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Abstract
Various environmental signals integrate into a network of floral regulatory genes leading to

the final decision on when to flower. Although a wealth of qualitative knowledge is available

on how flowering time genes regulate each other, only a few studies incorporated this

knowledge into predictive models. Such models are invaluable as they enable to investigate

how various types of inputs are combined to give a quantitative readout. To investigate the

effect of gene expression disturbances on flowering time, we developed a dynamic model

for the regulation of flowering time in Arabidopsis thaliana. Model parameters were estimat-

ed based on expression time-courses for relevant genes, and a consistent set of flowering

times for plants of various genetic backgrounds. Validation was performed by predicting

changes in expression level in mutant backgrounds and comparing these predictions with

independent expression data, and by comparison of predicted and experimental flowering

times for several double mutants. Remarkably, the model predicts that a disturbance in a

particular gene has not necessarily the largest impact on directly connected genes. For ex-

ample, the model predicts that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS
(SOC1) mutation has a larger impact on APETALA1 (AP1), which is not directly regulated

by SOC1, compared to its effect on LEAFY (LFY) which is under direct control of SOC1. This

was confirmed by expression data. Another model prediction involves the importance of

cooperativity in the regulation of APETALA1 (AP1) by LFY, a prediction supported by exper-

imental evidence. Concluding, our model for flowering time gene regulation enables to
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address how different quantitative inputs are combined into one quantitative output,

flowering time.

Introduction
Flowering at the right moment is crucial for the reproductive success of flowering plants.
Hence, plants have evolved genetic and molecular networks integrating various environmental
cues with endogenous signals in order to flower under optimal conditions [1]. Various input
signals are received and transmitted by signal transduction pathways including the photoperi-
od pathway, the vernalization pathway, the ambient temperature pathway and the autonomous
pathway [2]. Finally, the input from these pathways is integrated by a core set of flowering time
integration genes (“integration network”). This regulation contributes to the adaptation of
plants to different environmental conditions and facilitated the successful dispersion of flower-
ing plants over the world [2].

The complexity of flowering time regulation is enormous, even when focusing on the net-
work involved in integrating the various signals. To understand how gene disturbances influ-
ence flowering time, it is not only important to know which genes regulate each other, but also
how strongly these genes influence each other. Hence, quantitative aspects of flowering time
changes upon perturbations of input signals cannot be understood by merely assessing qualita-
tively which interactions are present. To this end, a quantitative model describing how different
genes in the network regulate each other is needed. Indeed, other complex plant developmental
processes have been subject to extensive modeling efforts [3]. This includes processes such as
the circadian clock [4–7], auxin signalling [8–11], photoperiod regulation of flowering time
genes [12,13] and the development of floral organs [14–17], which all have been investigated in
detail by computational models. These models enable to formalize biological knowledge and
hypotheses, and, importantly, to investigate how various types of inputs are combined to give a
quantitative readout.

Flowering time regulation has been extensively studied experimentally in the plant model
species Arabidopsis thaliana. Substantial qualitative information is available about the factors
involved and how these interact genetically. However, the information that is needed for quan-
titative and dynamic modelling is missing to a large extent. This includes comprehensive and
standardized quantitative data on flowering time under various conditions and in different ge-
netic backgrounds [18], and time series of expression for key flowering time integration genes
in those backgrounds. In line with the scarcity of quantitative information useful for modelling,
the floral transition in Arabidopsis thaliana has been scarcely studied using modeling ap-
proaches. Recently a few promising mathematical modeling approaches appeared aimed at
modeling the floral transition in various plant species [19–21]. Dong et al. modeled a network
of four genes involved in the floral transition in maize [19], and Satake et al. modeled a two-
gene network in Arabidopsis halleri [21]. Earlier work on modelling Arabidopsis thaliana flow-
ering time did not take genetic regulation into account or used a mainly qualitative approach
[22]. Only very recently a first quantitative model of the Arabidopsis thaliana flowering time
integration network was presented [20].

We aimed to obtain a mechanistic understanding of the Arabidopsis thaliana flowering time
integration network, by investigating a core gene regulatory network composed of eight genes
(Fig. 1): SHORT VEGETATIVE PHASE (SVP), FLOWERING LOCUS C (FLC), AGAMOUS-
LIKE 24 (AGL24), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1),
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APETALA1 (AP1), FLOWERING LOCUS T (FT), LEAFY (LFY) and FD. Although certainly
more genes are involved in integrating the various signals influencing the timing of the floral
transition [2,23], we focussed on these genes because a) we aim to model the core of the net-
work responsible for flowering time regulation; and b) for these genes, the available experimen-
tal data renders a clear picture of their mutual interactions (see above; Table A in S1 File;
Fig. 1). In the leaves, SVP and FLC repress the transcription of FT [24–27]. FT is produced in
the leaves and moves to the shoot apical meristem (SAM) [28,29]. FT has the potential to inter-
act with FD [30,31] and complex formation is supposed to occur at the SAM, leading to activa-
tion of SOC1 [32] and AP1 expression [30,33]. FLC and SVP are also expressed in the SAM,
where they repress the expression of SOC1 [34–36]. SOC1 integrates signals frommultiple path-
ways and transmits the outcome to LFY [37,38], which is supposed to act at least partially via a
positive feed-back loop in which AGL24 is involved upon dimerizing with SOC1 [39]. In turn,
LFY is a positive regulator of AP1 [40] and of FD [20]. The commitment to flower is ascertained
by a direct positive feed-back interaction between AP1 and LFY. Once the expression of AP1 is
initiated, this transcription factor orchestrates the floral transition by specifying floral meristem
identity and regulating the expression of genes involved in flower development [41]. Important-
ly, in comparison with the recently presented model of the floral transition in Arabidopsis [20]
we included the key floral integrator genes SOC1, SVP and AGL24 in our model.

Fig 1. Network of flowering time integrator genes.Green indicates expression in leaf tissue, blue in meristem tissue. Red arrows represent repression,
blue arrows activation. Most interactions were taken as given based on literature information, but for regulation of LFY by AGL24 and SOC1, different ways of
combining the two inputs were tested (indicated by the light blue arrows). Dashed arrow represents FT transport. Junction symbol next to AP1 indicates
cooperativity predicted for regulation of AP1 by LFY. As indicated, AP1 expression is used as a marker for the moment of the floral transition. This network
was used to fit expression time-course data and to predict the effect of perturbations. Gene names are given in full in the text.

doi:10.1371/journal.pone.0116973.g001
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The above introduced interactions between the flowering time integration genes and the flo-
ral meristem identity genes at the end of the pathway allow to derive a set of Ordinary Differen-
tial Equations (ODEs) describing how genes in the network regulate each other. ODEs were
chosen because they arise from continuum modelling of molecular interactions and allow
quantitative analysis of the effect of perturbations on expression levels and finally on flowering
time. Because of the above mentioned role of AP1 as orchestrator of floral meristem identity
specification, the moment at which the AP1 expression level starts to rise is used as a proxy for
flowering time in the model.

In order to build and validate an ODE model describing the network constituted by the
eight selected genes, we obtained three quantitative datasets: i) gene expression time-courses of
the selected eight genes in wild type; ii) flowering time of plants of different genetic back-
grounds; and iii) expression data of the selected genes in the plants of these different genetic
backgrounds. A key aspect of our approach is that we estimate model parameters using the dy-
namic gene expression time-course data for the components of the model, in combination with
flowering time data (datasets i and ii). We validated our model by comparing predicted expres-
sion time-courses for mutants in components of the network with experimental data (dataset
iii). Finally, we obtained detailed understanding of how genes are affected by perturbation in
other genes, via the regulatory interactions that constitute the network.

Results

Model building and parameter estimation
Given the importance of combining various input signals into a final decision to flower, a key
question is how the integration network generates a quantitative response, i.e. how expression
level perturbations of various magnitudes result in specified changes in other network compo-
nents and finally in a change in flowering time. In order for the model to be able to link expres-
sion changes to changes in flowering time, we included AP1: expression of AP1 indicates that
the switch from vegetative to reproductive growth has occurred [42]. As such, we use the mo-
ment at which AP1 expression rises above a certain threshold in our model as a proxy for the
moment at which flowering starts (see Methods for details).

Our approach to investigate the network involves modelling by ordinary differential equa-
tions (ODEs), which describe how the expression level of each gene is influenced by the other
genes. This regulation is described by Hill functions [43], which represent activation or repres-
sion by the various regulators. Genetic and molecular knowledge on the network structure is
used as input to define these equations. Parameters in these equations represent interaction
strengths and other biological or physical aspects of the system, and are estimated using wild-
type gene expression time-course data. FLC and SVP are not known to be regulated by any of
the genes included in our model, and for that reason, they are included as external input
factors, that regulate one or more other genes in the model. In order to model transport of FT
protein to the shoot apical meristem [44], we assumed that the FT produced in the leaves
reaches the meristem with a delay. An optimal parameter set, which includes the FT transport
delay, was identified by fitting the equations to qRT—PCR time-course data from leaves and
SAM-enriched material obtained from Arabidopsis plants grown at 23°C under long-day (LD)
conditions (Tables B-C in S1 File).

The genes in the core regulatory network of flowering time control cooperate to activate the
flowering orchestrator AP1 [41]. This allows proper timing of AP1 expression and fine tuning
of flowering time in response to different environmental cues. In wild type Arabidopsis, the
AP1 level remains barely detectable in the SAM until about day 13 after germination and then
sharply increases (Fig. 2). As mentioned above, we use the moment at which AP1 expression
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level rises as a marker to indicate that the transition to reproductive development is completed,
which is interpreted as a predictor of flowering time. Based on that, we developed a fitting
strategy that besides of aiming at a good fit, optimizes the correlation between predicted and
observed flowering time. To be able to do so, we obtained a consistent set of flowering time
measurements for mutants of six of the genes in our network (Figure A in S1 File). Flowering
time was measured as the number of rosette leaves (RL) present at flowering. To compare
model predictions for flowering time, expressed in units of days, these were scaled to
RL (Methods).

A total of 35 parameters in six equations were estimated from the time series data contain-
ing 13 datapoints (expression levels) per gene (Tables B-C in S1 File; Fig. 2). Given the variabil-
ity in the data, the fit is satisfactory, as indicated by the value of the normalized root mean
square error (nrmse). For FT, for which the data shows highest variability, the highest nrmse
(27%) was obtained. For SOC1, the overall fit was good, but does not capture the data point at
day 9, which deviates from the general trend in the time series, resulting in a nrmse of 19%. For
AP1 and FD the value of the nrmse was around 14%, and for AGL24 and LFY it was 7%. The
FLC and SVP expression data were used directly as input to the model; these are shown in
Figure B in S1 File. Interestingly, for the data describing AP1, we could only obtain a good fit
by introducing a particular value of one parameter describing how AP1 is regulated by LFY. As

Fig 2. Experimental and simulated expression time-course of the genes in the integration network model.Gene expression was measured by qRT-
PCR (shown as dots) of wild type plants grown under long-day conditions at 23°C (average and standard deviation are shown). The continuous lines show
the simulated gene expression using the parameters estimated by data fitting. Note that FLC and SVP are not regulated by other components of the network
and hence are present as input factors only, and their expression level is not simulated by the model. qRT-PCR data for FT was obtained from leaves; for the
other genes, qRT-PCR data was obtained frommeristem enriched material.

doi:10.1371/journal.pone.0116973.g002
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further discussed below, this parameter indicates DNA binding cooperativity for which indeed
experimental evidence exists.

Simulated flowering times in various genetic backgrounds are shown in Fig. 3A. There is
one outlier in this plot (ft-10; observed flowering time 30 RL, predicted flowering time 17 RL).
Besides this exception, there is considerable agreement between data and predictions. Indeed,
comparison of the Pearson correlation (R = 0.85, including the outlier) with correlation ob-
tained using randomized data demonstrates the significance of this result (p<0.005), indicating
a satisfactory model fit.

Model validation
A key issue in our model is the mechanism by which the network is able to give a quantitative
response to specific perturbations. How are changes in a given gene expression level transferred
to other components of the network, and how does this impact flowering time? In order to vali-
date model predictions of how changes in expression propagate through the network, we simu-
lated the expression time-courses for mutants and obtained independent experimental data for
comparison. For that, microarray experiments were used, which were carried out for wild type
and four mutant backgrounds (soc1, agl24, fd and flc). In these experiments, a flowering induc-
ing shift from short-day to long-day conditions was used [45]. To account for the fact that these
experimental conditions cannot directly be simulated, our comparison of the experimental mi-
croarray data with simulation results focusses on the overall effect of a mutation over the com-
plete time-course (Methods). As indicated by the value of Pearson’s R (0.69; p-value = 0.003),
the predicted overall expression level changes of flowering time genes upon upstreammutations
show a significant correlation with the experimental data (Figs. C-D in S1 File). Assessing the

Fig 3. Model predictions and experiments in various mutant backgrounds. (A) Predicted vs. experimentally observed flowering time for mutants used in
training the model (black) and for double mutants used for validation (red). Wild type flowering time is indicated in green. RL, rosette leaves: the more rosette
leaves, the later flowering. (B) Prediction of expression changes; total change in expression over the simulated time-course is calculated, normalized against
wild type; absolute value is reported to focus on the magnitude of the predicted expression change. Horizontal axis, mutants; vertical axis, genes for which
expression change in mutant background is simulated. Note that FLC and SVP are not regulated by other genes in the model and hence, their expression
level does not change upon any mutation. For comparison between predictions and experiments, see Figures C and D in S1 File.

doi:10.1371/journal.pone.0116973.g003
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correlation per gene (across the different mutants) indicates similar correlation for each of the
genes. However, assessing the correlation per mutation (across the different genes) indicates
good predictive performance for SOC1, FD and AGL24mutations, but not for FLCmutation.
The latter could be due to the low expression and limited role of FLC in the Col-0 background
due to the FRIGIDA (FRI)mutation [46]. The comparison with the microarray dataset consti-
tutes an independent evaluation of the predictive performance of the model, demonstrating
that the model allows predicting the overall magnitude of the effect of a perturbation in one
gene on other genes in a quantitative manner.

To further assess the predictive performance of the model, we analysed five double mutants
in which over-expression of one gene was combined with knock-out of a second gene. In all
cases, both genes involved activators of flowering (Fig. A in S1 File), implying that it is intui-
tively difficult to predict whether the double mutant will be early or late flowering. These mu-
tants were not used in the parameter estimation stage. The resulting prediction performance
was satisfactory (Fig. 3A): for four out of five cases, the prediction was qualitatively correct
(“early flowering”). Quantitatively, the correlation between experimental and predicted flower-
ing times was reasonable as well, although not significant at the p = 0.05 level (Pearson
R = 0.75; p = 0.1). It is good to realize that no perfect fit was expected in this case because of
variable temporal and spatial overexpression levels due to the usage of the 35S promoter [47].

Spread of perturbations through the network
As a first example of quantitative understanding of flowering time regulation, we analysed the
predicted expression changes in various mutant backgrounds (Fig. 3B). A key question here is
how gene expression perturbations spread through the network. We found that the model pre-
dicts that the spread of a perturbation is not in all cases directly related to the position that dif-
ferent genes have in the network (Fig. 3B). For example, the effect of mutating SOC1 on LFY is
smaller than its effect on AP1, although SOC1 regulates LFY and does not directly regulate
AP1, but only indirectly via LFY. Analysis of the regulatory interactions and the associated pa-
rameters in the model allows rationalizing such differences. For the above-mentioned different
magnitudes of the effect of soc1mutation on LFY compared to its effect on AP1, it is relevant
that the estimated expression activation strength (parameter β) for the influence of SOC1 on
LFY (β7) is much smaller than that for the influence of LFY on AP1 (β9; Table C in S1 File).
This means that the model predicts that a change in SOC1 will give rise to a relatively small
change in LFY, which however will be amplified by LFY regulating AP1. This effect is visible in
the experimental microarray data as well, where in the soc1mutant background LFY expression
is much less affected than AP1 expression (normalized AP1 expression change in the soc1mu-
tant compared to wild type is two times that of LFY; Figs. C-D in S1 File). This illustrates that
the effect of perturbations can considerably grow in magnitude throughout the network.

Regulation of AP1 by LFY
As mentioned above, for the regulation of AP1 by LFY our initial analysis using the PCR time-
course data indicated that we needed to introduce DNA-binding cooperativity in the equations
in order to get a reasonable fit of the data. There is indeed experimental evidence for coopera-
tivity in the LFY—AP1 interaction, based on the LFY protein-DNA structure and additional
experimental data [48]. In our modelling approach, cooperativity is defined by a Hill coefficient
n>1 in the term in the differential equation describing the regulation of AP1 by LFY. For the
regulation of AP1 by LFY, setting the value of n = 3 resulted in a markedly improved fit of the
wild type time-course data (Fig. E in S1 File). No improvement of the fit could be obtained for
the other interactions in the network by the introduction of a Hill coefficient larger than 1,
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meaning that the data does not contain evidence for cooperativity in those interactions. Coop-
erativity in the LFY—AP1 interaction provides an additional predicted mechanism by which a
small change in LFY, can lead to a large change in AP1 expression. Experimental evidence in-
deed suggests that cooperativity in LFY binding to the AP1 promoter is important [48].

Regulation of LFY by AGL24 and SOC1
It has been suggested that SOC1 requires dimerization with AGL24 for binding to the LFY pro-
moter. This is based on several sources of experimental evidence: (I) in yeast-two-hybrid
assay, AGL24 and SOC1 form a heterodimer [49]; (II) SOC1 is only detected in the nucleus
when AGL24 is present as well [39]; (III) LFY is expressed only in those tissues where SOC1
and AGL24 expression overlap [39]. Nevertheless, there is a significant difference between the
flowering time observed for soc1 and agl24mutants (Fig. 4A). If these two proteins would bind

Fig 4. Effect of knockout mutations (agl24, soc1 and soc1/agl24) on LFY expression and on flowering time. (A) Number of rosette leaves counted at
the onset of flowering for wild type and mutants. The plants were grown in long-day conditions at 23°C. (B-C) LFY expression in wild type and mutants from
simulations (B) or microarray experiments (C). The simulations show the expression time-course over 20 days after germination; the microarray data consist
of four time-points after transfer of plants grown in short-day to long-day conditions. (D) Effect of efficiency by which LFY expression is activated by AGL24
(β6) and SOC1 (β7), on predicted flowering time. Flowering time, predicted flowering time for given values of parameters. Blue boxes in heatmap indicate
best-fit model parameters and the two mutants soc1 and agl24; arrows point from wild type model to mutants.

doi:10.1371/journal.pone.0116973.g004
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the LFY promoter as AGL24-SOC1 dimer only, then knockout mutations in either AGL24 or
SOC1 would equally reduce the dimer concentration; therefore, one would expect the same ef-
fect on LFY.

Based on these considerations, in our final model, AGL24 and SOC1 have independent
roles in regulating LFY. We tested an alternative model version in which AGL24 and SOC1
only regulated LFY as a dimer and not separately from each other. This resulted in a decreased
goodness-of-fit in particular for LFY (nrmse 43% instead of 7%) and in this alternative model,
indeed the effect of agl24 and soc1mutation on LFY and on flowering time were comparable,
which contradicts available experimental data.

In our model, in which AGL24 and SOC1 have independent roles in regulating LFY, the
simulated LFY expression is reduced by only ~25% in the agl24 knockout mutant relative to its
time-course expression in wild type. In contrast, LFY expression is predicted to be reduced by
~65% in the soc1mutant (Fig. 4B; Fig. C in S1 File). These predicted changes are consistent
with what is experimentally observed in the microarray data for LFY (Fig. 4C). If the expression
level of SOC1 in wild type would be much higher than that of AGL24, a hypothesis to explain
the observed difference between agl24 and soc1 could be that elimination of such more abun-
dant factor would have a larger effect. However, in our expression data, expression levels of
AGL24 and SOC1 are of the same order of magnitude. According to the model, two parameters
are important in describing the regulatory effect of SOC1 and AGL24 on LFY: DNA binding ef-
ficiency (represented by parameter K) and expression activation strength (parameter β). A dif-
ference in any of these two parameters between SOC1 and AGL24 could lead to a difference in
the effect of SOC1 versus AGL24mutation. In the set of parameter values we obtained for our
model, the DNA binding efficiency for AGL24 (K10) and SOC1 (K11) binding to the LFY pro-
moter is quite similar. However, there is a substantial difference in activation strength (β7 vs
β6), with SOC1 being much more able to activate LFY, resulting in a much larger effect of soc1
mutation compared to agl24mutation. Analysis of predicted flowering times for a range of val-
ues of β for SOC1 and AGL24 confirms the dependency on the SOC1 activation strength
(Fig. 4D). In addition, the flowering time observed for the double mutant soc1/agl24 suggests a
small additive effect when both genes are simultaneously knocked-out (Fig. 4A). The difference
between the flowering time of the double mutant and that of the single soc1 and agl24mutants
is significant (t-test; p-value 0.001). In agreement with this observation, the model simulation
predicts a small additional reduction in LFY expression for the soc1/agl24 double mutant
(~80% vs. ~65% in single mutant; Fig. 4B). Overall, these examples demonstrate how we get
quantitative insight in the spread of perturbations through the network. Moreover, this demon-
strates that we can analyse how the quantitative output of the network as a whole is governed
by specific molecular interactions that build up the network.

Discussion
An important reason to apply computational models to a biological system, such as the floral
integration network, is that it allows investigating how the various interactions that together
constitute the network, transmit perturbations into a final readout. Indeed, by integrating ex-
perimental data with modeling we analyse how different components of the flowering time reg-
ulation network react to changes in other components, finally leading to a specific flowering
time. We specifically analysed the regulation of LFY by SOC1, the regulation of LFY by AGL24,
and the regulation of AP1 by LFY. In these cases, the activation strength was found to be the
most important cause of the observed differences in magnitude of effect of perturbations, ac-
cording to the model. This could mean that the protein with the higher predicted activation
strength itself is a stronger transcriptional activator than the other protein, or it could indicate
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involvement in a protein interaction with a partner (not explicitly included in the model),
which is a stronger activator. In the case of the different effect of the soc1mutation compared
to the agl24mutation, it is important to consider that both SOC1 and AGL24 are known to
form additional complexes, and such dimers might also play a role in their differential func-
tioning [49]. In addition, as a general note on our interpretation of parameter values, it is im-
portant to realize that we use a fixed conversion of mRNA levels to protein levels; this means
that potential differences in e.g. translation rate could complicate the interpretation of
the parameters.

In a recently published review, an overview is given of attempts to model plant reproduction
Gene Regulatory Networks, including networks involved in flowering time regulation [50].
Previous work on modelling flowering time used the concepts of “photothermal units” or vari-
ants thereof as a way to computationally investigate flowering time and how it is influenced by
the environment; as recently demonstrated, such models can in principle be connected to ge-
netic information [51]. However, this does not provide a direct way to incorporate the regula-
tory interactions between genes, which are key towards a mechanistic understanding of
flowering time regulation. Our work is more comparable to recent approaches, which start
with defining interactions in a gene regulatory network and then develop a model based on this
network [19,20]. Our approach extends the recently published Arabidopsis flowering time
model [20] by fitting model parameters using dynamic expression data. The model by Jaeger
et al. predicts a rather gradual upregulation of AP1, which does not reproduce the sharp transi-
tion from low expression to the on-state, as seen in our experimental data. This indicates that a
model, in which parameters are estimated purely based on mutant flowering times, might miss
important aspects of gene expression dynamics. Additional time course data could in the future
be obtained at various experimental conditions (temperature, light) as a step towards including
the effect of such conditions on the model. A direct advantage is that our parameters have a
physical interpretation (e.g. activation strength, cooperativity, etc).

When analysing for which genes the model predictions were of better quality, the effects of
an SVP overexpression mutant and an FT knock-out mutant on flowering time were predicted
less accurately compared to other mutants (including SVP knock-out and FT overexpression
mutants). FT and SVP are connected to each other in the network, which could indicate that in
this part of the network the model needs refinement. In particular, given that SVP overexpres-
sion results in lower FT expression, the fact that both SVP overexpression and FT knock-out
were not well predicted indicates that the effect of lower FT levels, either directly on AP1 or
more indirect via SOC1, is not perfectly captured. It is however also important to consider that
the FT levels used as input in our model are relatively low, which is related to the fact that they
are not measured at the peak of diurnal expression of FT. Another aspect to consider is that
FLC and SVP are present as external inputs in the model and are not directly modelled; if a mu-
tation in one of these impacts the other as well, the model would miss such effect, which would
deteriorate prediction performance. This might indeed be the case, according to ChIP-seq
data [35,36].

Clearly, there are several directions to expand our work. We do not specifically represent
protein and RNA separately; currently the state of the art in the proteomics field does not allow
high-throughput and precise quantification of protein levels during the vegetative phase of
plant development. Recent evidence indicates however that for at least one component in the
model, SVP, the effect of protein stability is important [52]. In theory, for the differential
effects of soc1 vs. agl24mutation, for which we provide an explanation in terms of a difference
in a specific parameter in the model, difference in protein levels in spite of similarity in
RNA levels could also be relevant, although there is currently no experimental data that
indicates this.
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In general, the amount of detail in the model will always be a compromise. This holds as well
for the type of interactions in the network. Currently, regulatory interactions are modelled,
whereas protein-protein interactions are not explicitly included. Nevertheless, the way in which
regulatory inputs are combined gives an implicit representation of the way in which proteins in-
teract with each other. Although the importance of complex formation for the components of
the network is clear [49,53], one reason why at our level of detail protein complexes can be ex-
cluded might be that they are mainly relevant for specifying the correct regulatory interactions
(which are explicitly defined in the model equations) and less so for the kinetics of the model.
Depending on the availability of proteomics data, it would however be straightforward to in-
clude e.g. protein dimerization explicitly in our equations. Another relevant addition could be
to include post-translational modifications such as phosphorylation, which are known to be rel-
evant for some of the components of the flowering time regulatory network [54].

Currently, we focused on a core set of genes involved in integrating various flowering time
signals. Given that input from the environment converges on various components of the flow-
ering integration network, an exciting follow-up step will be to incorporate environmental cues
as the next layer of information in the gene regulatory network. This could include both direct
environmental effects on some of the model components, or modelling complete upstream
pathways. As an example of direct environmental influence that could be modelled, recent data
indicates that the above mentioned effects of SVP protein stability as well alternative splicing of
the flowering time regulator Flowering Locus M (FLM) depend on temperature [55]. To in-
clude the former, although protein levels are not explicitly present in our model, an effect of
temperature on stability could be represented by changing the SVP decay parameter; for FLM,
additional equations describing the two isoforms would be needed. As for the modelling of up-
stream pathways, in a recent overview of known effects of mutations, ~150 genes were listed as
being currently known to impact flowering time [56]. It remains to be seen which would be the
best approach to include such genes and whether it is essential to include all of them for reliable
predictions. Given sufficient time-course data it might be possible to use the same approach as
presented here. However, it would also be an option to focus detailed modelling efforts on par-
ticular parts of the network; for example, for the influence of light on the circadian clock, mod-
els have already been developed [4–6] and these could be connected to our model. Other parts
of the network could be treated in a more coarse grained, statistical approach.

To conclude, we present a dynamic and predictive model for flowering time regulation. Our
work presents a framework for studying the mechanisms of flowering time regulation, by ad-
dressing how different quantitative inputs are combined into a single quantitative output, the
timing of flowering.

Methods

Plant materials and growth conditions
For the time-course gene expression studies Arabidopsis Col-0 wild type plants were grown
under long-day conditions (16 hrs light, 8 hrs dark; 21°C) on rockwool and received 1 g/L
Hyponex plant food solution two times per week. Rosette leaves and shoot apical meristem en-
riched material was harvested daily at ZT3 from seven plants per sample in duplicate.

Plants for flowering time analysis were grown in growth chambers with controlled environ-
ment (23°C, 65% relative humidity) under long-day conditions (16 hrs light, 8 hrs dark). Plants
were raised on soil under a mixture of Cool White and Gro-Lux Wide Spectrum fluorescent
lights, with a fluorescence rate of 125 to 175 mmol m-2 s1. For flowering time measurements,
the total number of primary rosette leaves was scored at visual bolting. The position of the
plants from the different genotypes were randomized in the trays, and the flowering time
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phenotype was recorded without prior knowledge of the genotype. Plants for microarray exper-
iments were grown on soil in growth chambers (23°C, 65% relative humidity) under short-day
conditions (8 hrs light, 16 hrs dark) for 25 days (Col-0, soc1–6 (SALK_138131), agl24
(SALK_095007), flc-3) or 28 days (fd-3). Flowering was induced by shifting plants to long-day
conditions (16 hrs light, 8 hrs dark).

Quantitative qRT-PCR data
RNA was isolated from the plant samples (max 100 mg of grinded plant material) using the
InviTrap Spin Plant RNAMini Kit. Subsequently, a DNAse (Invitrogen) treatment was per-
formed, which was stopped with 1μL of a 20 mM EDTA solution and 10 minutes incubation at
65°C. Total RNA concentration was measured, and 1 μg RNA was used to perform cDNA syn-
thesis by the Taqman MultiScribe Reverse Transcriptase kit (LifeTechnologies). qRT-PCR was
performed with the SYBR green mix from BioRad using the gene specific oligonucleotides indi-
cated in Table D in S1 File. YELLOW-LEAF-SPECIFIC GENE8 (YLS8) was implemented as ref-
erence gene for the analyses.

The relative gene expression was given by Etarget = 2ΔCt, where Ct stands for the threshold
cycle and ΔCt = Cttarget—Ctreference. From that, the absolute abundance was estimated by Atarget-

= Etarget × s, where s stands for a scaling factor obtained by dividing the average abundance that
a transcript reaches in a cell by the highest Etarget value among all samples, and multiplying by
an assumed maximal protein abundance. Since a linear relationship between abundances of
RNA and protein is assumed in the model, the average transcript abundance was adjusted
based on average abundance of a protein in cell. An available estimate for the range of protein
abundance is between 400nM and 1400nM [57]. From this range, the average abundance for
the flowering time gene products was arbitrarily chosen (500nM). This means that the maxi-
mum absolute expression among all samples is equal to 500nM (Fig. 2). Scaled expression val-
ues used in parameter estimation are available in S1 Dataset, which also contains model source
code (see below).

Microarray data
Microarray time series experiments were performed as previously described [58] using RNA
isolated from manually dissected shoot apices of Col-0, soc1–6, agl24, and fd-3. Briefly, biotiny-
lated probes were prepared from 1 μg of total RNA using the MessageAmp II-Biotin Enhanced
Kit (Ambion) following the manufacturer’s instructions and hybridized to Arabidopsis ATH1–
121501 gene expression array (Affymetrix). Arrays were washed on a GeneChip Fluidics Sta-
tion 450 (affymetrix) and scanned on an Affymetrix GeneChip Scanner 7G using default set-
tings. Expression data for Col-0, soc-6, agl24, and fd-3 have been deposited with ArrayExpress
(E-MEXP-4001). Expression data for flc-3 (ArrayExpress: E-MEXP-2041) have previously
been published [59]. The probe intensities were normalized and the gene expression estimates
were obtained using the gcRMA library of R/Bioconductor [60].

The model
The regulatory interactions shown in Fig. 1 were modelled by equations based on Hill
kinetics. It was assumed that spatial aspects could be ignored (except for FT transport); hence
the interactions between the components are described by a set of ordinary differential
equations (ODEs). Furthermore, only proteins were explicitly modelled, and a linear relation-
ship between RNA levels and protein levels was assumed. The model is composed of the
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following equations:

dxFT
dt

¼ b1

K1

K1 þ xSVP;l

 !
K2

K2 þ xFLC;l

 !
� d1xFT ð1Þ

dxAGL24
dt

¼ b2

xSOC1
K3 þ xSOC1

� �
� d2xAGL24 ð2Þ

dxSOC1
dt

¼ b3xAGL24
K4 þ xAGL24

� �
þ b4xSOC1

K5 þ xSOC1

� �
þ b5xFT ;t�D

K6 þ xFT;t�D

 !
xFD

K7 þ xFD

� �" #
� K8

K8 þ xSVP;m

 !

� K9

K9 þ xFLC;m

 !
� d3xSOC1

ð3Þ

dxLFY
dt

¼ b6xAGL24
K10 þ xAGL24

� �
þ b7xSOC1

K11 þ xSOC1

� �
þ b8xAP1

K12 þ xAP1

� �� �
� d4xLFY ð4Þ

dxAP1
dt

¼ b9x
n
LFY

Kn
13 þ xnLFY

� �
þ b10xFT;t�D

K14 þ xFT;t�D

 !
þ b11xFD

K15 þ xFD

� �" #
� d5xAP1 ð5Þ

dxFD
dt

¼ b12

xLFY
K16 þ xLFY

� �
� d6xFD ð6Þ

For FLC and SVP, gene expression is represented in the leaves (xFLC,l and xSVP,l) and meristem
(xFLC,m and xSVP,m). For all the other genes, the variables correspond to expression in the mer-
istem. Note that for SVP and FLC there are no equations; they act as external inputs in the
model, and their regulation is not explicitly modelled. The parameters in the equations have
the following meaning (see Tables B-C in S1 File for further details): parameters β and K
stand for the maximum transcription rate and for the abundance at half-maximum transcrip-
tion rate, respectively; di stands for the degradation rate of the products of gene i; Δ stands for
the time needed for transporting FT from the leaves to the meristem; xFT,t-Δ is the amount of
FT in the meristem at time t which is assumed to be equal to that in the leaves at time t-Δ; and
n is the Hill coefficient describing cooperativity in the regulation of AP1 by LFY.

Equations (1–6) are based on the following specific assumptions: (I) SVP and FLC bind to
FT and SOC1 promoters as a dimer. This is implicitly represented by the multiplication of the
Hill terms associated to the SVP- and FLC-mediated regulations of FT and SOC1. (II) FD re-
quires dimerization with FT in order to activate SOC1 expression. (III) FD can activate AP1 as
a monomer. (IV) Recently it was shown that in rice the interaction between FT and FD is
bridged by a 14–3–3 protein [61] and probably this is also the case in Arabidopsis; nevertheless,
we did not include 14–3–3s in our model, because these proteins seem to be highly abundant
and hence not limiting for floral induction. The specific form of the equations and the assump-
tions that they represent were adjusted by assessing the fitting and the flowering time predic-
tions of variants for the five equations. In addition, to obtain a good fit for the equation
associated to AP1, the degree of cooperativity (n) for the LFY-mediated regulation of AP1 was
set to n = 3. Model source code is available as S1 Dataset.
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Parameter estimation
In the model, the expression dynamics xi of a gene i depends on the parameter values associat-

ed to dxi
dt
and on the expression values over the time-course of the direct regulators of i. To inde-

pendently fit an equation dxi
dt
to its corresponding time-course, the expressions of the direct

regulators of i in the right-hand side of the equation were taken from the data, and interpolated
with a polynomial fit. This decoupling method has previously been described in full detail [14].
By applying this method, it is possible to find the parameters for each equation without know-
ing the parameters associated to the other equations; thus, alleviating the high computational
demand put on the search algorithm by the total number of parameters. This optimization step
was carried out by theMultiStart solver implemented in MATLAB (R2012a, The MathWorks
UK, Cambridge). The parameters were then input in the whole systems of equations as starting
point for a second optimization step. In this second step, the equations were solved as a system
and the expressions of the direct regulators of i were taken from their associated ordinary dif-
ferential equation solutions. This was carried out by the lsqnonlin solver (implemented in
MATLAB) to fine-tune the fitting obtained by the first optimization step.

To assess the goodness of fit for each gene, the normalized root mean square error

(NRMSE) was used, which equals RMSE
xmax�xmin

, with RMSE equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðxexpi � xpredi Þ2

n

s
; here xmax,

xmin are the maximum and minimum observed expression value; xi
exp and xi

pred are the experi-
mental and predicted values at time i; and the sum is over all n timepoints.

Model simulations
The equations were solved using MATLAB, integrated with the stiff solver ode23s. For simula-
tions of gene expressions of Arabidopsis wild type grown at 23°C/LD, the initial gene abun-
dances were taken equal to the first expression time-points and the parameters were the same
as described in Table C in S1 File. To simulate gene expression in mutants, the expression asso-
ciated to a mutated gene i was fixed to a constant value xi = kmut. For the knock-out null mu-
tants (ft-10, fd-3, flc-3), the values of kmut were adjusted to zero; and for the knockdown
mutants (not null mutations), kmut values were adjusted to a small percentage of the expression
of i observed in the first time-point from wild type Col-0 (Table E in S1 File). For the overex-
pression mutants, the values of kmut were set to five times the maximum absolute expression
among all samples (2500nM).

To assess the model predictions of changes in gene expression we compared predicted rela-
tive changes with relative changes obtained with microarray data. To do so, we calculated the
predicted total amount of expression (integral of the predicted time-course from day 0 to day
20) using the trapz function in MATLAB. Subsequently, these values were scaled by subtracting
the wild type value and then dividing by the wild type value. Similarly, the experimental relative
change was calculated based on the microarray data. Note that comparing these values focusses
on the effect of a mutation on dynamics of genes in the network over the complete time-course
and as such takes into account the fact that the experimental conditions of the microarray ex-
periment cannot directly be simulated (flowering-inducing shift from short-day to long-day
conditions).

Model predictions of flowering time
The predictions of flowering time were based on AP1 expression. For that it was assumed that,
at a molecular level, Arabidopsis undergoes the floral transition in the moment that AP1 ex-
pression initiates. Therefore, according to our experimental AP1 time series, for wild type
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Col-0, the floral transition takes place between days 12 and 13 after germination. For simplifi-
cation, we take the exact day 12.6 because it corresponds to the average number of rosette
leaves (RLs) observed at the onset of flowering for wild type Col-0. To estimate the flowering
time from mutant simulations, we use the time in which AP1 expression reaches the same sim-
ulated expression value as obtained at day 12.6 for wild type Col-0. This implies that the AP1
expression threshold for triggering the floral transition is the same for different plant growth
conditions and mutants. Because flowering times are usually reported in number of rosette
leaves (RLs) we subsequently scaled the predicted days to RLs by assuming a linear relationship
between the number of RLs observed at the onset of flowering and the time in days after germi-
nation that Arabidopsis thaliana undergoes the floral transition at a molecular level.

In addition to the set of mutants obtained in consistent conditions in this work, we also in-
cluded existing mutant data. Wild type Col-0 flowering time in these experiments is somewhat
different from that observed in our experiments. In addition, flowering times in literature are
mostly reported in rosette leaves (RL), and not directly in days. To be able to integrate these
data, we scaled existing mutant data with a linear factor which is chosen in such a way as to
scale the wild type Col-0 flowering time to 12.6 RL.

Supporting Information
S1 File. Supplementary Figures and Tables.
(DOCX)

S1 Dataset. Model source code and time-course expression data used for parameter
estimation. Contains model source code (MATLAB) and RT-PCR data used for parameter
estimation. Main model file is “ode_application_final.m”. This uses two files (LoadParame-
tersFromFile_Leaf.m and LoadParametersFromFile_Meristem.m) to read the parameter val-
ues; two files that contain the RT-PCR data (dataset_qPCR_normalized_Leaf.m and
dataset_qPCR_normalized_Meristem.m) and two files with ODEs (ode_equation_FT_leaf.m
and ode_equations.m).
(ZIP)
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