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Objective: Preeclampsia is the main cause of maternal mortality due to a lack of
diagnostic biomarkers and effective prevention and treatment. The immune system
plays an important role in the occurrence and development of preeclampsia. This
research aimed to identify significant immune-related genes to predict preeclampsia
and possible prevention and control methods.

Methods: Differential expression analysis between normotensive and PE pregnancies
was performed to identify significantly changed immune-related genes. Generalized
linear model (GLM), random forest (RF), and support vector machine (SVM) models
were established separately to screen the most suitable biomarkers for the diagnosis of
PE among these significantly changed immune-related genes. The consensus clustering
method was used to divide the PE cases into several subgroups to explore the function
of the significantly changed immune-related genes in PE.

Results: Thirteen significantly changed immune-related genes were obtained by the
differential expression analysis. RF was the best model and was used to select the
four most important explanatory variables (CRH, PI3, CCL18, and CCL2) to diagnose
PE. A nomogram model was constructed to predict PE based on these four variables.
The decision curve analysis (DCA) and clinical impact curves revealed that PE patients
could significantly benefit from this nomogram. Consensus clustering analysis of the 13
differentially expressed immune-related genes (DIRGs) was used to identify 3 subgroups
of PE pregnancies with different clinical outcomes and immune cell infiltration.

Conclusion: Our study identified four immune-related genes to predict PE and
three subgroups of PE with different clinical outcomes and immune cell infiltration.
Future studies on the three subgroups may provide direction for individualized
treatment of PE patients.

Keywords: preeclampsia, immunity, biomarker, nomogram, consensus clustering

INTRODUCTION

Preeclampsia (PE) is an idiopathic disease occurring during pregnancy, which can affect the
function of multiple organs (Grandi et al., 2019; Phipps et al., 2019). PE affects 3–5% of pregnant
women worldwide (Zhang et al., 2020b). It is a hypertension disease that is one of the main
causes of increased mortality for pregnant women and perinatal infants (Say et al., 2014). In the
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absence of effective medical intervention, PE may progress to
eclampsia, so effective diagnosis and treatment are crucial.

The etiology and pathogenesis of PE are complex and have
not been fully elucidated. In recent years, an imbalance in the
immune system has been closely related to PE occurrence and
development (Ma et al., 2019). A placental origin for PE is widely
accepted. In early pregnancy, successful placental implantation
depends on the precise regulation of the maternal immune
system (Redman and Sargent, 2010; LaMarca et al., 2013). During
this process, immune cells are needed for the invasive behavior
observed in the decidual layer of the uterus. These immune cells
gather around the trophoblasts and carry out different functions.
They can control the migration of in situ cells of the spiral
arteries and make trophoblasts migrate moderately to the intima
by secreting cytokines and angiogenic factors (Perez-Sepulveda
et al., 2014; Rahimzadeh et al., 2016). The balance between
the immune cells and cytokines produced at the maternal-
fetal interface is important for a normal pregnancy. Any local
imbalance in the immune response may lead to abnormal
placental structure or angiogenesis (Robillard et al., 2014; Sahay
et al., 2014; LaMarca et al., 2016). Indeed, an insufficient invasion
of trophoblasts during placental implantation leads to defective
placental spiral artery remodeling, and both placenta and fetus
are in a relatively ischemic state (Lai et al., 2020).

In our research, we screened for differentially expressed
immune-related genes (DIRGs) between normotensive and PE
pregnancies in the GSE60438 dataset. A stochastic forest model
was constructed to predict the potential value of the DIRGs
in diagnosing PE, and the important DIRGs were selected to
establish a nomogram model to predict PE. In addition, we used
a consensus clustering algorithm to classify PE pregnancies into
three subgroups based on DIRG expression and explored the
immune phenotype of these three subgroups.

MATERIALS AND METHODS

Data Source
The GSE60438 dataset containing two batches was obtained from
the GEO database1. The second batch including 42 normotensive
and 35 PE pregnancies was selected as training dataset (Yong
et al., 2015). The first batch including 23 normotensive and
25 PE pregnancies was selected as validation dataset. We
downloaded the gene expression profile and clinical data for
our research. The probe number of the expression profile data
was converted to gene symbols based on the annotation files.
We obtained 2,499 immune-related genes (IRGs) from the
ImmPort database2. The IRGs contained genes related to antigen
processing and presentation, antimicrobials, the BCR and TCR
signaling pathways, chemokines, cytokines, interleukins, and
their respective receptors, natural killer cell cytotoxicity, and
TGFb, TGFb receptor, TNF, and TNF receptor family members
(Bhattacharya et al., 2014).

1http://www.ncbi.nlm.nih.gov/geo
2https://immport.niaid.nih.gov

Screening for Differentially Expressed
Immune-Related Genes
The “limma” package in R was used to identify differentially
expressed genes (DEGs) between normotensive and PE
pregnancies. We then crossed the DEGs with the IRGs to obtain
the DIRGs for further investigation.

Construction and RF, GLM, and SVM
Models
We created generalized linear (GLM), random forest (RF),
and support vector machine (SVM) models based on the
training set. Positive-negative class balancing has been done by
Combination/integration approach. The occurrence or absence
of PE was used as the response variable, and the DIRGs were used
as the explanatory variables. Next, we used the explain function
of the “DALEX” package in R to analyze the three models and
plotted the residual distribution to select the best model based
on the validation dataset. Finally, we analyzed the importance of
the variables and selected the four most important explanatory
variables for further study.

Construction and Evaluation of the
Nomogram Model
A nomogram model was constructed using the “rms” package to
facilitate the clinical application. The “Points” indicate the score
of each factor under different conditions, while the “Total Points”
refer to the total score of all factors. We measured the predictive
accuracy of the nomogram by calibration curves and generated
a clinical impact curve. The decision curve analysis (DCA) data
were plotted to evaluate the clinical value of the nomogram.

Consensus Clustering for DEGs
We performed consensus clustering to divide the PE cases
into several subgroups based on the expression profiles of the
identified DEGs using the “ConsensusClusterPlus” package in R.
We used 1,000 iterations to ensure the stability of the clustering.
The consensus k number, which was used to select the number of
subgroups to divide the PE samples into, was determined by the
cumulative distribution function (CDF) curves, delta area score
of CDF, and consensus matrix heat maps (Wilkerson and Hayes,
2010; Zhang et al., 2020a).

Evaluation of the Proportion of 22
Immune Cell Types in PE Pregnancies
Currently, the algorithms used to estimate the cell components
in tissue based on gene expression profiles can be divided
into two categories: Gene Set Enrichment Analysis (GSEA)
and deconvolution. CIBERSORT is a deconvolution algorithm
that can combine the labeled genomes of different immune
cell subpopulations to calculate the proportion of 22 immune
cell types in tissues. These immune cell types are presented in
Supplementary Table 1. In this study, the CIBERSORT online
platform3 was used for this analysis, and each sample obtained a

3http://cibersort.stanford.edu/

Frontiers in Genetics | www.frontiersin.org 2 December 2020 | Volume 11 | Article 579709

http://www.ncbi.nlm.nih.gov/geo
https://immport.niaid.nih.gov
http://cibersort.stanford.edu/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-579709 December 1, 2020 Time: 12:5 # 3

Wang et al. Contribution of IRGs in PE

p-value. Samples with a CIBERSORT output value of p < 0.05
were considered statistically significant and analyzed further
(Zhou et al., 2018; Zhang et al., 2019).

Statistical Analysis
We used Wilcox.test or Kruskal-Wallis tests to compare the
differences between the groups. The “RCircos” package in R was
used to map the chromosomal positions of the DIRGs. Spearman
correlation analysis was performed to calculate the correlation
coefficients between the DIRGs. A two-sided p-value of less than
0.05 was considered statistically significant. All statistical analyses
were performed using R 4.0.0.

RESULTS

Landscape of DIRGs in PE Pregnancies
Twenty-seven DEGs were identified between normotensive and
PE pregnancies according to the screening criteria of log |
FC| > 0.1 and p < 0.05 using the “limma” package based on
the training dataset. We obtained 13 DIRGs by crossing the
27 DEGs with 2,499 IRGs, which were used to generate the
Venn diagram (Figure 1A). In addition, 36 immune genes in
our analysis overlapped with the original article according to
the screening criteria of P < 0.05. The overlapping immune
genes were listed in Supplementary Table 1. The expression
of the 13 DIRGs in the normotensive and PE pregnancies are
shown in Figures 1B,C. Both the heat map and the histogram
showed that PI3, CCL18, CCL2, LTB, and CD48 were expressed
at low levels in PE pregnancies compared to normotensive
pregnancies. In contrast, the expression levels of LEP, CGB1,
CDF15, LHB, CGB8, CGA, CGB5, and CRH were higher in
the PE pregnancies than in the normotensive pregnancies. The
chromosomal positions of the 13 DIRGs are shown in Figure 1D.
We compared the immune infiltration between normotensive
and PE pregnancies. The results revealed that the immune
infiltration between normotensive and PE pregnancies have no
statistical differences (Figure 2). It is generally known that PE
pregnancies can cause premature birth at a gestational age of
fewer than 37 weeks or an infant weight of less than 2.5 kg.
This phenomenon is presented in Supplementary Figures 1A,B.
Thus, we also investigated the relationship between the 13 DIRGs
and clinical information (e.g., gestational age and infant weight).
The results indicated that the 13 DIRGs were associated with
premature birth (Supplementary Figures 1C,D).

Construction and RF Model
The RF, GLM, and SVM models were each established using
the training set. We explained the three models using the
“DALEX” package and plotted the residual distribution to select
the best model based on the test set. The RF model had the
least sample residual (Supplementary Figure 2). Thus, the RF
model was constructed to distinguish normotensive and PE
pregnancies in our research. We analyzed the importance of
the variables based on the RF model at the gestational age
from 25 to 41 week (Figure 3A). Variable importance is ranked
according to %IncMSE. “%IncMSE” represents an increase in

mean squared error. The more important a predictor gene is, the
greater the prediction error will be, when its value is randomly
replaced. Then, we performed a 10-fold cross validation to select
the appropriate important variables and four most important
explanatory variables (CRH, PI3, CCL18, and CCL2) from the
RF model was selected for further evaluation. We calculated the
risk score of each patients based on the regression coefficients
using multivariate Cox proportional hazards regression (PHR)
analysis. The risk score of each patients in training dataset was
present in Supplementary Table 2. The time-dependent ROC
curves indicated that the accuracy of the RF model is well based
on the four most important explanatory variables at 30-, 36-, and
41-week (Figure 3B). The AUC value of the ROC curve increased
with the elevated gestational weeks. The four most important
explanatory variables have the most predictive power at 41-
week during pregnancy. Correlation analysis of the 13 DIRGs
revealed that the correlation coefficients between the four selected
DIRGs were lower (Figure 4), suggesting the RF model exclude
genes with similar functions to simplify the model and reduce
unnecessary costs.

Construction and Evaluation of the
Nomogram Model
To facilitate the ability to predict PE pregnancies clinically, we
constructed a nomogram model using the “rms” package based
on the four selected DIRGs (CRH, PI3, CCL18, and CCL2) from
the training dataset (Figure 5A). Calibration curves revealed
that the predictiveness of the nomogram model was accurate
(Figure 5B). The DCA curve was plotted to evaluate the clinical
value of this nomogram model. The x-axis indicates the predicted
probability, and the y-axis represents the net benefit. The oblique
red line revealed that the nomogram model could benefit patients
at high risk threshold from 0.1 to 0.9 (Figure 5C). We further
evaluated the clinical impact curve based on the DCA curve
to more intuitively assess the clinical impact of this model. We
found that the predictive power of the nomogram model was
remarkable. The predicted number of high-risk patients was
greater than that of high-risk patients with an event (Figure 5D).
We then test the nomogram model in the validation dataset based
on the four selected DIRGs. Calibration curves revealed that the
accuracy of the nomogram model was good (Supplementary
Figure 3A). DCA curve and clinical impact curve indicated that
patients can benefit from the nomogram at high risk threshold
almost from 0.1 to 0.9 (Supplementary Figures 3B,C).

Three Subgroups Obtained by
Consensus Clustering
Consensus clustering was used to divide the PE cases into several
subgroups to explore the function of the 13 DEGs in PE based on
their expression profiles. We plotted a CDF curve that allows us
to determine at the k number. The CDF can have an approximate
maximum when we choose the most suitable k = 3 (Figure 6A).
Figure 6B shows the delta area score of the CDF curve from
k = 2–9. We found that the relative increase in the delta area
score tends to be stable after k = 3. Thus, the PE cases could be
divided into three subgroups. Figure 6C provides a view of the

Frontiers in Genetics | www.frontiersin.org 3 December 2020 | Volume 11 | Article 579709

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-579709 December 1, 2020 Time: 12:5 # 4

Wang et al. Contribution of IRGs in PE

FIGURE 1 | Landscape of 13 DIRGs in PE pregnancies. (A) The Venn diagram shows the identification of 13 DIRGs by crossing the 27 DEGs with 2,499 IRGs.
(B) The expression heat map of the 13 DIRGs in normotensive and PE pregnancies. (C) The differential expression histogram of the 13 DIRGs identified between the
normotensive and PE pregnancies. (D) The chromosomal positions of the 13 DIRGs. *P < 0.05; **P < 0.01; ***P < 0.001.

item cluster membership across the different k numbers to track
the cluster history. The matrix heat maps were clearly separated
when k = 3 (Figure 6D). We also explored the expression of
the 13 DIRGs in the three subgroups (clusters A, B, and C).

The heat map and the histogram showed that CCL18, CD48,
LTB, and PI3 were highly expressed in cluster B, whereas CCL2
was highly expressed in cluster A, and CGA, CGB1, CGB5,
CGB8, CRH, GDF15, LEP, and LHB were highly expressed in
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FIGURE 2 | Differential immune cell infiltration between normotensive and PE pregnancies.

FIGURE 3 | Construction and evaluation of the RF models. (A) The importance of the variables based on the RF model at the gestational age from 25 to 41 week.
(B) ROC curves indicated the accuracy of the RF model based on the four most important explanatory variables at 30-, 36-, and 41-week.

cluster C compared to the other subgroups (Figures 7A,B).
The principal component analysis (PCA) indicated that the
expression of the 13 DIRGs could completely distinguish the
three subgroups (Figure 7C).

We then test the consensus clustering in validation dataset
based on the 12 DEGs (GDF15 gene could not be found
in the validation dataset) and found similar grouping results
(Supplementary Figure 4). The heat map and the histogram
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FIGURE 4 | The correlation coefficients between the 13 DIRGs by Spearman correlation analysis.

revealed that except for CCL2 gene, the difference distribution of
the other genes in the three groups was similar (Supplementary
Figures 5A,B). The principal component analysis (PCA)
indicated that the expression of the 12 DIRGs could also
distinguish the three subgroups (Supplementary Figure 5C).

Clinical Traits and Immune Cell
Infiltration Characteristics of the Three
Subgroups
To explore the significance of the three subgroups, we compared
the gestational age and infant weight between the three subgroups
by Kruskal-Wallis tests based on the training dataset. We found
that the cluster C subgroup had a lower gestational age and
infant weight than the other two subgroups (Figures 8A,B).
Differential analysis of the immune cell infiltration levels in the

three subgroups revealed that infiltration by the memory B cells,
naïve CD4+ T cells, γδ T cells, monocytes, and neutrophils in the
cluster B subgroup was higher than in the other subgroups while
resting dendritic cells and M2 macrophages were found in higher
numbers in the cluster C subgroup (Figure 8C).

DISCUSSION

PE is the main cause of maternal mortality (Abalos et al., 2013).
There is currently no gold standard for diagnosis or effective
preventive and treatment methods. The immune system consists
of cytokines, chemokines, inhibitory receptors, and ligands, and
immune cells that play important roles in normal pregnancy
(Kubes and Jenne, 2018). An immune imbalance may lead
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FIGURE 5 | Construction and evaluation of the nomogram model based on the four explanatory variables from training dataset. (A) Construction and evaluation of
the nomogram model based on the four explanatory variables. (B) The calibration curve revealed the predictiveness of the nomogram model. (C) The DCA curve
evaluated the clinical value of the nomogram model. (D) The clinical impact curve used to assess the clinical impact of the nomogram model.

to pregnancy-specific complications, including PE (Schumacher
et al., 2018). In our research, we explored the significance of
immune-related genes in PE and established a basis for screening
diagnosis markers and individualized immunotherapy for PE.

We screened 13 immune-related genes (PI3, CCL18, CCL2,
LTB, CD48, LEP, CGB1, CDF15, LHB, CGB8, CGA, CGB5,
and CRH) based on significant differential expression analysis
between normotensive and PE pregnancies. PI3, CCL18, CCL2,
LTB, and CD48 were downregulated in PE. In contrast, LEP,
CGB1, CDF15, LHB, CGB8, CGA, CGB5, and CRH were
upregulated. Most of the significant immune-related genes
belonged to the category of antimicrobials and cytokines that
function in the reaction to bacteria, inflammatory responses, and
immune processes. We also explored the relationship between
the 13 DIRGs and premature birth. The results suggested that
low expression of PI3, CCL18, CCL2, LTB, and CD48 and high
expression of LEP, CGB1, CDF15, LHB, CGB8, CGA, CGB5,
and CRH might be involved in the occurrence of premature
delivery. These data are consistent with the adverse outcome of
premature delivery caused by PE. RF is an integrated algorithm
composed of a decision tree, which can be used as a classification
tool. The decision tree produces a tree model, classifies the data,
and forecasts by repeatedly distinguishing each variable. RF has

numerous merits, such as judging the importance of features,
does not easily overfit, and its training speed is relatively fast
(Jeong et al., 2020). GLM is a widely used statistical model
that is mainly used to solve a binary classification problem,
and represents the possibility of something happening (Qu and
Luo, 2015). SVM was first proposed by Cortes and Vapnik in
1963 (Ben-Dor et al., 2000). It has many unique advantages in
solving small sample, nonlinear, and high-dimensional pattern
recognition (Huang et al., 2018). We constructed different models
based on these methods and found that the RF model was
the best model for identifying the most suitable biomarkers for
diagnosing PE. Indeed, the DCA and clinical impact curves
demonstrated that PE patients could benefit from the nomogram
generated using the four explanatory variables (CRH, PI3,
CCL18, and CCL2) identified using the RF model in both training
dataset and texting dataset. We used consensus clustering
analysis of the 13 DIRGs to classify PE pregnancies into three
subgroups. CCL2 was higher expression in cluster A subgroup
compared with the other groups, while CCL18, CD48, LTB, PI3
were higher expression in cluster B subgroup, and CGA, CGB1,
CGB5, CGB8, CRH, CDF15, LEP, LHB were higher expression
in cluster C subgroup. We also found similar grouping results in
texting dataset based on the 12 DEGs (GDF15 gene could not be
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FIGURE 6 | The three subgroups identified by consensus clustering based on the 13 DEGs from training dataset. (A) CDF curve for k = 2–9. It shows the cumulative
distribution function of different k values, which can be used to determine when k is taken, the CDF reaches an approximate maximum value, and the clustering
analysis results are the most reliable. (B) The delta area score of the CDF curve from k = 2–9. It shows the relative change of area under the CDF curve. (C) Tracking
plot from k = 2–9. The black stripe at the bottom represents the sample, showing the classification of the sample when different values of k are taken, and the color
blocks of different colors represent different classifications. (D) The matrix heat map were clearly separated when k = 3. The rows and columns of the matrix heat
map represent samples. The values of the consistency matrix are white to dark blue from 0 (impossible to cluster together) to 1 (always clustered together). The
consistency matrix is arranged according to the consistency classification (the tree above the heat map). The bar between the tree view and the heat map is the
classification.

found in the validation dataset). The heat map and the histogram
revealed that except for CCL2 gene, the difference distribution of
the other genes in the three groups was similar, which revealed
the stability of the grouping by consensus clustering analysis.

Proteins related to the genes higher expression in cluster
C subgroup were mainly hormone-associated protein and the
cluster C subgroup had a lower gestational age and infant

weight than the other groups. Therefore, boldly speculate that
a large number of hormone levels are positively correlated
with the risk of PE and the conjecture was highly consistent
with previous studies (Makrigiannakis et al., 2018; Al-Kaabi
et al., 2020; Daskalakis et al., 2020). Antonis Makrigiannakis
suggested that corticotropin releasing hormone (CRH) may
contribute to preeclampsia (Makrigiannakis et al., 2018). The
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FIGURE 7 | Landscape of three subgroups in PE pregnancies in training dataset. (A) The expression heat map of 13 DIRGs between the three subgroups. (B) The
differential expression histogram of 13 DIRGs between the three subgroups. (C) Principal component analysis for the expression profiles of three subgroups that
shows a remarkable difference in the transcriptomes between the different subgroups. *P < 0.05; **P < 0.01; ***P < 0.001.

β-hCG encoded by CGB5 and CGB8 genes was demonstrated
positive correlation with preeclampsia (Al-Kaabi et al., 2020).
Georgios Daskalakis reported that preeclampsia is associated with
increased leptin (LEP) (Daskalakis et al., 2020). In addition,
we found that memory B cells, naïve CD4+T cells, γδ T
cells, monocytes, and neutrophils had higher infiltration in
the cluster B subgroup. Similarly, resting dendritic cells and
M2 macrophages showed higher infiltration in the cluster C
group. We speculate that immunosuppression may cause a
disorder in the internal environment, leading to premature
birth. Additional research is needed to explore the relationship
between immune cell infiltration and the PE subgroups,
gestational age, and infant weight of the subgroups of
PE patients.

This study had some limitations. Firstly, the sample tissues
came from decidual tissue rather than blood, so we could not
determine whether the selected diagnostic markers would be
suitable for measuring in blood samples. Secondly, our research
results are only predictions. These results need to be verified
by basic science and clinical studies. Thirdly, since the decidual
basalis samples are taken at the occurrence of PE, it will be
interesting to see whether the biomarkers cytokines can be
detected in serum. However, we searched the data sets in
the database and found no transcriptome data that met the
requirements. Fourthly, we did not verify our research results
using other datasets due to the limitations of the data in the
database. Finally, the key immune-related genes used for PE
diagnosis were selected based on the placental tissue samples at
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FIGURE 8 | Clinical traits and immune cell infiltration characteristics of the three subgroups. (A) Differential gestational age between the three subgroups.
(B) Differential infant weight between the three subgroups. (C) Differential immune cell infiltration between the three subgroups. *P < 0.05.

the gestational age from 25 to 41 week. Whether these genes have
the potential to be biomarkers for early diagnosis need further
experimental studies.

CONCLUSION

In conclusion, our study selected four explanatory variables and
established a nomogram model to predict PE. We also identified
three subgroups with different clinical outcomes and immune cell

infiltration. Future studies on these three subgroups may provide
direction for individualized treatment of PE patients.
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(B) The calibration curve revealed the predictiveness of the nomogram model. (C)
The DCA curve evaluated the clinical value of the nomogram model. (D) The
clinical impact curve used to assess the clinical impact of the nomogram model.

Supplementary Figure 4 | The three subgroups identified by consensus
clustering based on the 12 DEGs from validation dataset.

Supplementary Figure 5 | Landscape of three subgroups in PE pregnancies in
validation dataset. (A) The expression heat map of 12 DIRGs between the three
subgroups. (B) The differential expression histogram of 12 DIRGs between the
three subgroups. (C) Principal component analysis for the expression profiles of
three subgroups that shows a remarkable difference in the transcriptomes
between the different subgroups.

Supplementary Table 1 | Thirty-six immune genes in our analysis overlapped
with the original article according to the screening criteria of P < 0.05.

Supplementary Table 2 | The risk score of each patients in training dataset.
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