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Abstract

Introduction

Intra-abdominal hypertension (IAH) is a well-known phenomenon in critically ill patients.

Effects of a moderately elevated intra-abdominal pressure (IAP) on lung mechanics are still

not fully analyzed. Moreover, the optimal positive end-expiratory pressure (PEEP) in ele-

vated IAP is unclear.

Methods

We investigated changes in lung mechanics and transformation in histological lung patterns

using three different PEEP levels in eighteen deeply anesthetized pigs with an IAP of 10

mmHg. After establishing the intra-abdominal pressure, we randomized the animals into 3

groups. Each of n = 6 (Group A = PEEP 5, B = PEEP 10 and C = PEEP 15 cmH2O). End-

expiratory lung volume (EELV/kg body weight (bw)), pulmonary compliance (Cstat), driving

pressure (ΔP) and transpulmonary pressure (ΔPL) were measured for 6 hours. Additionally,

the histological lung injury score was calculated.

Results

Comparing hours 0 and 6 in group A, there was a decrease of EELV/kg (27±2 vs. 16±1 ml/

kg; p<0.05) and of Cstat (42±2 vs. 27±1 ml/cmH2O; p<0.05) and an increase of ΔP (11±0 vs.

17±1 cmH2O; p<0.05) and ΔPL (6±0 vs. 10±1 cmH2O; p<0.05). In group B, there was no sig-

nificant change in EELV/kg (27±3 vs. 24±3 ml/kg), but a decrease in Cstat (42±3 vs. 32±1 ml/

cmH20; p<0.05) and an increase in ΔP (11±1 vs. 15±1 cmH2O; p<0.05) and ΔPL (5±1 vs. 7

±0 cmH2O; p<0.05). In group C, there were no significant changes in EELV/kg (27±2 vs. 29

±3 ml/kg), ΔP (10±1 vs. 12±1 cmH2O) and ΔPL (5±1 vs. 7±1 cmH2O), but a significant
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decrease of Cstat (43±1 vs. 37±1 ml/cmH2O; p<0.05). Histological lung injury score was low-

est in group B.

Conclusions

A moderate elevated IAP of 10 mmHg leads to relevant changes in lung mechanics during

mechanical ventilation. In our study, a PEEP of 10 cmH2O was associated with a lower lung

injury score and was able to overcome the IAP induced alterations of EELV.

Introduction

The interactions between the abdominal and the thoracic compartments represent a challenge

for ICU physicians [1, 2]. Approximately 50% of intra-abdominal pressure (IAP) is transmit-

ted to the intrathoracic compartment [3–6]. It therefore has a direct impact on functional

residual capacity (FRC), end-expiratory lung volume (EELV), driving pressure (ΔP) and trans-

pulmonary pressure (ΔPL). Almost half of the patients admitted to the ICUs worldwide

develop intra-abdominal hypertension (IAH). Two-thirds of these cases were already present

on the day of ICU admission [7]. An elevated IAP can be classified as follows: 1. intra-abdomi-

nal hypertension (IAH) with an IAP above 12 mmHg and 2. abdominal compartment syn-

drome with an IAP above 20 mmHg [8, 9]. Both are an independent risk factor for organ

failure and mortality in the ICU [1, 7].

Clinical studies on critically ill patients identified an average IAP of 10 mmHg in supine

position [1, 10, 11]. Moderate elevated IAP also occurs in obesity, pregnancy and during anes-

thesia [12–14]. The role of this moderate elevated IAP on lung mechanics and potential organ

failure is yet not fully analysed.

We therefore analysed the effect of a moderate elevated IAP of 10 mmHg on lung mechan-

ics in a porcine model up to 6 hours. To investigate the consequences of different PEEP levels,

we used three levels of PEEP (5, 10, 15 cmH2O). The hypothesis in our study was that a PEEP

of 10 cmH2O in moderate elevated IAP (10 mmHg) is protective by reducing lung injury and

preserving the EELV during mechanical ventilation.

Materials and methods

Animal preparation and instrumentation

The protocol was approved by the responsible committee for animal research (Regierungsprä-

sidium Karlsruhe, No. 35–9185.81/G-161/17). The animals were kept within the interfacultary

biomedical faculty of the university of Heidelberg and were provided by a local pig breeder. All

proceedings were in accordance with animal welfare notes regulated by German law. After

overnight fasting with free access to water, 18 female domestic pigs were anaesthetized intra-

muscularly in combination with 7 mg/kg Azaperon (Stresnil1, Lilly, Bad Homburg, Ger-

many), 8 mg/kg Ketaminhydrochlorid 10% (Ketamin10%1, Bremer Pharma, Warburg,

Germany) and 0.3 mg/kg Midazolam (Midazolam, Hameln Pharma, Hameln, Germany).

Anaesthesia was maintained by continuous infusion of 6 mg/kg/h Ketanest S (Pfizer Pharma,

Berlin, Germany), 3.6 mg/kg/h Midazolam and 10–30 mg/kg/h Propofol 2% (Propofol, Frese-

nius Kabi, Bad Homburg, Germany). There was no use of neuromuscular blockers. Adequacy

of the depth of anaesthesia was regularly assessed by absence of spontaneous breathing efforts

and lack of muscle tone.
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After induction of anaesthesia the pigs were tracheotomised and ventilated with an inten-

sive care ventilator (Carescape R860, GE Healthcare, Madison, USA) using an inspiratory oxy-

gen concentration (FiO2) of 0.4 in a pressure-controlled mode with volume guaranty. Also, a

tidal volume of 8 ml/kg body weight, an inspiration/expiration ratio of 1:2 and a PEEP of 5

cmH2O was provided.

A 5F thermistor-tipped catheter (PiCCO1, Pulsion Medical systems, Feldkirchen, Ger-

many) and a central venous catheter (Logicath, Smiths Medical, Grasbrunn, Germany) were

inserted with ultrasound guidance. Crystalloid solution (Sterofundin ISO, Braun, Melsungen,

Germany) was infused to keep the study population hemodynamically stable during the exper-

iment. A polyethylene catheter (Nutrivent multifunction nasogastric catheter, Sidam, San Gla-

como Roncole, Italy) was used to measure esophageal pressure. Appropriate catheter position

was confirmed as previously described [15].

After a midline laparotomy a large intra-abdominal balloon (200-litre weather balloon,

Stratoflight, Blomberg, Germany) was placed in the peritoneal cavity. Correct position in all

abdominal quadrants was ensured by visual inspection and partial inflation. The abdomen was

carefully closed. A urine catheter was placed in the bladder.

Measurements and calculations

Peak inspiratory airway pressure (PInsp), PEEP, inspiratory esophageal pressure (PEsInsp) and

end-expiratory esophageal pressure (PEsExp) were recorded from the ventilator. ΔP and ΔPL

were calculated as previously described [16]. Transpulmonary inspiratory pressure (TPPInsp)

was calculated as TTPInsp = PInsp—PEsInsp and transpulmonary expiratory pressure (TPPExp) as

TPPExp = PEEP—PEsExp. CStat was measured by the ventilator during an inspiratory hold. Ela-

stance of the respiratory system (ERS) was calculated as ERS = (PInsp—PEEP) / VT, chest wall

elastance (ECW) as ECW = (PEsInsp—PEsExp) / VT and elastance of the lung (EL) as EL = ERS—

ECW.

We measured EELV bedside as previously described [17] without interrupting mechanical

ventilation on the designated PEEP level. CI (cardiac index) was calculated with the PiCCO1

System. End-expiratory IAP (IAPEndex) was measured as recommended [18, 19] and zeroed at

midaxillary level [20]. P/F ratio was calculated based on the ratio of partial arterial pressure of

oxygen to FiO2.

Experimental protocol

Data were assessed after a 30 minutes stabilization period (H0). The abdominal balloon was

then filled with water up to an IAPEndex of 10 mmHg. We randomized into group A (n = 6)

with a PEEP of 5, group B (n = 6) = PEEP 10 and group C (n = 6) = PEEP 15 cmH2O for 6

hours (H6) (Fig 1).

At the end of the experimental protocol, the pigs were euthanized with an intravenous

bolus of 200 mg Propofol followed by 40mmol potassium chloride. We exposed the complete

right lung and regional lung samples were extracted to evaluate wet-dry weight ratio and to

perform histological examination.

Histology

Samples from the anterior, medial and dorsal position of the medial lobe were selected and

immediately fixed in formalin. After fixation, the tissue samples were dehydrated and embed-

ded. The sections were stained with hematoxylin and eosin. A pathologist, blinded to the study

variables, evaluated each sample histologically to determine a lung injury score. To quantify

the extent of histologic lung injury the pathologist used a lung injury scoring system [21] (S1
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Table). Five independent variables were scored to generate the lung injury score. The sum of

each of the five independent variables were weighted according to the relevance for acute lung

injury [21]. The resulting lung injury score ranges from 0 to 1. Zero represents minimal to no

damage and 1 the worst damage possible.

Wet-dry weight ratio

Wet-dry weight ratio was measured in samples of the medial lobe. Samples were weighed,

dried and then weighted again.

Statistical analysis

Sample size was calculated based on the expected alterations in EELV using data from previous

studies performed in our lab.

Statistical analysis was performed using SPSS (Version 25). H0 values and lung injury score

were analyzed using a one-way ANOVA. In case of significance a post hoc analyze with a cor-

rection for multiple tests were performed. We used ANCOVA for comparing H0 with H6 data

with post hoc analysis. Data are expressed as mean ± SEM (standard error of the mean). For all

tests, P� 0.05 was considered statistically significant.

Results

We included 18 animals in this study with a weight of 47 ± 1 kg. There were no significant dif-

ferences at H0 among the experimental groups with the exeption of the significant higher

heart rate of group B compared to group A.

Lung mechanics, hemodynamic parameters and oxygenation

When compared with data at H0 we observed several alterations after 6 hours of mechanical

ventilation (H6) (Table 1). In group A EELV (1323±95 vs. 774±67; p<0.05), EELV/kg bw (27

±2 vs. 16±1 ml/kg; p<0.05) (Figs 2 and 3) and Cstat (42±2 vs. 27±1 ml/cmH2O; p<0.05)

decreased (S1 Fig). The ΔP (11±0 vs. 17±1 cmH2O; p<0.05) and ΔPL (6±0 vs. 10±1 cmH2O;

p<0.05) showed an increase (Figs 2 and 3). In group B EELV (1337±168 vs. 1159±140;

p>0.05) and EELV/kg (27±3 vs. 24±3 ml/kg; p>0.05) were not influenced. Nonetheless a sig-

nificant decrease in Cstat (42±3 vs. 32±1 ml/cmH2O; p<0.05) and an increase in ΔP (11±1 vs.

15±1 cmH2O; p<0.05) and ΔPL (5±1 vs. 7±0 cmH2O; p<0.05) could be observed. In group C

EELV (1231±89 vs. 1310±135; p>0.05), EELV/kg (27±2 vs. 29±3 ml/kg; p>0.05), ΔP (10±1 vs.

Fig 1. Experimental model study protocol. After instrumentation and a 30-min stabilization period animals underwent measurements

at H0 with PEEP 5 and no elevated intraabdominal pressure (IAP). Thereafter the intraabdominal balloon was filled with water up to an

IAP of 10 mmHg. Animals were randomized afterwards to the three different groups with group A: PEEP 5 cmH2O, group B: PEEP 10

cmH2O and group C: PEEP 15 cmH2O. The IAP was held at 10 mmHg for 6 hours.

https://doi.org/10.1371/journal.pone.0230830.g001
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12±1 cmH2O; p>0.05) and ΔPL (5±1 vs. 7±1 cmH2O; p>0.05) where not changed but a signif-

icant decrease of Cstat (43±1 vs. 37±1 ml/cmH2O; p<0.05) was found. The TPPInsp were differ-

ent from H0 in group A and C (A: 6 ± 1 vs. 10 ± 1 cmH20, C: 6 ± 1 vs. 12 ± 2 cmH2O,

Table 1. Pulmonary and hemodynamic parameters in the setting of 6 hours mechanical ventilation with an

intraabdominal pressure of 10 mmHg.

group A group B group C

Weight (kg) HO 48±1 49±1 45±1

IAP (mmHg) HO 3±0 2±1 2±0

IAP (mmHg) H6 10±0� 10±0� 10±0�

EELV H0 1323±95 1337±168 1231±89

EELV H6 774±67� 1159±140# 1310±135§

EELV/kg H0 27±2 27±3 28±2

EELV/kg H6 16±1� 24±3# 29±3§$

ΔP H0 11±0 11±1 10±1

ΔP H6 17±1� 15±1�# 12±1§$

ΔPL H0 6±0 5±0 5±1

ΔPL H6 10±1� 7±0� 7±1

TPPInsp H0 7±1 6±1 6±1

TPPInsp H6 11±2� 7±1 12±2�

TPPExp H0 1±1 1±0 1±1

TPPExp H6 1±1 1±1 5±1

CStat H0 42±2 42±3 45±2

CStat H6 27±1� 32±1�# 37±1�§$

ERS H0 28±1 29±1 28±1

ERS H6 44±1� 37±2�# 32±1�§$

ECW H0 14±1 15±2 14±1

ECW H6 18±3 20±2 13±1

EL H0 14±1 13±1 13±2

EL H6 26±3� 17±1� 19±2

HR H0 79±9 113±9# 85±9

HR H6 77±12 99±6 70±4

MAP H0 78±6 98±5 88±7

MAP H6 100±6� 102±6 104±6

P/F ratio H0 452±25 425±20 505±24

P/F ratio H6 439±19 396±18 501±20$

CI H0 4.9±0.5 5.7±0.3 4.4±0.4

CI H6 4.3±0.4 4.9±0.3 3.6±0.2

EELV = end-expiratory lung volume (ml), EELV/kg = end-expiratory lung volume per kg bodyweight (ml/kg),

ΔP = driving pressure (cmH2O), ΔPL = transpulmonary pressure (cmH2O), TPPInsp = inspiratory transpulmonary

pressure (cmH2O), TPPExp = expiratory transpulmonary pressure (cmH2O), CStat = static pulmonary compliance

(ml/cmH2O), ERS = Elastance of the respiratory system (cmH2O/ml), ECW = Elastance of the chest wall (cmH2O/ml),

EL = lung elastance (cmH2O/ml), HR = heart rate (beats/min), MAP = mean arterial pressure (mmHg), P/F

ratio = ratio between arterial pressure of oxygen and inspired oxygen concentration (mmHg), CI = cardiac index (l/

min/m2)

� = P<0.05 HO vs. H6
# = p<0.05 group A vs. group B
§ = P<0.05 group A vs. group C
$ = p<0.05 group B vs. group C.

https://doi.org/10.1371/journal.pone.0230830.t001
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p< 0.05) but not in group B (6 ± 1 vs. 7 ± 1 cmH2O, p> 0.05). The TTPEXP stayed unaffected

between H0 and H6 (Table 1) (S2 Fig).

Mean values with SEM are illustrated.

At H6 we found a lower EELV/kg in group A (16±1 ml/kg) compared to group B (24±3 ml/

kg) and C (29±3 ml/kg) (P<0.05) (Fig 2). Driving pressure decreased significantly with

increasing PEEP (A: 17±1 cmH2O, B: 15±1 cmH2O, C: 12±1 cmH2O, p<0.05) (Fig 3).

Hemodynamic parameters and oxygenation are summarised in Table 1. We could not find

a relevant alteration of cardiac index with higher PEEP nor was the P/F ratio significantly

influenced.

Lung injury score and wet-dry weight ratio

The global lung injury score was lowest in group B (0.17±0.02) compared to group A (0.30

±0.04) and group C (0.32±0.02) (p<0.05) (Fig 4). The wet-dry weight ratios were not different

(S3 Fig).

Fig 2. Alterations of end-expiratory lung volume in absolute values and in relation to body weight in response to

an intraabdominal pressure of 10 mmHg over 6 hours mechanical ventilation. = group A with PEEP 5 cmH2O,

= group B with PEEP 10 cmH2O = group C with PEEP 15 cmH2O � = p<0.05 HO vs. H6, # = p<0.05 group A

vs. group B, § = p<0.05 group A vs. group C. Mean values with SEM are illustrated.

https://doi.org/10.1371/journal.pone.0230830.g002

Fig 3. Alterations of driving pressure and transpulmonary pressure in response to an intraabdominal pressure of 10 mmHg

over 6 hours mechanical ventilation. = group A with PEEP 5 cmH2O, = group B with PEEP 10 cmH2O = group C

with PEEP 15 cmH2O � = p<0.05 HO vs. H6, # = p<0.05 group A vs. group B, § = p<0.05 group A vs. group C, $ = p<0.05 group

B vs. group C. Mean values with SEM are illustrated.

https://doi.org/10.1371/journal.pone.0230830.g003
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Discussion

Main findings

The present animal study proved that even a moderate IAP of 10 mmHg caused changes in

lung mechanics and a histological lung injury after 6 hours of ventilation. A PEEP of 10

cmH2O overcame the intra-abdominal pressure induced alterations of EELV and revealed the

lowest lung injury score.

Alterations in lung mechanics

The main aim of our study was to describe the alterations in EELV, ΔP and ΔPL in a porcine

model of moderately elevated IAP. These crucial parameters have an impact on the develop-

ment or prevention of ventilator induced lung injury (VILI) [22, 23]. By implementing a

water-filled balloon with an IAP of 10 mmHg for up to 6 hours, we detected a drop of EELV

and EELV/kg bw with a PEEP of 5 cmH2O over time. In the two groups with a PEEP of 10 and

15 cmH2O, these reductions were not observed. PInsp did not rise proportionally to PEEP,

which strongly suggests a regional recruitment due to an increasing PEEP. TPPInsp did not

change significantly from H0 with a PEEP of 10 cmH2O in contrast to the groups with PEEP 5

and 15 cmH2O. The PEEP of 10 cmH2O did not affect TPPExp in significant manner. We inter-

pret these results that the best compliance and lowest EL in this setting occurred with a PEEP

of 10 cmH2O. These results extend those obtained by Cortes-Puentes et al. [24], which were

able to reveal an unresponsive TPPExp with an increase of IAP. The authors argued that a rising

IAP stiffens the chest wall, whereas aerated lung volume decreases, either due to derecruitment

or a reduced stretch of air spaces that remain patent. Cortes-Puentes already showed that a

PEEP of 10 cmH2O is able to restore FRC, which appears to be reduced above an IAP of over

10 mmHg. Compared to our study design the researchers used intra-abdominal air insuffla-

tion and modified IAP levels between zero and 35 cmH2O [24].

In our model with an IAP of 10 mmHg, ERS decreased with increasing PEEP, but ECW was

the same in all groups. These findings are in line with studies in patients with ARDS. Krebs

Fig 4. Histologic assessment of lung injury. Quantitative score for lung injury (from 0 = no damage to 1 = maximal

alteration) calculated by the averaging score for five independent variables: neutrophils in the alveolar space,

neutrophils in the interstitial space, hyaline membranes, proteinaceous debris filling the airspaces and alveolar septal

thickening. Apical, medial, dorsal and global score (mean of scores for apical, medial and dorsal) are illustrated. # =

p<0.05 group A vs. group B, § = p<0.05 group A vs. group C, $ = p<0.05 group B vs. group C. Mean values with SEM

are illustrated.

https://doi.org/10.1371/journal.pone.0230830.g004
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et al. applied different PEEP levels (up to 20 cmH2O) in 20 patients with ARDS; one half of the

study population had IAH (with a mean IAP of 8 and 16 mmHg, respectively) [25]. PEEP was

found to decrease ERS by decreasing EL without influencing ECW in both groups.

PEEP in elevated IAP

In the context of elevated IAP, the management of PEEP is still a contentious issue [26]. The

TPPExp seems to be an important parameter. A negative TPPExp should be avoided in order to

prevent lung collapse and to overcome intratidal recruitment/derecruitment [27]. By inflating

an intra-abdominal balloon, Regli et al. analyzed different PEEP levels (5, 8, 12 and 15

cmH2O) unmatched to the level of IAP [28]. PEEP levels below the IAP were not able to pre-

vent the decline of EELV. In a second study the same group now matched PEEP and IAP levels

[29]. It must be noted that the authors found that EELV was preserved without any improve-

ment in the P/F ratio. They argued that a reduction of cardiac output with higher PEEP levels

is the main cause for the lack of improvement.

A human study in mechanically ventilated patients recently matched the PEEP to IAP.

Only 10 of 18 patients tolerated this matched PEEP. In these 10 patients, the matched PEEP

improved oxygenation but a PEEP matched 0.5 x IAP in cmH2O did not [30]. In our study,

TPPExp was positive at all times and we were not able to find a relevant change in hemody-

namic parameters. Neither could we find relevant alterations in P/F ratio between the groups

or over time.

Histological lung injury

Acute lung injury (ALI) in humans is characterized by disruption of the alveolar-capillary

membrane barrier, proteinaceous alveolar exudate and pulmonary edema. We used the rec-

ommended scoring system for ALI in animal studies [21]. The lung injury score (LIS) was sig-

nificantly lower in the group with a PEEP of 10 cmH2O. PEEP of 10 cmH2O was probably

more lung protective during the ventilation than a lower or higher PEEP. As mentioned previ-

ously neither P/F ratio nor cardiac index were relevantly different between the groups.

Alteration in the wet-dry weight ratio is a typical feature of VILI, caused by high tidal vol-

umes, endotoxin or bacterial induced ALI [31]. As expected, the groups did not differ regard-

ing the wet-dry weight ratio. We therefore presume that the observed differences in LIS were

not caused by lung edema.

Experimental protocol

Some important aspects of our study differ from recent examinations and show the strength of

the actual study.

1. We did not use an air inflated balloon to increase IAP. Instead we modified previously

described methods to induce IAP [32, 33]. By installing water in a large 200-litre weather bal-

loon, we aimed to simulate the leading cause of elevated IAP due to liquid ascites or oedema-

tous tissue.

2. We only used a moderately elevated IAP of 10 mmHg and kept it for 6 hours. Since IAP

is well known to be around 10 mmHg in critically ill patients [7, 10, 11] the investigation we

present here therefore simulated a common scenario.

3. We tried to find the best PEEP in this setting. Therefore we matched PEEP and IAP levels

based on the assumption that abdominal-thoracic transmission (ATT) is between 17 and 62%

[3–6]. The ATT describes the percentage increase in thoracic pressures for each incremental

increase of IAP.
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Limitations

This is an animal study. The results therefore cannot be transferred to human patients without

any restrictions. We only used an IAP of 10mmHg. Hence, it is unclear to what extent the

above-mentioned PEEP matching to IAP is useful and would be tolerated at higher IAP values.

Clinical scenarios rarely end at 6 hours in human subjects and extending IAP and the study

for a prolonged period may also reveal a difference in optimal PEEP recommendations.

Conclusions

A moderately elevated IAP of 10 mmHg has already relevant effects on lung mechanics and on

histological lung injury. Measuring bladder pressure should encourage the clinician to find the

best PEEP in order to realize a safer ventilation strategy. In healthy porcine lungs with an IAP

of 10 mmHg the application of a PEEP of 10 cmH2O overcame the intra-abdominal pressure

induced alterations of EELV. A PEEP of 10 cmH2O revealed the lowest lung injury score.
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