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Genome-wide association studies have implicated thousands of noncoding variants across common human phenotypes.

However, they cannot directly inform the cellular context in which disease-associated variants act. Here, we use open chro-

matin profiles from discrete mouse cell populations to address this challenge. We applied stratified linkage disequilibrium

score regression and evaluated heritability enrichment in 64 genome-wide association studies, emphasizing schizophrenia.

We provide evidence that mouse-derived human open chromatin profiles can serve as powerful proxies for difficult to ob-

tain human cell populations, facilitating the illumination of common disease heritability enrichment across an array of hu-

man phenotypes. We demonstrate that signatures from discrete subpopulations of cortical excitatory and inhibitory

neurons are significantly enriched for schizophrenia heritability withmaximal enrichment in cortical layer V excitatory neu-

rons. We also show that differences between schizophrenia and bipolar disorder are concentrated in excitatory neurons in

cortical layers II-III, IV, and V, as well as the dentate gyrus. Finally, we leverage these data to fine-map variants in 177 schiz-

ophrenia loci nominating variants in 104/177. We integrate these data with transcription factor binding site, chromatin in-

teraction, and validated enhancer data, placing variants in the cellular context where they may modulate risk.

[Supplemental material is available for this article.]

Although genome-wide association studies (GWAS) have implicat-
ed thousands of variants in an array of human phenotypes, the
variation underlying these signals and cellular contexts in which
variants act have remained largely unclear (Visscher et al. 2017).
Discernment of disease-relevant variants and cell populations is es-
sential for comprehensive functional investigation of the mecha-
nisms of disease.

Schizophrenia (SCZ) has been robustly investigated through
GWAS, with the number of associated loci increasing from 12 to
179 independent associations in the last decade (O’Donovan
et al. 2008; Pardiñas et al. 2018). However, this has not been ac-
companied by the elucidation of disease mechanisms or an in-
crease in the identification of causal variants. To date, support
for mechanisms and/or causal variants has been established for
only two loci (Sekar et al. 2016; Song et al. 2018). Testing potential
mechanisms underlying SCZ has been impeded by the challenge
of distinguishing risk variants from those in linkage disequili-
brium (LD) and from the lack of knowledge about the cells in
which variants may act.

Recent studies have begun to identify cell populations for SCZ
by leveraging GWAS summary statistics and stratified linkage dis-
equilibrium score regression (S-LDSC) (Finucane et al. 2018;
Skene et al. 2018). These studies have focused on human and ro-
dent transcriptional data, with the finest resolution of cell popula-
tions provided bymouse single-cell RNA-seqdata (scRNA-seq). The
results from these studies have supported a role for cortical excit-
atory and inhibitory neurons in SCZ risk (Finucane et al. 2018;
Skene et al. 2018). However, these studies only capture signals driv-
en by variants residing in selected windows, excluding much of

the regulatory landscape. As most variants identified through
GWAS occur in noncoding DNA (Maurano et al. 2012), these stud-
ies systematically overlook the capacity to use these biological sig-
natures to construct hypotheses indicting putative, cis-regulatory
elements.

Ideally, human chromatin data with the same cell population
resolution as transcriptome data would be used to provide a regu-
latory context for variants. However, human chromatin data ana-
lyzed with S-LDSC have been limited to easy-to-access cell
populations (Ulirsch et al. 2019) or heterogeneous adult tissues,
broad cell types, and in vitro cell lines (The ENCODE Project
Consortium 2012; Finucane et al. 2018; Fullard et al. 2018;
Tansey and Hill 2018). Mouse data have the potential to overcome
these barriers by providing chromatin data for the same popula-
tions as scRNA-seq. Recently, mouse single-cell ATAC-seq was
used to annotate variants and explore the heritability of a variety
of traits, including SCZ (Cusanovich et al. 2018). This study impli-
catedmanyof the same populations in SCZ as previous studies that
leveraged expression data. However, which variants are relevant to
disease and inwhich cells those variantsmay act was not explored.

Wehave successfully usedmouse chromatin data to prioritize
common human variants for pigmentation and Parkinson’s dis-
ease (Praetorius et al. 2013; McClymont et al. 2018). Here, we set
out to address whether mouse-derived human open chromatin
profiles could beused toprioritize cell populations andvariants im-
portant to SCZ. In this way, data from narrowly defined cell popu-
lations that are inaccessible in humans could be used to provide
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context for variants.We evaluate a limited number of strategies for
converting mouse open chromatin peaks to human peaks and use
heritabilityenrichment analyses toprioritize27 (25mouseand two
human) cell populations across 64 GWAS with an emphasis on
schizophrenia. Ultimately, we combine statistical fine-mapping
of variants withmouse-derived human open chromatin data, tran-
scription factor binding site data, chromatin interaction data, and
validated enhancer libraries in order to prioritize variants in SCZ
loci and predict a cellular context in which those variants may act.

Results

A uniform pipeline for processing of mouse ATAC-seq data

We obtained publicly available ATAC-seq data derived from cell
types sorted ex vivo and brain single-nuclei analyses from mice
(Supplemental Table S1; Mo et al. 2015;
Matcovitch-Natan et al. 2016; Gray et al.
2017; Hughes et al. 2017; Hosoya et al.
2018; McClymont et al. 2018; Preissl
et al. 2018). In total, we obtained
25 mouse ATAC-seq open chromatin
region (OCR) data sets encompassing
subclasses of six broader cell types (dopa-
minergic neurons, excitatory neurons,
glia, inhibitory neurons, retina cells,
and T cells) (Supplemental Table S1).

All ATAC-seq data were processed in
a uniform manner. Sequencing for each
cell population was aligned to the mouse
genome (mm10), replicates were com-
bined, and peak summits were called.
This resulted in 165,143 summits called
per sample (range: 54,880–353,125; me-
dian: 130,464), with profiles derived
from the single-nuclei data having fewer
summits in general (Supplemental Table
S2).

To mitigate the potential for biases
resulting from variable sequencing
depths, we employed a filtering method
used by The Cancer Genome Atlas (Cor-
ces et al. 2018; see Methods). We added
250 base pairs (bp) to either side of each
summit, and the uniform peaks were
merged within each population, yielding
78,115 filtered summits per cell popula-
tion (range: 38,685–119,870) and an av-
erage of 62,309 peaks (range: 30,791–
99,119 peaks) (Supplemental Table S2).

To ensure that the OCR profiles re-
flected expected cell population identi-
ties, read counts for each cell population
for the union set of peaks (433,555 peaks)
were compared using principal compo-
nent analysis (PCA) andhierarchical clus-
tering. PCA revealed that the majority of
variation (70.29%) in the data could be
explained by whether the ATAC-seq
data were single-nuclei or bulk, not the
experiment or cell population (Supple-
mental Fig. S1A–C). Stepwise quantile

normalization and batch correction abolished the variation caused
by this technical effect (Supplemental Fig. S1A).

In general, broad cell types clustered together within hierar-
chical clustering of correlation (Fig. 1A) and when PCA results
were projected into two-dimensional, t-distributed Stochastic
Neighbor Embedding (t-SNE) space (Fig. 1B). Only single-nuclei
data from inhibitory medium spiny neurons (Inhibitory MSN∗)
and broad inhibitory neurons (Inhibitory∗) were separated from
the bulk inhibitory neurons in both hierarchical clustering of cor-
relation and t-SNE space (Fig. 1A,B), consistent with prior analysis
(Preissl et al. 2018). This separation could be due to the different
tissues and methods used to isolate these cells (cortex vs. whole
forebrain or sorting vs. single-nuclei) (Mo et al. 2015; Gray et al.
2017; Preissl et al. 2018). Overall, these results establish that the
uniformly processed OCR profiles appropriately reflect cell-depen-
dent biology.
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Figure 1. Mouse open chromatin profiles show expected relationships (A,B) and liftOver of mouse
peaks to human is best done with summits (C–E). (A) Dendrogram displaying results of hierarchical clus-
tering of the peak count correlations of public, mouse ATAC-seq data. Asterisks in the cell population
name indicate single-nuclei data sets. (B) t-SNE plot displaying relationships between the peak counts
of mouse cell populations. (C) Table containing the summary of three liftOver strategies applied to public
mouse ATAC-seq data. (D) Mouse ATAC-seq data at the Wdr60 promoter region in the mouse genome
(mm10; Chr 12: 116,258,915–116,264,450). As an example of the data at this locus, summits and peaks
from Excitatory Layers II-III are displayed along with RefSeq transcripts. (E) Mouse-derived human open
chromatin data at the WDR60 promoter region in the human genome (hg19; Chr 7: 158,626,991–
158,682,822). As an example of data at this locus, data from Excitatory Layers II-III are displayed along
with human RefSeq transcripts. Data include results from all three liftOver strategies employed (“All
peaks”, “Strict peaks”, and “Summits”) along with the peak created after summit liftOver.
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Converting OCR summits from mouse to human provides the

most accurate open chromatin profile

We lifted over all mouse OCR profiles to syntenic sequences in the
human genome (hg19). We compared three methods, seeking to
retain the maximum number of peaks while ensuring human pro-
files resembled mouse profiles. First, peaks were lifted over “as is”
including 250-bp extensions with default parameters (“all”).
Second, peaks were lifted over “as is” with much stricter parame-
ters, limiting gap sizes to 20 bp to match previous studies (“strict”)
(Vierstra et al. 2014). Finally, we converted the single-bp summits
with default parameters and added 250 bp on each side after con-
version (“summit”).

The first method (“all”) resulted in retention of the most
peaks from mouse to human (∼86%); however, the resulting
peak size range (1–54,494 bp) was vastly different from the uni-
form input size of 501 bp (Fig. 1C). Further, ∼58% of lifted over
peaks were >501 bp, with 55,658 peaks doubling in size (>1000
bp) (Fig. 1C). Our second strategy (“strict”) led to the conversion
of ∼42% of peaks, with 2382 peaks doubling in size (Fig. 1C).
Finally, the third strategy (“summits”) led to ∼75% of peaks being
converted while controlling for size (Fig. 1C), resulting in mouse-
derived human peaks that better representmouse peaks. This is ex-
emplified at the WDR60 promoter (Fig. 1D,E). In mouse, an open
chromatin summit in Excitatory Layers II-III neurons is identified,
creating a peak directly over theWdr60 promoter (Fig. 1D). When
lifted over as a peak, it expands from501 bp to∼13 kb (“All peaks”,
Fig. 1E), and when controlling for gaps, the peak fails to lift over
(“Strict peaks”, Fig. 1E). Neither result is representative of the reg-
ulatory landscape inmice. The single-bp summit lifts over and pro-
duces a 501-bp peak that encompasses the WDR60 promoter,
accurately representing the mouse data (“Summits” and
“Summit peaks”, Fig. 1E). Ultimately, converting summits proved
the most robust method.

Mouse-derived human peaks serve as robust proxies for cognate

human tissues

Next, we sought to compare our mouse-derived human OCR data
to existing human open chromatin data. However, since most cell
populations included in our study do not have orthologous hu-
man data by design, we compared profiles to imputed, tissue-level
open chromatin data from the Roadmap Epigenomics Project
(Ernst and Kellis 2015; Roadmap Epigenomics Consortium et al.
2015). We also included human T cell ATAC-seq profiles (Corces
et al. 2016) for direct comparison to our mouse T cell profiles
(CD4 and CD8).

Through the use of pairwise Jaccard statistics scaled by ATAC-
seq sample and hierarchical clustering, we observe immune
ATAC-seq samples (T cells, microglia) cluster together and are
most closely related to blood and immune tissues in Roadmap, es-
pecially “Primary T-cell” tissues (Fig. 2A). We also observe that all
other ATAC-seq samples are most closely related to Roadmap
brain-derived tissues, including “Brain Dorsolateral Prefrontal
Cortex” and “Brain Germinal Matrix” (Fig. 2A). This general pat-
tern holds when the comparisons are limited to Roadmap OCRs
categorized as enhancers, promoters, or dyadic sequences
(Supplemental Fig. S2A–C). Although this analysis is informative,
the subtypes of cells (excitatory, inhibitory, etc.) are not perfectly
grouped, potentially due to the use of tissue-level data or the use of
imputed data. Adding to this, we compare mouse-derived human
profiles to each other and observe that cell populations tend to be
most related to other samples in their same category

(Supplemental Fig. S3A–C). However, differences between orthol-
ogous T cell populations indicate that, although mouse-derived
human OCR data can serve as good proxies for human data at
the base pair level, they are imperfect (Supplemental Results).

We further explored whether mouse-derived human peaks
have regulatory potential in humans. We find 43.5% (16,674/
38,299) (Fig. 2B) of mouse-derived CD8 ATAC-seq peaks overlap
with human CD8 ATAC-seq peaks (40,916 peaks), slightly higher
than previous studies (Vierstra et al. 2014). Using T cell Roadmap
data, 60% (22,927/38,299) and 59% (22,689/38,299) overlap
with naive (77,770 peaks) and memory CD8 T cell peaks (80,049
peaks) with a slight improvement (61%; 23,698/38,299) when
combined (Fig. 2B) (90,267 peaks). Further, ∼83% overlap
(31,757/38,299) with peaks found in any Roadmap tissue
(493,894 total peaks) or the combination of Roadmap and ATAC-
seq data (31,796/38,299) (Fig. 2B) (624,749 peaks). We observe
similar results for mouse-derived CD4 T cells (Supplemental
Table S3). We also evaluated how OCRs from other samples over-
lapped with human sequences, including brain-related Roadmap
samples only (208,021 peaks) and ATAC-seq data from neurons
from the Brain Open Chromatin Atlas (BOCA) (255,977 peaks)
(Fullard et al. 2018). As with T cell data, all evaluated profiles in-
cluding Excitatory Layers II-III (Fig. 2C) exhibit the highest overlap
with combined data (Supplemental Table S4).

Overall, this data shows that mouse-derived human open
chromatin profiles aremost similar to tissues for which theywould
serve as proxies and that the vast majority of mouse-derived hu-
man peaks (average: 81%, range: 72%–92%) (Supplemental Table
S4) show regulatory potential in at least one human tissue.

Mouse-derived human profiles recapitulate cell population

disease enrichments and reveal new biology

We sought to determine whether mouse-derived OCR data could
be used to inform cell-dependent heritability enrichment for com-
mon phenotypes. We employed S-LDSC using open chromatin
data from 27 cell populations across 64 GWAS. We included
open chromatin data from human T cells to allow for direct com-
parison to mouse-derived data. Traits studied included a selection
of common neuropsychiatric, neurological, immunological, and
behavioral traits, as well as traits fromGWAS performed onUKBio-
bank data (Supplemental Table S5; The Brainstorm Consortium
2018; Bycroft et al. 2018).

To explore these enrichment patterns, we used hierarchical
clustering of LDSC regression coefficient Z-scores. Z-scores greater
than zero indicate that a cell population has increased heritability
for a trait when accounting for the S-LDSC baseline model. This
comparison revealed three clusters of samples and four clusters
of phenotypes (Fig. 3A; Supplemental Table S6). Overall, S-LDSC
results for all 64 GWAS established that mouse-derived human
ATAC-seq profiles displayed increased heritability enrichment in
cell populations consistent with the known biology and reveal
new biological insights (see Supplemental Results).

First, we observe that ATAC-seq immune cell samples (T cells
and microglia) cluster together and demonstrate heritability en-
richment for immune-related traits, including lupus, eczema,
Crohn disease, and general autoimmune traits from the UK
Biobank (Fig. 3A). We detect significant enrichment for many im-
mune traits, including multiple sclerosis (Fig. 3A,B; Supplemental
Fig. S4A). Many of these enrichments are consistent with prior
analyses using human tissue (Finucane et al. 2018).
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Next, we observe a collection of broadly defined inhibitory
neurons, inhibitoryMSNs, excitatory neurons in all cortical layers,
and excitatory dentate gyrus (DG) neurons (Fig. 3A). This group
shows consistently higher heritability enrichment for neuropsy-
chiatric, neurological, and behavioral phenotypes with many
showing significant heritability enrichment including neuroti-
cism (Fig. 3A,C; Supplemental Fig. S4B).

Lastly, grouped together are a broadly defined collection of
retinal (rods, cones) and nervous system populations (excitatory
neurons, glial cells, inhibitory PV and VIP neurons, embryonic
dopaminergic neurons) (Fig. 3A). Although not clustering with
the second group of cells, the central nervous system-derived cell
populations in this group show enrichment in neurological phe-
notypes (education years, bipolar disorder [BD], and SCZ) that
also show enrichment in the second group of cells (Fig. 3A).

In contrast to the traits mentioned above, we observe no en-
richment in a set of traits including blood pressure measure-

ments, balding, and anatomical measurements (Fig. 3A). This is
exemplified by height in which most cell populations show a
negative Z-score (Supplemental Fig. S4C), and no populations
reach significance for enrichment (Fig. 3D). It may be expected
that traits like height, fasting glucose, and balding type I would
not reveal significant enrichments in the cell populations we
evaluate.

In order to explore howmouse-derived human data recapitu-
late observations in orthologous human data, we compared the Z-
scores between human and mouse T cells. We observed that in
both CD4 T cells (Spearman’s rho=0.6144) and CD8 T cells
(Spearman’s rho=0.6832), the human and mouse-derived data
show strong correlation (Supplemental Fig. S5A,B). These observa-
tions between T cells can be extended to the correlation between S-
LDSC results for all populations, where we observe that samples
from the same categories are highly correlated (Supplemental
Fig. S5C). We also observe that S-LDSC results for related traits

B
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C

Figure 2. Mouse-derived human peaks serve as robust proxies for cognate human tissues. (A) A heatmap displaying the pairwise relationships between
27 mouse-derived ATAC-seq samples and imputed Roadmap Epigenomics Project open chromatin data from 127 tissues. Data displayed are the pairwise
Jaccard statistic scaled by column (ATAC-seq sample). Data are hierarchical clustered by ATAC-sample and Roadmap tissue. Representative Roadmap tissues
illustrating groups of immune and brain-derived tissues that are highlighted in the text are displayed. (IPSC) Induced pluripotent stem cells, (ESC) embry-
onic stem cell. (B) Plot displaying the intersection of mouse-derived CD8 T cell open chromatin peaks with publicly available human data sets. All numbers
displayed are the number of mouse-derived peaks that meet the intersecting criteria below the plot. (C) Plot displaying the intersection of mouse-derived
Excitatory Layers II-III open chromatin peaks with publicly available human data sets. All numbers displayed are the number of mouse-derived peaks that
meet the intersecting criteria below the plot.
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tend to be highly correlated, similar to what is seen in previous
analyses (Supplemental Fig. S6; Watanabe et al. 2019).

Collectively, these results highlight that mouse-derived hu-
man profiles broadly recapitulate known biology across a wealth
of human phenotypes and thus can serve as suitable proxies for
orthologous human cell populations in this context.

Schizophrenia heritability is most enriched in cortical layer

excitatory neurons

Having established the power ofmouse-derived humanprofiles for
studying common traits, we restricted our focus to schizophrenia.
To facilitate comparison with transcription-based analyses (Skene
et al. 2018), we used the recent CLOZUK SCZGWAS (Pardiñas et al.
2018). Of 27 chromatin profiles, 13 achieved significance when
corrected for all traits tested (Fig. 4A; Supplemental Table S6).
Our analyses largely indict cortical neurons, with open chromatin
profiles from both excitatory and inhibitory populations display-
ing significant enrichment (Fig. 4A; Supplemental Table S6).

Within subsets of cortical excitatory neurons, we detect a pro-
gressive increase in enrichment when moving from layers II-III to
layer V, reaching an apexwith layerVOCRs, and then diminishing
slightly in layer VI (Supplemental Fig. S7A; Supplemental Table
S6). This pattern is mirrored in single-nuclei data wherein enrich-
ment in layer III/IV/V cortical excitatory neurons (Excitatory
Layers II-V∗) exceeds that for layer VI cortical excitatory neurons
(Excitatory Layer VI∗) (Fig. 4A; Supplemental Fig. S7A; Supplemen-
tal Table S6). Significant enrichment for profiles derived fromexcit-
atory neurons of the dentate gyrus (Excitatory DG∗) provides
evidence of additional contribution arising from hippocampal ex-
citatory neurons. The highest levels of enrichment in inhibitory
neurons are seen in the broadly defined Gad2 GABAergic popula-
tionwithparvalbumin-positiveneurons (InhibitoryPV)also reach-
ing significance (Fig. 4A; Supplemental Table S6). We also detect
significant enrichment in Drd1-positive medium spiny neurons
(InhibitoryMSN∗) and astrocytes (Fig. 4A; Supplemental Table S6).

In order to determine the extent to which the differences in
heritability between correlated cell populations are a consequence
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Figure 3. S-LDSC results from 64 GWAS show heritability enrichment in expected cell populations and reveal further insight into disease. (A) A heatmap
displaying regression coefficient Z-scores for 27 cell populations across 64 GWAS analyzed. Data are hierarchical clustered by GWAS and cell population.
Cell populations that met the across trait significance level (Z-score = 4.02133, which is equivalent to a −log10[coefficient P-value] = 4.53857) are indicated
with an asterisk. (B–D) Example dotplots displaying −log10(heritability coefficient P-values) S-LDSC results for GWAS indicative of the observed clustering
groups: (B) multiple sclerosis, (C) neuroticism, and (D) height. Across trait significance levels are shown (−log10[coefficient P-value] = 4.53857; blue dashed
line). Populations are colored and ordered by broader cell-type category. Asterisks in the cell population name indicate single-nuclei ATAC-seq data. All
results can be found in Supplemental Table S6.
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of noise, we tested for SCZ enrichment in subsets of peaks from
each annotation. We observe that distal elements in each annota-
tion have a higher enrichment for SCZ heritability than peaks fall-
ing in promoter regions (Supplemental Fig. S8A,B; Supplemental
Table S7). We also observe that annotations significantly enriched
for SCZ (Fig. 4A) continue to show enrichment when peaks that
overlap with peaks in the most enriched annotation are removed
and when unique peaks in each annotation are tested
(Supplemental Fig. S8A,B; Supplemental Table S7). Thus, although
it is difficult to exclude the potential impact of noise, our analyses
provide evidence that differences in heritability enrichment may
reflect true independent signals.

Excitatory neurons in the cortex and hippocampus are enriched

for differences between schizophrenia and bipolar disorder

Leveraging our success in analyzing SCZ, we set out to determine
which cell populations may differentiate SCZ and BD. Although
BD is related to SCZ and their genetics are highly correlated, they
are unique disorders (The Brainstorm Consortium 2018). We
took advantage of a recent study that not only performed tradi-
tional GWAS for SCZ and BD (affected vs. controls) but also per-
formed GWAS for SCZ and BD compared to controls and SCZ
compared to BD (Bipolar Disorder and Schizophrenia Working
Group of the Psychiatric Genomics Consortium2018). These com-
parisons allowed us to use S-LDSC to pinpoint what cell popula-
tions may be modulating disease differences.

The analysis of “SCZ versus controls” from this study showed
similar results to the CLOZUK GWAS (Fig. 4B; Supplemental Fig.

S7A,B; Supplemental Table S6; Supplemental Results), and the
analysis of BD revealed enrichment in all excitatory neuron popu-
lations and broadly defined inhibitory neurons. The highest en-
richment for BD was seen in individual excitatory layers (Fig. 4C;
Supplemental Fig. S7C; Supplemental Table S6). In contrast to
SCZ, subsets of cortical inhibitory neurons and inhibitory MSNs
were not enriched (Fig. 4C; Supplemental Fig. S7C;
Supplemental Table S6). Furthermore, the combined SCZ and BD
cohort displayed significant enrichment in the same excitatory
and inhibitory neurons as well as embryonic DA populations
and oligodendrocytes (Fig. 4D; Supplemental Fig. S7D;
Supplemental Table S6). Finally, we analyzed the SCZ versus BD
cohort. Only four excitatory neuronal populations reach signifi-
cance: cortical layers II-III, IV, V, and the dentate gyrus (Fig. 4E;
Supplemental Fig. S7E; Supplemental Table S6). Overall, through
the wealth of GWAS data available, we are able to begin to tease
apart the complex relationship between SCZ and BD.

Statistical fine-mapping of 177 schizophrenia loci highlights novel

complex biological hypotheses

Ultimately, our goal was to prioritize variants in SCZ GWAS loci.
We incorporated significantly enriched open chromatin annota-
tions into statistical fine-mapping of 177 independent schizophre-
nia loci using the fine-mapping program, PAINTOR (Kichaev et al.
2014, 2017; Kichaev and Pasaniuc 2015). SCZ loci were fine-
mapped both with and without annotation and without specify-
ing the number of causal SNPs in each locus. In total, 62,994
unique SNPs were fine-mapped with an average of 370 SNPs per

E

BA C

D

Figure 4. S-LDSC results for CLOZUK and PGC schizophrenia studies as well as bipolar disorder GWAS reveal excitatory cortical neuron enrichment. (A–E)
Dotplots displaying the −log10(heritability coefficient P-values) S-LDSC results for: (A) CLOZUK schizophrenia GWAS, (B) PGC schizophrenia GWAS, (C)
PGC bipolar disorder GWAS, (D) schizophrenia and bipolar disorder GWAS, and (E) PGC schizophrenia versus bipolar disorder GWAS. Across trait signifi-
cance levels are shown (−log10[coefficient P-values] = 4.53857; blue dashed line). Populations are colored and ordered by broader cell-type category.
Asterisks in the cell population name indicate single-nuclei ATAC-seq data. All results can be found in Supplemental Table S6.
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locus (Supplemental Tables S8, S9). By using independent signals,
not amalgamated loci, 2317 SNPs were fine-mapped in more than
one locus (Supplemental Results; Supplemental Table S10;
Supplemental Fig. S9).

When combining the results, 1512 SNPs in 166 loci reach a
posterior inclusion probability (PIP) of≥0.1, 82 SNPs in 56 loci
reach a PIP≥0.5, and 30 SNPs in 23 loci reach a PIP≥0.9
(Supplemental Tables S8, S9). Although adding annotation to
fine-mapping did not reduce the number of SNPs in 95% credible
sets (Supplemental Fig. S10A), it did alter the PIP of many SNPs
(Supplemental Fig. S10B), with 411 SNPs only reaching a PIP≥
0.1 when annotation is incorporated (Supplemental Fig. S10C).
We then explored how all variants with a PIP≥0.1 impact OCRs
in SCZ-enriched cell populations; this cutoffwas previously report-
ed to provide a high benefit-to-cost ratio for follow-up experiments
(Kichaev et al. 2014). Across 104 loci, 281 unique SNPs achieve a
PIP≥0.1 and overlap with an OCR present in at least one SCZ-en-
riched cell population (Supplemental Table S11). These SNPs are
prime candidates for functional SNPs within these loci.

Whereas a myriad of hypotheses can be generated from an
overlap of SNPs with OCRs, we sought to use additional functional
data to annotate SNPs. Thesedata included transcription factor (TF)
binding motifs (Kulakovskiy et al. 2018), promoter capture Hi-C
(PCHi-C) interactions (Song et al. 2019), and validated enhancers
from the VISTA enhancer database (Visel et al. 2007). HOCO-
MOCO TFmotif data predicts 163 SNPs across 88 loci disrupt tran-
scription factor binding sites (Supplemental Table S12), most

commonly impacting ARID3A, FOXJ3, and MAZ motifs (Supple-
mental Table S13). No TFmotifswere significantly overrepresented
forbeingdisruptedbySNPs (exactbinomial test) (SupplementalTa-
ble S13; Supplemental Methods). Across 43 loci, 113 SNPs fall into
significant promoter interactions in neural, induced pluripotent
stem cell (IPSC)-derived cell populations (Supplemental Tables
S8, S14), with 59 SNPs also disrupting a TF binding motif (Supple-
mental Table S8). Two SNPs in two loci fell in a validated regulatory
element from the VISTA enhancer database (Supplemental Table
S15), with one of those SNPs disrupting a TF bindingmotif. The to-
tality of these data allowed us to construct hypotheses for many
SNPs and loci. We describe an example below.

Two SNPs (rs1805203 and rs1805645) fell within the VISTA
positive element, hs192, which encompasses the promoter region
of the SOX2-OT gene transcript designated as SOX2DOT (Fig. 5A;
Supplemental Table S15; Amaral et al. 2009; Shahryari et al.
2015). Hs192 drives strong LacZ expression in the forebrain of em-
bryonicmice, specifically in the ventricular zone ofmedial pallium
(Fig. 5B; Visel et al. 2013). rs1805203 falls in the locus tagged by
rs55672338which contains 210 fine-mapped SNPs, of which eight
achieve a PIP≥0.1 (Supplemental Table S8). Of those eight SNPs,
rs1804203 is the only SNP that overlaps an OCR in a SCZ-enriched
population and disrupts a TF binding motif. rs1805203 resides in
open chromatin found in inhibitory VIP neurons, inhibitory
MSNs, and embryonic DA neurons (Fig. 5A; Supplemental Table
S11) and strongly disrupts ARID3A, CDCL5, and ALX1 binding
sites (Fig. 5C; Supplemental Table S12). rs1805645 falls in the locus

BA

C

Figure 5. Fine-mapping prioritizes SNPs in the schizophrenia-associated locus surrounding the SOX2-OT gene. (A) A visualization of two prioritized SNPs
(rs1805203 and rs1805645) in the promoter region of a SOX2-OT transcript promoter. The plot displays transcripts, the prioritized SNPs, a VISTA positive
element (hs192), and the mouse-derived human peaks from all ATAC-seq samples. The prioritized SNPs are highlighted. (B) Representative VISTA mouse
embryo LacZ staining data for the element hs192. Downloaded from VISTA database (https://enhancer.lbl.gov/). (C ) Transcription factor binding motifs
derived from HOCOMOCO v10 data that are disrupted by rs1805203. The nucleotides impacted are highlighted in red.
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tagged by rs34796896 which contains 365 fine-mapped SNPs,
wherein rs1805645 is the only SNP that lies within an OCR for a
SCZ-enriched population (Supplemental Table S8). rs1805645 in-
tersects inhibitory Gad2, inhibitory PV, inhibitory VIP, as well as
embryonic DA neurons in the forebrain and midbrain (Fig. 5A;
Supplemental Table S11). These two SNPs are in low LD (r2∼
0.0127 in the 1000 Genomes European population). SOX2-OT
has been shown to repress the expression of SOX2, which plays
roles in development, in maintaining pluripotent stem cell popu-
lations, and in neural differentiation in the cortex especially im-
pacting GABAergic neurons (Ferri et al. 2004; Cavallaro et al.
2008; Zhang and Cui 2014; Shahryari et al. 2015; Knauss et al.
2018; Messemaker et al. 2018; Mercurio et al. 2019). This leads
us to construct a hypothesis where both SNPs (rs1805203 and
rs1805645) impact regulatory DNA sequences in inhibitory
GABAergic neurons leading to aberrant SOX2-OT expression and
eventually to perturbation of SOX2 expression. We expand upon
our observations at two additional loci, containing the CHRNA2
and NGEF genes, in the Supplemental Results (Supplemental
Figs. S11–S13).

Discussion

Despite the capacity of GWAS to inform genetic architecture, con-
necting variants to disease mechanisms remains a challenge. This
challenge is stark in SCZ, where 179 independent loci implicate
thousands of noncoding variants, without providing an informed
strategy to construct hypotheses.We demonstrate the power of ob-
taining cellular surrogates frommice whichmay not be readily ob-
tained from humans, highlighting their application to inform
human trait heritability and functional dissection. Our results re-
inforce mice as a lens through which to study the genetics under-
lying common human phenotypes (Cusanovich et al. 2018; Hook
et al. 2018; McClymont et al. 2018).

Our study confirms the contribution of cortical and interneu-
ron populations in neuropsychiatric disorders, establishing that
OCR signatures from cortical excitatory and inhibitory popula-
tions are most enriched for SCZ heritability. We demonstrate
that enrichment of heritability for SCZ in excitatory neurons is
not uniform and is maximal in discrete layer V excitatory neurons
and single-nuclei populations containing layer V neurons. This is
consistent with prior data implicating medium spiny neurons, all
layers of cortical excitatory neurons, cortical inhibitory neurons,
as well as hippocampal CA1 excitatory neurons (Skene et al.
2018). We find enrichment in all but hippocampal CA1 excitatory
neurons, for which we did not have data. However, we observe en-
richment in excitatory neurons derived from the dentate gyrus,
which mirror significant SCZ enrichment seen in mouse dentate
granule cells (Skene et al. 2018).

Our data also illuminate cell-dependent differences and sim-
ilarities between SCZ and BD.We find that cortical excitatory neu-
rons and excitatoryDGneurons harborheritability enrichment for
the difference between SCZ andBD. This provides support forwork
that has shown layer-specific neuronal differences between SCZ
and BD (Benes et al. 2001; Rajkowska et al. 2001; Chana et al.
2003) as well as differences in DG neuronal maturation in these
diseases (Yu et al. 2014). We also observe that inhibitory MSNs
consistently show enrichment in SCZ but not BD, pointing toward
potentially important biological differences. However, in analyz-
ing the “SCZ versus BD” association data, enrichment forMSN fails
to reach significance (Fig. 4). This observation perhaps highlights
that the estimation of heritability enrichment is inherently depen-

dent upon annotation size and trait heritability (Hormozdiari et al.
2018), both of which vary across our study.

Although powerful, detecting enrichment remains depen-
dent on the availability of relevant data sets including cell types,
developmental stages, or physiological states. We recognize that
conclusions cannot be drawn about the relevance of any cell
type that was not tested here. Additionally, open chromatin pro-
files lack the biological interpretation provided by histone marks
when trying to identify functional regulatory DNA as enhancers,
promoters, or insulators (Nord and West 2019). We anticipate
the increasing resolution, quality, and completeness of histone
data over time in both human and mouse will allow for further
functional delineation of OCRs.

We also prioritize SCZ variants through the fine-mapping of
variants using SCZ-enriched open chromatin profiles. We identify
SNPs in 104/177 tested loci (∼59%) that may now be considered
prime candidates. By using functional data to annotate these can-
didates, we are able to construct straightforward (SOX2-OT locus)
and complex (CHRNA2 and NGEF loci) hypotheses. We note
that both our S-LDSC and fine-mapping analyses focus on com-
mon SNPs assayed in GWAS.We, therefore, cannotmake any con-
clusions about SNPs not assayed in GWAS or about the
contribution of rare variation to SCZ. Further, more complex vari-
ation has been shown to be important in SCZ loci (Sekar et al.
2016; Song et al. 2018) and is not assayed here.

Further, our results rely on converting mouse data to the hu-
man sequence. Although we optimize identification of ortholo-
gous human sequences and demonstrate that the vast majority
of mouse peaks have a human syntenic ortholog, mouse-derived
OCR data incompletely represent the human OCR spectra they
aim to inform. This is highlighted by the strong but imperfect cor-
relation of S-LDSC results between orthologous T cell open chro-
matin data. The observed differences may reflect the different
locations fromwhich T cells were collected (mouse T cells, thymus;
human T cells, bone marrow/peripheral blood). They may also re-
flect the power resulting from more homogeneous and less chal-
lenged immune cell populations that may be obtained from
laboratory mice or truly different regulatory profiles in the differ-
ent organisms. Although any limitation this presents is difficult
to quantify in cells without orthologous data, an average of 81%
of mouse-derived human peaks are OCRs in human tissue, and
they recapitulate heritability enrichment results for a variety of
phenotypes. This gives us confidence in our approach; however,
efforts to obtain single-nuclei data from human brain samples
may provide clarity bymaking future human data sets a possibility
(Lake et al. 2018).

Overall, our data define immediately testable hypotheses im-
plicating specific variants as potentially modulating the activity of
cis-regulatory elements in discrete cellular contexts in SCZ. The ca-
pacity to move directly from GWAS to the design of functional
tests by using mouse-derived data represents a significant step for-
ward in the dissection of common human phenotypes.

Methods

Obtaining ATAC-seq data

Raw ATAC-seq sequencing data were obtained from the NCBI
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/) except for single-nuclei ATAC-seq data (Preissl et al.
2018), which was obtained from the author’s website. All details
regarding downloaded sequencing data can be found in
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Supplemental Table S1. Additional steps were needed in order to
aggregate ATAC-seq reads from individual nuclei into clusters
using BBMap (https://sourceforge.net/projects/bbmap/) (see
Supplemental Methods).

Alignment and peak calling

Paired-end reads were aligned to the mouse genome (mm10/
GRCm38) using Bowtie 2 (version 2.2.5; http://bowtie-bio
.sourceforge.net/bowtie2/index.shtml) (Langmead and Salzberg
2012) with the following parameters: “-p 15 ‐‐local -X2000”.
Paired-end reads aligning to the mitochondrial genome as well
as random and unknown chromosomes were removed. SAMtools
(Li et al. 2009) was used to remove duplicate reads (v0.1.9), im-
properly paired reads (v1.3.1), and reads with a mapping quality
score of ≤30 (v1.3.1).

Replicates for each cell population were merged into a single
BAM file, and peak summits were called for each mouse cell popu-
lation (25 in total) using the MACS2 (v. 2.1.1.20160309) (Zhang
et al. 2008) “macs2 callpeak” function with the following param-
eters: “‐‐seed 24 ‐‐nomodel ‐‐nolambda ‐‐call-summits ‐‐shift
-100 ‐‐extsize 200 ‐‐keep-dup all ‐‐gsize mm”. Peaks overlapping
with blacklisted regions in the mm10 genome (Amemiya et al.
2019) were removed prior to further analysis (Supplemental
Methods). ATAC-seq data from CD4 and CD8 T cells were also ob-
tained (Corces et al. 2016), aligned to hg19, and processed as above
(Supplemental Table S1).

Since we were comparing ATAC-seq data sets with vastly dif-
ferent sequencing depths and numbers of called summits, we ap-
plied a recently introduced filtering strategy for ATAC-seq peaks
(Corces et al. 2018). For each data set, we summed the MACS2
peak scores and divided that number by one million (total score
permillion).We then divided each individual peak score by the to-
tal score per million for that data set to produce a “score per mil-
lion” (Corces et al. 2018). Ultimately we chose a “score per
million” cutoff of two as that would equate to a P-value permillion
of 0.01.

Relationship between public mouse sets

Summits called in each population were made into uniform 501-
bp peaks by adding 250 bp to each side of the summit. Peaks
were then merged into a union set of peaks using BEDTools
“merge” with default parameters. This final set of filtered and
merged peaks contained a total of 433,555 peaks.

In order to obtain a count matrix for cell population com-
parison, featureCounts (v1.6.1) was used (Liao et al. 2014). The
command “featureCounts” was used with the “-T 10 -F SAF” pa-
rameters in order to obtain a count matrix. BEDTools “nuc” was
usedwith a FASTA file of combinedmm10 chromosome sequences
obtained from theUCSCGenomeBrowser (http://hgdownload.cse
.ucsc.edu/goldenPath/mm10/chromosomes/) in order to calculate
GC content for each peak.

The count matrix, the count matrix summary file, and the
peak GC content file were read into the R statistical environment
(R Core Team 2019). Data were transformed into log2(count +1)
counts, and the CQN R package (Hansen et al. 2012) and
ComBat from the SVA R package (Leek et al. 2012) were used to
quantile normalize counts and correct CQN normalized counts
for the type of experiment (single-nuclei or bulk). Principal com-
ponent analysis was performed using all peak counts with the R
function “prcomp()”with default settings and “scale. = TRUE” set-
ting. t-SNE was performed with the first six principal components
from PCA using the “tsne” package (https://github.com/
jdonaldson/rtsne) with the “tsne()” function with the follow-

ing parameters: “perplexity = 5 max_iter = 10000 whiten=T”.
Additionally, the Pearson’s correlation between corrected peak
counts was used to cluster the data. Correlations were converted
to distances by subtracting the absolute value of the correlations
from 1. Clustering was performed using the R function “hclust”
with “method= ‘ward.D2’” and figures were produced with cus-
tom R scripts.

liftOver

All strategies used the liftOver script “bnMapper.py” from the bx-
python software package (Denas et al. 2015) (https://github.com/
bxlab/bx-python) along with the “reciprocal best” mm10 to hg19
chain file (mm10.hg19.rbest.chain.gz) from the UCSC Genome
Browser (https://hgdownload-test.gi.ucsc.edu/goldenPath/hg19/
vsMm10/reciprocalBest/). Three liftOver strategies were compared:
one using the called summits and two using the uniform,
unmerged 501-bp peaks. The first strategy lifted over the single-
bp summit sets with the settings: “-f BED12” and added 250 bp
to each side. The second strategy lifted over the 501-bp peak sets
again with the settings: “-f BED12”. The third strategy again used
the 501-bp peaks with the settings: “-f BED12 -g 20 -t 0.1”. This
third strategy has been employed previously (Vierstra et al.
2014). Note that, for this comparison, peaks were not merged
and no regions were removed. Ultimately, the liftOver of the
peak summits was used for all subsequent analyses. After liftOver
of the peak summits to hg19, 250 bp were added on to both sides
of each summit to create peaks. For this final set, overlapping peaks
for each annotation were merged using BEDTools “merge” with
default parameters. Peaks overlapping with regions that are black-
listed in the hg19 genome were removed (Supplemental Methods;
Amemiya et al. 2019).

Comparisons to publicly available human open chromatin data

Human open chromatin profiles derived from mouse data were
compared to imputed Roadmap Epigenetic Project DNase I hyper-
sensitivity data from 127 human tissues and cell populations
(Ernst and Kellis 2015; Roadmap Epigenomics Consortium et al.
2015) and ATAC-seq data from neurons isolated from 14 human
brain regions (Fullard et al. 2018) (https://bendlj01.u.hpc.mssm
.edu/multireg/resources/boca_peaks.zip).

All imputed Roadmap DNase peaks as well as imputed
Roadmap peaks designated as enhancers, promoters, or dyadic se-
quences were downloaded (Supplemental Methods). Custom
scripts adapted from Aaron Quinlan (http://quinlanlab.org/
tutorials/bedtools/bedtools.html#a-jaccard-statistic-for-all-400-
pairwise-comparisons) using GNU parallel (https://zenodo.org/
record/1146014) and BEDTools (v2.27.0 “jaccard”) (Quinlan and
Hall 2010) were used to calculate pairwise comparisons between
samples. Custom R scripts were used to produce heatmaps
with the R package “pheatmap” (https://CRAN.R-project.org/
package=pheatmap).

In order to explore how many lifted over peaks have been
shown to have regulatory potential in human tissues, comparisons
between ATAC-seq samples, Roadmap open chromatin, and BOCA
open chromatin were made using the BEDTools “jaccard” com-
mand with default parameters in order to calculate overlaps
(Supplemental Table S4).

Partitioning heritability with linkage disequilibrium score

regression

Summary statistics for 64 GWAS were obtained from a variety of
sources in either “raw” or preprocessed forms. “Raw” GWAS sum-
mary statistics were downloaded and processed using the
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“munge_sumstats.py” script (LDSC v1.0.0). Data sources and spe-
cific command parameters used to process the data are listed in
Supplemental Table S5. Note, processed summary statistics from
the CLOZUK SCZGWAS (Pardiñas et al. 2018) neededminormod-
ifications after processing, and the GWAS summary statistics for
Alzheimer disease (Marioni et al. 2018) have been modified since
analysis (see Marioni et al. 2018 and Supplemental Table S5).
Annotation files and LD score files needed for analysis were created
using the “make_annot.py” and “ldsc.py” scripts included in the
LDSC software using standard parameters. The source for software
and data downloaded to run S-LDSC can be found in
Supplemental Table S16. Each ATAC-seq sample was added onto
the baseline model and heritability enrichment was calculated in-
dividually (also referred to as S-LDSC). The analysis was performed
with the “ldsc.py” script using standard parameters with the
“‐‐h2” flag.

Results for each phenotype were aggregated, and the P-values
for each annotation were calculated in R. The P-values for regres-
sion Z-scores are based on a one-sided test for the regression coef-
ficient being greater than 0, so the P-values for each annotation
were calculated using the regression coefficient Z-scores and the
“pnorm” function with the following parameters: “lower.tail =
FALSE”. For more information, see LDSC publications (Finucane
et al. 2015, 2018) and the LDSC website (https://github.com/
bulik/ldsc). Partitioned heritability calculations for all traits were
combined and analyzed in R. Plots were created using custom R
scripts. The level of significance was set for LDSC results as the
Bonferroni corrected P-value when taking into account all sum-
mary statistics and cell populations tested (0.05/[27∗64] =
0.00002894; −log10[P] = 4.53857). For more details and a descrip-
tion of peak subset analyses, see Supplemental Methods.

Fine-mapping SNPs in schizophrenia loci

Finding proxy SNPs

A total of 179 genome-wide significant, independent index SNPs
were extracted from the CLOZUK SCZ GWAS (Pardiñas et al.
2018). The function “get_proxies()” from the R package “prox-
ysnps” (https://github.com/slowkow/proxysnps) was used with
the following parameters: “window_size = 2e6 pop= “EUR””. This
was used with the 1000 Genomes reference VCF processed by
BEAGLE (Browning et al. 2018) (http://bochet.gcc.biostat
.washington.edu/beagle/1000_Genomes_phase3_v5a/). Only SNPs
with an r2≥0.1 with an index SNP and a minor allele frequency
(MAF)≥1% were retained for fine-mapping. This method ob-
tained 71,344 unique SNPswith reference SNP (RS) numbers across
177 loci (see Supplemental Methods; Supplemental Table S17).

File setup for fine-mapping

We fine-mapped all 177 SCZ loci using PAINTOR (v3.1) (Kichaev
et al. 2014, 2017; Kichaev and Pasaniuc 2015) (https://github
.com/gkichaev/PAINTOR_V3.0). PAINTOR was chosen for its abil-
ity to use summary statistics, run simulations on multiple loci at
once, and incorporate chromatin annotation data. Proxy SNPs
were merged with summary statistics from the CLOZUK
SCZ GWAS, leaving 62,994 unique SNPs across 177 loci. The
number of SNPs in each locus ranged from seven to 1919
(Supplemental Table S18). These loci were used to create both
the LD and annotation files needed to run PAINTOR using the
“CalcLD_1KG_VCF.py” and “AnnotateLocus.py” scripts (see
Supplemental Methods). As suggested by the PAINTOR authors,
the correlations between annotations found to be significant in
LDSC were calculated using custom R scripts. All significant anno-
tations had a Pearson’s correlation≥0.2 (the cutoff suggested by

the authors), so all annotations were merged before running
“AnnotateLocus.py”.

Running PAINTOR fine-mapping

Estimated enrichments for the baseline model and the annotation
model (see Supplemental Methods) were used as input to
PAINTOR Monte Carlo Markov Chain (MCMC) simulations with
the following key parameters: “-mcmc -burn_in 100000 -max_
samples 1000000 -num_chains 5 -set_seed 3 -MI 1”. Fine-mapping
was run both with and without merged annotations with the pa-
rameter for supplying enrichment estimates set at “-gamma_intial
3.79521” for the no annotation simulation and “-gamma_initial
3.79521, -0.939523” set for the simulation including annotation.
The number of samples used for “-burn_in” and “-max_samples”
parameters were chosen based on parameters set for MCMC fine-
mapping with other methods (Banerjee et al. 2018).
Visualizations of fine-mapping results and loci were created with
custom R scripts and the R package “gviz” (v1.28.3) (Hahne and
Ivanek 2016).

Functional annotation of fine-mapped SNPs

In order to explore the functional impact of fine-mapped SNPs on
TF motifs, the R package motifbreakR was used (Coetzee et al.
2015) alongwith TFmotifs as defined by theHOCOMOCOv10da-
tabase (Kulakovskiy et al. 2018). The overrepresentation of TF mo-
tifs disrupted by SNPs was tested in R. Results can be found in
Supplemental Table S13. SNPs were additionally annotated using
data from the VISTA enhancer browser (Visel et al. 2007) and sig-
nificant PCHI-C interactions in excitatory neurons, motor neu-
rons, and hippocampal dentate gyrus-like neurons derived from
IPSCs as well as primary astrocytes (Song et al. 2019). Details for
these analyses can be found in the Supplemental Methods.

Genome assembly versions

Mouse data were aligned to the most recent major mouse genome
assembly version (mm10/GRCm38). Mouse data were lifted over
to the human hg19 (GRCh37) assembly mainly due to the use of
that assembly in the publicly available GWAS summary statistics
analyzed. Additionally, the tools used in the paper (primarily
S-LDSC) are configured for use with hg19, the publicly available
open chromatin peaks (Roadmap, BOCA) were published in
hg19, and the published annotations used (PCHI-C and VISTA en-
hancers) are in hg19.We do not anticipate that the use of GRCh38
(hg38)would significantly impact our results due to our removal of
regions flagged in genomic blacklists. These blacklists have been
shown to remove regions in hg19 that have assembly issues, in-
cluding gaps and regions that were fixed inmore recent assemblies
(Amemiya et al. 2019).

Data access

The sources for publicly available ATAC-seq data can be found in
Supplemental Table S1 and are described in the Methods.
Documentation of code is available on GitHub (https://github
.com/pwh124/open_chromatin) and in Supplemental Code 1.
Access to data including peaks and all files for heritability
enrichment analyses and fine-mapping is available via Zenodo
(https://doi.org/10.5281/zenodo.3253180).
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