement of Caspase- 3 colorimetric 
proteolytic activity

Caspase- 3 activity was determined by the Caspase 3 Activity Assay 
Kit. Details were described in Supporting information.

2.8 | Detection of ROS

Intracellular ROS levels were measured with fluorescence probe 
2′,7′- dichlorofluorescein diacetate. Details were described in 
Supporting information.

2.9 | Detection of malondialdehyde

Intracellular malondialdehyde (MDA) levels were measured as previ-
ously described.26 Details were described in Supporting information

2.10 | Measurements of H2O2 and glutathione 
peroxidase activity

Platelets were washed and homogenized in cold assay buffers. H2O2 
content and glutathione peroxidase (GPx) activity in platelets were 

TA B L E  1   Clinical patient characteristics

Sepsis Volunteers

Number of patients 42 11

Gender (male/female) 29/13 4/7

Age (years) 61 (37- 85) 42 (25- 59)

Platelet counts (×109) 129 (5- 447) 239 (109- 305)

Severity score

APACHE II 21 (3- 39)

MODS 10 (1- 19)

SOFA 16 (1- 31)

Primary diagnosis

Gastric carcinoma 9

Colon cancer 7

Choledocholithiasis 1

Gastrointestinal 9

Pancreatic cancer 3

Hepatoma 1

Urinaemia 1

Multiple fracture 1

Urinary tract infection 8

Gallbladder carcinoma 1

Duodenal papilla carcinoma 1

Site of infection

Pulmonary 5

Abdominal 27

Urinary 10

Biliary tract Infection 1

Note: Numbers are given as median and (range).
Abbreviations: APACHE II, Acute Physiology and Chronic Health 
Evaluation II; MODS, Multiple Organ Dysfunction Score; SOFA, 
Sequential Organ Failure Assessment.



     |  4127XU et al.

F I G U R E  2   Elevated plasma Ang II is associated with platelet apoptosis and thrombocytopenia in LPS- induced endotoxemia mice. Plasma 
renin activity (A), plasma Ang II levels (B), platelet caspase- 3 activity (C), expressions of Bak, Bax, Bcl- 2 and Bcl- XL in platelets (D) and platelet 
count (E) (n = 7). *P < 0.05, **P < 0.01. kDa, kiloDalton

F I G U R E  3   Ang II treatment leads to platelet apoptosis in a concentration- dependent manner in primary isolated platelets. Primary 
isolated mouse platelets were incubated with Ang II for 24 h. Caspase- 3 activity (A), expressions of Bak, Bax, Bcl- 2 and Bcl- XL (B- D) were 
determined in platelets (n = 4). *P < 0.05, **P <0.01. kDa, kiloDalton
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determined by H2O2 detection kit and GPx assay kit according to 
manufacturer's instructions, respectively.

2.11 | Statistical analysis

All data are expressed as means ± standard deviation (SD). Statistical 
comparisons between two groups were determined by two- tailed 
Student's t test. One- way ANOVA with Tukey's post hoc test and non- 
parametric statistical tests (Kruskal- Wallis) was performed for compari-
sons among multiple groups. Pearson's correlation was used to examine 
the relationship between platelet count and PRA or Ang II. To determine 
statistical significance between survival curves, Kaplan- Meier test was 
used. All statistical analyses were performed with SPSS 16.0 (SPSS Inc., 
Chicago, USA). A value of P <0.05 was considered significant.

3  | RESULTS

3.1 | Plasma Ang II correlates inversely with platelet 
count in septic patients

This study recruited a total of 42 septic patients fulfilling our enrol-
ment criteria and 11 healthy volunteers. The general characteristics 

of the patients with sepsis were summarized in Table 1. The subjects 
showed an age range from 37 to 85 years, and a slight male pre-
dominance (Male: female ratio 2.23:1). The primary diagnosis of the 
patients with sepsis included gastric carcinoma, colorectal cancer, 
choledocholithiasis, gastrointestinal, pancreatic cancer, hepatoma, 
urinaemia, multiple fracture, urinary tract infection, gallbladder car-
cinoma and duodenal papilla carcinoma. As shown in Figure 1A- C, 
average values for the platelet count (129 × 109/L, range 5 × 109/L to 
447 × 109/L) were significantly decreased, whereas average values 
for PRA (2.63 ng/mL/h, range 0.05 ng/mL/h to 12.08 ng/mL/h) and 
Ang II (176.83 Pg/mL, range 29.57- 742.13 Pg/mL) were significantly 
elevated in septic patients as compared with healthy volunteers. 
Notably, plasma Ang II levels inversely correlated with the platelet 
count (r = −0.4516, P =0.0001; Figure 1D).

3.2 | Elevated plasma Ang II is associated with 
platelet apoptosis and thrombocytopenia in LPS- 
induced endotoxemia mice

We then detected PRA and Ang II level in mice injected with LPS for 
various time- points. As shown in Figure 2A, PRA peaked at 6 hours 
and progressively declined at 12 and 24 hours after LPS administra-
tion. Plasma Ang II level was elevated from 6 to 24 hours after LPS 

F I G U R E  4   Ang II treatment induces 
oxidative stress level in a concentration- 
dependent manner in primary isolated 
platelets. Primary isolated mouse platelets 
were incubated with Ang II for 24 h. ROS 
production (A&B), levels of MDA, H2O2 
and GPx activity (C) were determined 
in platelets (n = 4). Scale bars = 50 μm. 
**P < 0.01. kDa, kiloDalton
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administration, indicating the persistent increase of Ang II- induced 
by LPS (Figure 2B). Evidence of platelet apoptosis has been shown 
during the pathogenesis of sepsis.9 We found that LPS treatment 
for 12- 24 hours significantly increased caspase- 3 activity in plate-
lets (Figure 2C). As shown in Figure 2D, pro- apoptotic proteins (Bak 
and Bax) were increased, whereas anti- apoptotic proteins (Bcl- 2 and 
Bcl- XL) were decreased from 12 to 24 hours after LPS administra-
tion. Furthermore, platelet counts were profoundly decreased at 12 
and 24 hours after LPS administration (Figure 2E). These findings 
indicated that elevated plasma Ang II is associated with platelet ap-
optosis and thrombocytopenia in LPS- treated mice.

3.3 | Ang II treatment induces platelet apoptosis 
in a concentration- dependent manner in primary 
isolated platelets

To directly explore whether the elevated RAS was involved in the 
pathogenesis of sepsis- associated thrombocytopenia, we used dif-
ferent gradient concentrations of Ang II to stimulate primary isolated 
mouse platelets. As shown in Figure 3A, Ang II treatment signifi-
cantly increased caspase- 3 activity in platelets in a concentration- 
dependent manner. In addition, the Ang II induced accumulation 
of pro- apoptotic proteins (Bak and Bax) and decreased the anti- 
apoptotic proteins (Bcl- 2 and Bcl- XL) expression in a concentration- 
dependent manner (Figure 3B- D). Together, the data indicated that 
Ang II induced apoptotic activity in primary isolated platelets.

3.4 | Ang II treatment leads to increased oxidative 
stress level in a concentration- dependent manner in 
primary isolated platelets

Ang II is known to activate intrinsic apoptosis pathway by promot-
ing ROS production in various cell types.15,27,28 By measuring the 
fluorescence of DCFH- DA over a 30 minutes incubation period, 
we found that ROS production was increased significantly after 
treatment of platelets with Ang II in a concentration- dependent 
manner in primary isolated platelets (Figure 4A,B). We then de-
termined two pro- oxidant biomarkers MDA and H2O2. As shown 
in Figure 4C, MDA and H2O2 levels were significantly elevated 
in Ang II- treated platelets compared to control platelets in a 
concentration- dependent manner. In contrast, activity of the an-
tioxidant enzyme GPx in platelets was significantly decreased by 
Ang II treatment. All data showed that elevated oxidative stress 
may be involved in Ang II- related pathogenesis of sepsis- associated 
thrombocytopenia.

3.5 | Inhibiting oxidative stress by ROS scavenger 
NAC suppresses the Ang II- induced platelet  
apoptosis

To further explore that whether the oxidative stress is involved in 
Ang II- related pathogenesis in sepsis- associated thrombocytopenia, 
we used ROS scavenger NAC to treat LPS- induced endotoxemia 

F I G U R E  5   The effect of ROS scavenger NAC on platelet apoptosis and thrombocytopenia in LPS- induced endotoxemia mice. Twenty- 
four hours after NAC (100 mg/kg) treatment, caspase- 3 activity (A), expressions of Bak, Bax, Bcl- 2 and Bcl- XL (B) in platelets, and platelet 
count (C) were determined (n = 7). **P < 0.01. kDa, kiloDalton
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mice model. We found that ROS scavenger NAC attenuated platelet 
caspase- 3 activity (Figure 5A), decreased the pro- apoptotic proteins 
(Bak and Bax) and reversed the loss of anti- apoptotic proteins (Bcl- 2 
and Bcl- XL) (Figure 5B), leading to improvement of thrombocyto-
penia (Figure 5C). So we used the NAC to treat Ang II- induced pri-
mary isolated platelets. NAC entirely blocked the ROS production 
via inhibition of two pro- oxidant biomarkers (MDA and H2O2) and 

improvement of activity of the antioxidant enzyme GPx (Figure 6A- 
C). Furthermore, NAC blocked the Ang II- induced caspase- 3 activa-
tion in platelets (Figure 6D). The Ang II- induced accumulation of Bak 
and Bax was largely decreased, and the loss of Bcl- 2 and Bcl- XL was 
dramatically prevented by NAC (Figure 6E). Our findings indicated 
that Ang II directly promotes platelet ROS production and oxidative 
stress, thus leading to platelet apoptosis.

F I G U R E  6   The effect of ROS scavenger NAC on Ang II- induced oxidative stress and platelet apoptosis in primary isolated platelets. 
Primary isolated mouse platelets were incubated with 100 nmol l−1 Ang II and/or 5 mmol l−1 NAC for 24 h. ROS production (A&B), levels 
of MDA, H2O2 and GPx activity (C), caspase- 3 activity (D), and expressions of Bak, Bax, Bcl- 2 and Bcl- XL (E) were determined in platelets 
(n = 4). Scale bars = 50 μm. **P < 0.01. kDa, kiloDalton
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3.6 | Ang II treatment leads to platelet 
apoptosis in primary isolated platelets in an AT1R- 
dependent manner

Two Ang II receptors, designated AT1R and AT2R, mediate the 
biological functions of Ang II. Both AT1R and AT2R are expressed 
in platelets.29,30 We found that LPS administration did not affect 
protein expressions of AT1R and AT2R in platelets at 6- 24 hours 
after the administration (Figure 7A). To determine whether Ang 
II could directly act on platelets, primary isolated mouse platelets 

were used. As shown in Figure 7B, Ang II treatment significantly 
increased caspase- 3 activity in platelets. AT1R antagonist losar-
tan blocked the Ang II- induced caspase- 3 activation in platelets, 
which was not affected by AT2R antagonist PD123319. In addi-
tion, the Ang II- induced accumulation of Bak and Bax was largely 
decreased, whereas the loss of Bcl- 2 and Bcl- XL was dramatically 
prevented by losartan (Figure 7C). AT2R antagonist PD123319 
had no significant effect on pro- apoptotic or anti- apoptotic pro-
teins in Ang II- treated platelets. Taken together, our results dem-
onstrated that Ang II directly stimulated platelet apoptosis in an 

F I G U R E  7   Ang II treatment leads to platelet apoptosis through promoting oxidative stress in primary isolated platelets in an AT1R- 
dependent manner. Protein levels of AT1R and AT2R (A) in platelet obtained from control and LPS- treated mice were determined. Primary 
isolated mouse platelets were incubated with 100 nmol l−1 Ang II, 10 μmol l−1 losartan, 10 μmol l−1 PD123319 for 24 h. Caspase- 3 activity (B), 
expressions of Bak, Bax, Bcl- 2 and Bcl- XL (C), ROS production (D&E), levels of MDA, H2O2 and GPx activity (F) were determined in platelets 
(n = 4). Scale bars = 50 μm. **P < 0.01. kDa, kiloDalton
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AT1R- dependent manner. In addition, losartan blocked Ang II- 
induced ROS production in platelets, which was not affected by 
PD123319 (Figure 7D,E). As shown in Figure 7F, MDA and H2O2 
levels were significantly elevated in Ang II- treated platelets com-
pared to control platelets. In contrast, activity of the antioxidant 
enzyme GPx in platelets was significantly decreased by Ang II 
treatment, which was partially reversed by losartan. All results 
showed that Ang II treatment leads to platelet apoptosis through 
promoting oxidative stress in primary isolated platelets in an 
AT1R- dependent manner.

3.7 | Inhibiting the AT1R by losartan alleviates 
platelet apoptosis and thrombocytopenia in LPS- 
induced endotoxemia mice by reducing oxidative 
stress and significantly increases the survival rate of 
LPS- induced endotoxemia mice as well

The effect of AT1R antagonist losartan on platelet oxidative stress, 
apoptosis and thrombocytopenia was then investigated in LPS- 
induced endotoxemia mice. As expected, administration of LPS pro-
foundly increased ROS production, MDA and H2O2 levels, whereas 

F I G U R E  8   The effect of AT1R antagonist losartan on platelet oxidative stress, apoptosis and thrombocytopenia in LPS- induced 
endotoxemia mice. Levels of MDA, H2O2 and GPx activity were determined in platelets (A) at the indicated time- points (n = 7). AT1R 
antagonist losartan was administered at the indicated doses. 24 h later, ROS production (B), levels of MDA, H2O2 and GPx activity (C), 
caspase- 3 activity (D), expressions of Bak, Bax, Bcl- 2 and Bcl- XL (E) in platelets, and platelet count (F) were determined (n = 7). Scale 
bars = 50 μm. *P < 0.05, **P < 0.01. kDa, kiloDalton
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decreased GPx activity in platelets (Figure 8A). Losartan treatment 
(30 mg/kg) blocked LPS- induced ROS production (Figure 8B). In 
addition, administration of losartan at the concentrations of 20 
and 30 mg/kg dose- dependently reduced platelet MDA and H2O2, 
whereas increased platelet GPx activity in LPS- treated animals 
(Figure 8C). As shown in Figure 8D,E, administration of losartan 
at the concentrations of 10, 20 and 30 mg/kg reduced platelet 
caspase- 3 activity, and pro- apoptotic protein levels (Bak and Bax), 
whereas increased anti- apoptotic protein levels (Bcl- 2 and Bcl- XL) 
in LPS- treated animals in a dose- dependent manner. Moreover, lo-
sartan dose- dependently improved LPS- induced thrombocytopenia 
(Figure 8F). We had analysed mice survival rate at 48 h after a lethal 
dose of LPS (30 mg/kg, i.p.) treatment with or without pre- treatment 
with losartan (10, 20, 30 mg/kg, i.p.) to test the preventive therapeu-
tic effect of losartan. As shown in Figure 9, only 4 of 26 mice survived 
in the group receiving saline- only before the administration of LPS, 
while 9 of 26 mice pre- treated with 10 mg/kg losartan, 15 of 26 mice 
pre- treated with 20 mg/kg losartan and 18 of 26 mice pre- treated 
with 30 mg/kg losartan survived in LPS- treated group, indicating the 
protective effects of losartan in a concentration- dependent manner 
during sepsis. Taken together, our findings indicated that AT1R an-
tagonist losartan may alleviate platelet apoptosis and thrombocyto-
penia in LPS- induced endotoxemia by reducing oxidative stress, thus 
significantly improve survival in LPS- induced endotoxemia mice.

4  | DISCUSSION

RAS activation as evidenced by increased PRA and Ang II is a well- 
known phenomenon observed during the development of sepsis, 
both in experimental.31,32 and clinical studies.17,33,34 A prospective 
cohort study of clinical sepsis has shown that plasma Ang II is el-
evated in septic patients as compared to volunteers, and the degree 
of Ang II elevation correlates with organ failure and with measures 
of microvascular dysregulation.17 Huang et al report that plasma 
Ang II concentrations are associated with disease severity induced 
by H7N9 influenza virus and may potentially predict patient mor-
tality.35 The present study revealed for the first time that elevated 
plasma Ang II levels were linked to the severity of thrombocytopenia 

both in septic patients and in LPS- induced endotoxemia mice. These 
initial observations indicate that RAS activation may be involved in 
the pathogenesis of sepsis- associated thrombocytopenia.

Platelets play critical roles in the development of sepsis. 
Accumulating studies have recognized thrombocytopenia as a 
strong predictor of mortality in sepsis and other infectious diseas-
es.11,36- 38 A primary cause of sepsis- associated thrombocytopenia is 
shortened survival of platelets.9 Previous studies have shown that 
the septic milieu impairs mitochondrial function, and decreases the 
expression of the anti- apoptotic protein Bcl- XL, which is required 
for the maintenance of platelet survival.11,37 In addition, both gram- 
negative and gram- positive bacteria can induce Bcl- XL protein deg-
radation in platelets.11 Pathogenic bacteria can directly activate the 
intrinsic apoptotic pathway to induce platelet cell death in vitro.10,11 
By using primary isolated platelets, the present study showed that 
Ang II treatment directly stimulated platelet apoptosis in an AT1R- 
dependent manner in vitro. In addition, the AT1R antagonist losartan 
profoundly reversed LPS- induced thrombocytopenia in mice. These 
findings provide the first evidence that elevated Ang II in septic 
milieu can directly induces apoptotic cell death in platelets, which 
represents a novel mechanism of sepsis- induced thrombocytopenia.

As an important pro- oxidative and pro- inflammatory agent, Ang 
II has been implicated in organ failure and mortality during infectious 
diseases.39- 41 Ang II also leads to an up- regulation of tissue factor, an 
important component of thrombogenesis and subsequent vascular 
dysfunction and microvascular ischaemia in sepsis.42,43 In animal mod-
els of sepsis, therapies directed against Ang II are associated with lower 
levels of pro- inflammatory cytokine and oxidative stress, improved 
endothelial function and improved survival.44- 47 It is noteworthy that 
in the past two years, several population- based retrospective cohort 
studies indicate that prior use of ARBs is associated with decreased 
short- term mortality after sepsis.48- 51 In particular, Hsieh et al recently 
report that regardless of a non- shock or septic shock condition, de-
creased risk of total hospital mortality is associated with preadmission 
ARB use.48 Thrombocytopenia has been recognized as a strong pre-
dictor of mortality in sepsis.2 The present study demonstrated that 
blockade of AT1R significantly improved sepsis- associated thrombo-
cytopenia. Our findings provided a potential explanation for the clini-
cal benefits of pre- hospitalization use of ARBs in patients with sepsis.

F I G U R E  9   Losartan treatment significantly improves survival in LPS- induced endotoxemia mice in concentration- dependent manner. 
Survival rates of mice treated with saline (LPS group, n = 26) versus mice receiving losartan (10, 20 and 30 mg/kg, respectively) before LPS 
(LPS + Losartan group, n = 26) were compared. *P < 0.05, **P < 0.01
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In summary, our data suggest that elevated plasma Ang II is associ-
ated with thrombocytopenia in both septic patients and LPS- induced 
endotoxemia mice. Using primary isolated platelets, Ang II directly 
stimulated platelet apoptosis through promoting oxidative stress in an 
AT1R- dependent manner. Additionally, in vivo experiments evidenced 
the protective effects of AT1R antagonist losartan against platelet 
apoptosis and thrombocytopenia induced by LPS treatment. The 
present study identifies a novel function of elevated Ang II in sepsis- 
associated platelet apoptosis. Antagonist targeting AT1R might have 
clinical benefit in alleviating sepsis- associated thrombocytopenia.
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