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Introduction
One hundred years after their discovery [1,2], the interest towards the therapeutic use of bacte-
riophages (briefly: phages) has resurged due to the escalating rise of multi-drug–resistant bacte-
ria [3,4]. However, besides regulatory hurdles, realization of this treatment concept is
hampered by efficiency and safety concerns [5]. Conversely, metagenome studies have shown
that phages are consistent and dominant members of the human microbiome, suggesting an
unknown role of phages in human health and disease [6]. Therefore, the recognition and
understanding of phages as common members of the human microbiome may provide the
required confidence and pave the way for their targeted medical application, which will go
beyond the classical form of phage therapy. Here we provide a holistic perspective regarding
the impact of human-associated phages and possible consequences for our well-being.

The influence of phages is rather complex, because the consequence of infection is not
restricted to the immediate host. Any drop-out or altered physiology of the bacterial host can
have profound effects on other members within the microbiome as well. Phages are best
known for their ability to “arm” bacteria with virulence genes, which converts a benign bacte-
rial strain into a highly pathogenic strain, causing an acute and severe infection [7,8]. Hence,
phages are broadly regarded as notorious “providers” of virulence genes, which has conferred
upon them a largely negative reputation. However, considering that phages are our permanent
companions along with bacteria, the emergence of novel pathogenic bacterial strains is actually
a comparably rare event. We believe that from a global perspective, the impacts of phages are
rather subtle and mostly in a regulatory and positive way. A stable, healthy microbiome can
probably only evolve and be maintained through phage activity. Nonetheless, metagenomic
studies have also indicated altered phages populations in dysbiosis. This means that human
diseases, characterized by distorted bacterial communities, may ultimately also have phage-
driven origins. From this it follows that phages are critical mediators of human health but also
of disease, lending them somewhat the character of a “Janus-Face” (Fig 1). It will be one of the
greatest challenges of future research to disentangle the dynamic and complex interplays
between phages and bacteria. This endeavor is worthwhile, because understanding phage activ-
ity in humans (good or bad) can be considered a golden chance for developing strategies that
aim at the directed use of phages in favor of human health [9].

The human microbiome is biogeographically structured across the four major habitats: the
oral cavity, the gastrointestinal tract, the vagina, and the skin [10,11]. Each habitat is character-
ized by numerous sub-niches and surfaces harboring a myriad of bacteria, archaea, eukaryotes,
and viruses, most of which are phages [9,12–14]. Given the distinctiveness of each body site,
phage–bacterial interactions may be quite distinctive as well. However, some general principles
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may apply, such as the “kill the winner” hypothesis, which argues that the chances of superior
(thus growing) bacterial populations encountering phages increases with increasing cell density
[15]. This, in turn, initiates the decline of the “winner.” As a consequence, phages aid in sus-
taining bacterial diversity as they prevent overgrowth of certain bacterial species or strains over
others. Clearly, more complex interactions may exist, and a number of models of how bacteria
and phages may influence each other have been described recently [6].

Phages in the Oral Microbiome
The human oral cavity is the prime entry point for viruses and bacteria to access the human
body and harbors a highly diverse mixture of transient and resident microbes [11,16]. While
earlier studies have suggested that phages do not play an important role in oral microbial ecol-
ogy [17,18], a different conclusion has been drawn more recently based on metagenomic analy-
ses and on epifluorescence microscopy [19,20]. Virus-like particles have been estimated to
make up to 108 particles per milliliter in saliva, of which phages constitute the overwhelming
majority. Phage communities remained remarkably stable over months [19,21], but they were
found to be quite individual-specific and distinct from those of the gut and other body habitats,
which mirrors the distinctiveness of the bacterial communities. A comparably high number of
genes encoding for virulence factors were identified, suggesting that phages in the oral cavity
may be an important source for pathogenic conditions [19]. For instance, phage-encoded
platelet-binding factors in Streptococcus mitis-phages, suggest a link of some oral phages with
endocarditis [20,22]. A role of phages in periodontal disease has also recently been demon-
strated [23,24]. Since periodontal disease is associated with dysbiosis, it may prove to function
as a tractable model system to study the involvement of phage populations in mixed infectious
diseases [25,26]. We speculate that this research line will ultimately lead to strategies that utilize
natural or designed phages for counteracting or preventing periodontal disease.

Phages in the Gut Microbiome
The human intestinal tract system is undoubtedly the most intensively studied habitat of
human-associated microorganisms [27,28], and it is generally recognized that the metabolic
activity of a normal endogenous microbiota is vital for human health. Disturbances in micro-
bial community compositions and the subsequently altered microbial physiology have been
linked with very diverse and far-reaching disorders, including gastrointestinal diseases, obesity,
non-alcoholic fatty liver disease, cancer, brain development, and behavior [29–32]. The tanta-
lizing question here is what role do the endogenous phage populations play? Are they mainly

Fig 1. The Janus-Face of phages. Phages are the natural enemies of bacteria, and thus can potentially be
used to fight infections caused by multi-drug–resistant strains. However, as mobile vectors, phages can also
assist bacteria in providing them virulence or resistance genes. Metagenome studies suggest that some
phages may be vital for the development of a beneficial microbiome, while other phages may disturb the
bacterial balance, leading to various microbial-driven disorders. The complex interplay between phages and
bacteria in humans and the outcome of those interactions is largely unexplored.

doi:10.1371/journal.ppat.1005634.g001
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involved in the establishment and maintenance of a beneficial bacterial community? This
assumption is warranted, given that phages are ubiquitous in the human gut of healthy individ-
uals [33]. An intriguing argument for the beneficial effects of phages is their presumptive coop-
eration with the human’s innate immune system, in that harmful bacteria are lysed at the gut/
mucosa interface. First evidence has been provided that phages are stably attached to mucosal
walls in the gut of animals and humans, and, as such, they may constitute an additional “natu-
ral barrier” against potential harmful bacteria [34,35]. The initial establishment of a healthy gut
microbiota in newborns may, in part, be due to the activity of protecting phages [36].

Nonetheless, phages may also cause pathological shifts in gut bacterial communities, which
may contribute to some (if not all) of the above listed disorders. Inflammatory bowel disease
(IBD) is one prominent example in which phage activity and shifts in phage populations have
been described [37–39]. Disease-specific shifts in phage populations have been observed for
both major forms: Crohn’s disease (CD) and ulcerative colitis (UC) [40]. While phage types
differed notably between CD and UC patients, a common feature was the drastic decrease in
bacterial richness along with a significant increase of phage populations, compared to healthy
individuals. Whether this inversed relationship is the result of induced prophages or strictly
lytic phages (domestic or foreign) remains unresolved so far [40].

In any case, the increase of phage population has implications for IBD management. For
instance, failure to restore an intact gut microbiome through fecal transplantation from a
healthy donor, the concept of which proved successful with Clostridium difficile infections,
[41] might be due to phage populations interacting with the donor microbes. The consider-
ation of phages as an important component of enigmatic diseases, such as IBD, hails the begin-
ning of future research reinvestigating various gut-related diseases (like obesity, cancer, etc.).
Phages may ultimately be used as “prebiotics” to shape microbial communities beneficial to the
human gut system [42].

The role of phages in favor of a healthy gut microbiome could also include means of coun-
teracting environmental stressors that cause disturbance, e.g., antibiotics. In fact, metagenomic
analysis before and after application of antibiotics in mice indicated a significant increase of
antibiotic resistance genes within phage genomes [43]. Furthermore, the number of genes
encoding enzymes involved in vitamin, sugar, and lipid metabolism, was also elevated. In addi-
tion, processed stool samples with phages from an intestinal flora that had been exposed to an
antibiotic substance could confer this resistance to the gut flora of mice that had not been
treated with antibiotics [43]. These findings indicate the importance of phages (either lytic or
as activated prophages) for sustaining the metabolic and compositional stability of the intesti-
nal flora when exposed to deleterious antibiotics. Phages seem to prevent the most severe con-
sequences of the “pervasive effects” of antibiotics on the human gut microbiota [44]. As a
trade-off, however, this mechanism also occasionally fosters the emergence of multi-drug resis-
tant pathogens.

Phages in the Vaginal Microbiome
It is well known that lactobacilli (especially Lactobacillus crispatus and Lactobacillus jensenii),
referred to as “Döderlein flora” [45], play crucial roles in maintaining a healthy vaginal flora
[46]. Bacterial vaginosis (BV) is a microbially driven disorder characterized by the overgrowth
of anaerobes, specifically Gardnerella vaginalis, following the depletion of the natural lactoba-
cilli population [47]. Among other substances, lactobacilli produce lactic acid through fermen-
tation of dextrose, thereby creating an acidic environment, hostile to many harmful bacteria
such as Neisseria gonorrhoeae and G. vaginalis [48,49]. For as yet unknown reasons, lysogenic
phages within lactobacilli become activated, lyse their host, and enable pathogenic bacteria
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such as G. vaginalis to flourish [50,51]. Since BV occurs more frequently in smokers, sub-
stances present in cigarette smoke were suspected to induce the lysogenic phage [52]. In fact,
increased concentration of benzo[a]pyrene have been found in the cervix mucosa of smokers
[53], and this substance has been identified as a potent inducer of vaginal Lactobacillus phages
[54]. Increased knowledge of the implication of lactobacilli phages in the pathogenesis of BV
might enable, in turn, phage-based strategies for prevention or countermeasures. This would
be worthwhile, given that the treatment with metronidazol or clindamycin is the only available
therapy with a relatively high recurrence rate [47].

Phages in the Skin Microbiome
The skin is yet another environment populated with a myriad of different microbial species
[55–59]. Prominent members are Staphylococcus species and Propionibacterium acnes, the lat-
ter of which dominates within hair follicles and sebaceous glands and is generally linked with
the condition of acne. Consequently, staphylococcal phages and phages against P. acnes have
also been found to be prevalent members of the skin microbiome [60,61]. Unlike most other
phages, P. acnes phages are characterized by a conspicuous lack of genetic diversity [62].
Because of their genome stability along with their relatively broad host range, the suitability of
P. acnes phages for anti-acne treatment has been proposed [62,63]. Given the reduced concerns
about phages as topical applications, phage therapy will likely be first realized in the Western
world for microbial-driven skin disorders [61].

Final Remarks
Phages are powerful forces that control bacterial communities, and, as such, they direct the
complex relationship between humans and their bacterial companions. Phage activity assists in
the constitution of a healthy human microbiome. However, better known, because easier to
prove, are their occasional transfer of virulence or antibiotic-resistance genes to bacteria. Dif-
ferences in diversity or type of phages between healthy and diseased individuals are currently
being discerned, but cause and effect have remained largely obscure so far. The analysis of the
human virome will therefore continue to be a hot topic of current metagenome research.

In the meantime, on another scientific stage, researchers are desperately looking for alterna-
tives against deadly multi-drug–resistant bacteria. Besides predatory bacteria, such as Bdellovi-
brio bacteriovorus [64] or antimicrobial peptides, [65] phage therapy is one promising
alternative. And although conventional phage therapy has proven itself in some Eastern Euro-
pean countries for decades, its breakthrough in the West has yet to come [66]. This is because
of a number of technical obstacles that have to be overcome [67–70]. However, development is
also slow because of prevailing skepticism. The association of phages with disease rather than
with health is more broadly recognized. This is a cognitive bias, which explains the reluctance
towards phage therapy and is driven by the counterintuitive character of the concept of phage
therapy, namely, to use alien viruses as therapeutics.

What aids in gaining more confidence is the recognition of the natural occurrence of phages
in humans, which signifies novel avenues in medicine. Pathological processes will be reinter-
preted, attributing phages a potential role in the genesis or prevention of diseases. This knowl-
edge then opens new opportunities to develop targeted therapies, in which phages can be
conceived to destroy deleterious bacterial communities or reconstruct the natural bacterial bal-
ance. We postulate that from a holistic point of view, phages and humans are friends rather
than foes. One hundred years after his discovery of phages, d'Hérelle’s dream of an effective
and wide use of phage therapy may, in fact, become a reality but in a much more multifaceted
way than could be anticipated at the early days of microbiology.
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