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Abstract

N6-methyladenosine (m6A) methylation, one of the most common RNA modifications, has been reported to
execute important functions that affect normal life activities and diseases. Most studies have suggested that m6A
modification can affect the complexity of cancer progression by regulating biological functions related to cancer.
M6A modification of noncoding RNAs regulates the cleavage, transport, stability, and degradation of noncoding
RNAs themselves. It also regulates cell proliferation and metastasis, stem cell differentiation, and homeostasis in
cancer by affecting the biological function of cells. Interestingly, noncoding RNAs also play significant roles in
regulating these m6A modifications. Additionally, it is becoming increasingly clear that m6A and noncoding RNAs
potentially contribute to the clinical application of cancer treatment. In this review, we summarize the effect of the
interactions between m6A modifications and noncoding RNAs on the biological functions involved in cancer
progression. In particular, we discuss the role of m6A and noncoding RNAs as possible potential biomarkers and
therapeutic targets in the treatment of cancers.
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Background
The genome-wide distribution of n6-methyladenosine
(m6A) was unclear until 2012, but m6A is the most com-
mon RNA modification of mRNAs. It is enriched in many
eukaryotic species of mammals, plants, and yeast [1–8] and
is found in prokaryotes, including bacteria and mycoplasma
[9, 10]. The mRNAs of 7676 mammalian genes were found
to be modified by m6A [11]. Moreover, there are more than
7000 human genes with 12,000 m6A sites that are enriched
in the consensus sequence RRACH (R = G or A and H = A,
C, or U), which tends to be found in stop codons and 3′
untranslated regions (3′ UTRs) [12]. M6A modifications
occur via the m6A methyltransferases called “writers”; they
are removed by the demethylases called “erasers” and
are recognized by m6A-binding proteins called “readers”
[13–16]. M6A modifications are quite prevalent, and the

dynamic regulation of m6A modifications has been shown
to be significantly related to gene expression [17–22]. Re-
cently, the clinical value of m6A in cancers has become
apparent. M6A has been increasingly utilized as a promis-
ing biomarker to detect and prevent the occurrence of
cancer, and its prognostic significance has been deter-
mined [23, 24]. In addition, increasing studies have shown
that m6A could have potential clinical applications as
therapeutic targets for patients with cancers [25, 26].
Noncoding RNAs consist mainly of microRNAs (miR-

NAs), long noncoding RNAs (lncRNAs), and circular
RNAs (circRNAs) [27, 28]. A common feature of these
noncoding RNAs is that they are all transcribed from
the genome and can perform biological functions at the
RNA level. Importantly, the stable expression of noncod-
ing RNAs in vivo makes them potential biomarkers for
the diagnosis, prognosis, and clinical treatment of cancer
patients [29, 30].
Recent studies have found that, in addition to the roles

of m6A modifications in mRNAs, m6A modifications
regulate the generation and function of noncoding RNAs,
such as miRNAs, lncRNAs, and circRNAs [31–34]. In
addition to controlling their own cleavage, localization,
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transport, stability, and degradation [13, 14, 35–37], non-
coding RNAs regulate the biological functions of cells, in-
cluding the proliferation, infiltration, and metastasis of
certain tumor cells [1, 17–22]. Surprisingly, it was revealed
that noncoding RNAs also have a regulatory effect on
m6A modifications [38–41]. Thus, concomitant targeting
of m6A and noncoding RNAs may provide a synergistic
effect in cancer therapy. In this review, we summarize the
interactive effects of m6A methylation and noncoding
RNAs and describe the way their association influences
biological functions in cancer and their possible uses in fu-
ture clinical applications.

M6A in cancer
The m6A modification process is dynamic and reversible
in mammalian cells [42]. It has three vital factors:
writers, erasers, and readers, which respectively add, re-
move, or read an m6A site. Methyltransferase-like 3
(METTL3), METTL14, Wilms tumor 1-associated pro-
tein (WTAP), KIAA1429, RNA-binding motif protein 15
(RBM15), zinc finger CCCH domain-containing protein
13 (ZC3H13), and METTL16 have been shown to initi-
ate the m6A modification process, which may require
readers, such as YTH domain-containing 1 (YTHDC1),
YTHDC2, YTH N6-methyladenosine RNA-binding pro-
tein 1 (YTHDF1), YTHDF2, and YTHDF3. In contrast,
obesity-associated protein (FTO) and alkB homolog 5
(ALKBH5) can stimulate the demethylation process.

These regulators have been identified as participants in
RNA metabolic processes, including alternative spli-
cing, stability, export, translation, and miRNA process-
ing [13, 14, 35–37] (Fig. 1). These reversible processes
are also required for various aspects of viability, embry-
onic stem cell (ESC) differentiation, and progression in
diseases, such as cancers, by regulating the biological
functions of cells [1, 17–22]. Recently, an increasing
number of studies have explored the control of mRNA
metabolism by m6A modifications, showing dual character-
istics of m6A modifications and the related regulators in
cancers, such as leukemia, lung cancer, pancreatic carcin-
oma, glioblastoma, and hepatoma [20, 42–45] (Table 1).

M6A modifications and noncoding RNAs
According to their length, noncoding RNAs can be
divided into miRNAs, lncRNAs, circRNAs, snRNAs,
rRNAs, tRNAs, etc. Recently, in addition to mRNAs,
some noncoding RNAs are reportedly regulated by m6A
modifications [31–34, 60]. M6A modifications not only
affect miRNA, lncRNA, and circRNA cleavage, transport,
stability, and degradation processes but also regulate
biological cell functions by affecting noncoding RNA
expression [61, 62]. Furthermore, in some cases, these
noncoding RNAs can influence the interactions between
RNAs and between RNAs and the proteins that regulate
their specific biological functions [63–66].

Fig. 1 Functions of m6A modifications. M6A modification is a dynamic and reversible process. M6A modifications are catalyzed by the
methyltransferase complex consisting of METTL3 and METTL14, as well as their cofactors WTAP, RBM15/15B, KIAA1429, and ZC3H13 (writers). The
removal of m6A modifications relies on the demethylases FTO and ALKBH5 (erasers). M6A modifications are functionally facilitated by the m6A
binding proteins YTHDF1-3, YTHDC1-2, IGF2BP1-3, and HNRNPA2B1 (readers). a YTHDC1 is associated with RNA splicing in the nucleus. b YTHDC1
and IGF2BP1-3 are associated with RNA stability in the nucleus. c YTHDC1 is associated with RNA nuclear export. d HNRNPA2B1 is associated with
miRNA processing in the nucleus. e YTHDF1, YTHDC2, and YTHDF3 are associated with RNA translation in the cytoplasm. f YTHDF2 is associated
with RNA decay in the cytoplasm
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Table 1 Roles of m6A key members in cancers

Proteins Cancer Role Functional classification mechanism References

METTL3 Leukemia Oncogene Inhibiting differentiation and
increasing cell growth in vitro.
Inducting differentiation and
apoptosis, and put off leukemia
in vivo.

Promoting the translation
of c-MYC, BCL2, and PTEN

[46]

Glioblastoma Tumor suppressor Suppressing glioblastoma growth,
self-renewal, and tumorigenesis

Regulating oncogenes, such
as upregulated ADAM19, EPHA3,
and KLF4 and tumor suppressors,
such as downregulated CDKN2A,
BRCA2, and TP53I11

[43]

Glioblastoma Oncogene Reducing the sensitivity to
γ-irradiation and reduced DNA
repair in vitro and promoting
tumor growth in vivo

Enhancing the SOX2 mRNA stability
by recruiting of Human antigen R
(HuR) on the m6A sites

[24]

Lung cancer Oncogene Promoting growth, survival, and
invasion of human lung cancer cells

Promote the protein translation,
such as EGFR, TAZ, MAPKAPK2
(MK2), and DNMT3A

[20]

Lung cancer Oncogene Promoting tumor growth in vivo Enhancing the translation of BRD4
by interacting with eukaryotic
translation initiation factor 3 subunit
h (eIF3h).

[47]

Liver cancer Oncogene Promoting HCC cell proliferation
and migration

Regulating its target, SOCS2 [48]

Bladder cancer Oncogene Promoting malignant transformation
of uroepithelial cells and bladder
cancer tumorigenesis in vitro
and in vivo

Promoting the stability of CPCP1
translation by YTHDF1 preferentially
recognizing m6A residues on
CPCP1 3′-UTR

[49]

Bladder cancer Oncogene Promoting cell proliferation, invasion,
and survival in vitro and
tumorigenicity in vivo

Promoting directly the expression
of AF4/FMR2 family member 4
(AFF4), two key regulators of NF-κB
pathway (IKBKB and RELA) and MYC

[50]

Ovarian carcinoma Oncogene Promoting cell proliferation, focus
formation, motility, invasion in vitro
and tumor formation in vivo

Enhancing the translation of AXL to
promote the EMT process

[51]

Endometrial cancer Tumor suppressor Inhibiting cell proliferation,
anchorage-independent growth,
colony formation, migration and
invasion in vitro and tumor growth
and metastases in vivo

Affecting multiple AKT pathway
components to stimulate AKT
activation, such as PHLPP2
(a negative regulator of AKT activation)

[52]

Breast cancer Oncogene Promoting proliferation and
inhibiting apoptosis in vitro

Promoting the expression of HBXIP
through m6A modifications and be
inhibited by let-7g which could be
arrested by HBXIP

[53]

METTL14 Leukemia Oncogene Inhibiting differentiation of AML.
Promoting self-renewal of leukemia
stem/initiation cells

Regulating mRNA stability and
translation of MYB and MYC, be
inhibited by SPI1

[54]

Glioblastoma Oncogene Promoting glioblastoma growth,
self-renewal, and tumorigenesis

Regulating oncogenes, such as
upregulated ADAM19, EPHA3, and
KLF4 and tumor suppressors, such as
downregulated CDKN2A, BRCA2,
and TP53I11

[43]

Endometrial cancer Tumor suppressor Inhibiting cell proliferation,
anchorage-independent growth,
colony formation, migration and
invasion in vitro and tumor growth
and metastases in vivo

Affecting multiple AKT pathway
components to stimulate AKT
activation, such as PHLPP2
(a negative regulator of
AKT activation)

[52]

Hepatoma Tumor suppressor Inhibiting the migration and
invasiveness in vitro and the tumor
growth and metastases in vivo

Regulating the miRNA processing
by binding to DGCR8

[55]

Hepatoma Oncogene Promoting HCC cell proliferation Regulating its target, SOCS2 [56]
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Regulation of miRNAs by m6A modifications
MiRNAs belong to a class of small noncoding RNAs and
are endogenously encoded short RNAs (∼ 21 nucleo-
tides, nt) that are generated from primary transcripts
(pri-miRNAs) transcribed by RNA polymerase II/III
[67, 68]. MiRNAs are processed by microprocessor and
dicing complexes, such as DiGeorge syndrome chromo-
somal region 8 (DGCR8), which has been reported to
play an important role in primary miRNA processing
[69, 70]. One study reported that METTL3-methylated
pri-miRNAs are recognized and processed by DGCR8.
Further experiments suggested that METTL3 can pro-
mote miRNA maturation, indicating that these m6A
modifications enable DGCR8 to target pri-miRNAs and
facilitate miRNA maturation [71] (Fig. 2). METTL3 was
also found to indirectly regulate miRNA expression by
methylating the hepatitis B virus X-interacting protein
(HBXIP). In hepatocellular carcinoma, METTL14 has
been identified as a tumor suppressor that coprecipi-
tates with DGCR8. METTL14 depletion leads to miR-
126 downregulation and pri-miRNA accumulation. In
contrast, METTL14 overexpression induces an increase
in the number of pri-miR-126 molecules that are bound

to DGCR8 [72–74]. Rescue experiments showed that a
miR-126 inhibitor promoted the metastatic ability of
METTL14-overexpressing cells, which proved that miR-
126 is a key regulator of the process by which METTL14
inhibits hepatocellular carcinoma progression [75].
Another study revealed the role of m6A in miRNA pro-

cessing, and the role of miR-25-3p was recently reported.
In this study, Zang indicated the effect of cigarette smoking
on m6A-modified miR-25-3p maturation in pancreatic
ductal adenocarcinoma [76]. This research showed that the
specific regulatory mechanism of METTL3 upregulation
caused by cigarette smoking involves the epigenetic regula-
tion of the METTL3 promoter. This epigenetic modifica-
tion causes an increase in the METTL3-dependent
regulation of pri-miR-25-3p levels and enhances the pro-
cessing of miR-25-3p. Then, the AKT-p70S6K signaling
pathway is influenced after miR-25-3p affects the progres-
sion of its target: PH domain leucine-rich repeat protein
phosphatase 2 (PHLPP2). Ultimately, the study revealed
that the METTL3-miR-25-3p-PHLPP2-AKT regulatory
axis might influence the transformation of pancreatic ductal
adenocarcinoma induced by cigarette smoking. In addition,
the DDX3-dependent network serves as an example of a

Table 1 Roles of m6A key members in cancers (Continued)

Proteins Cancer Role Functional classification mechanism References

and migration

FTO Glioblastoma Tumor suppressor Suppressing glioblastoma
growth, self-renewal,
and tumorigenesis

Regulating oncogenes, such as
upregulated ADAM19,
EPHA3, and KLF4 and
tumor suppressors, such
as downregulated CDKN2A,
BRCA2, and TP53I11

[43]

Leukemia Oncogene Promoting cell transformation
and leukemogenesis, inhibiting
cell differentiation in AML

Regulating expression of targets
such as ASB2 and RARA by
reducing m6A levels in these
mRNA transcripts

[45]

Lung cancer Oncogene Promoting the tumor
progression of lung cancer

Promoting the stability of
MZF1 mRNA transcript

[57]

Cervical squamous
cell carcinoma

Oncogene Promoting the
chemo-radiotherapy
resistance in vitro and
in vivo

Regulating expression of
β-catenin by reducing m6A
levels and increasing ERCC1 activity

[25]

ALKBH5 Glioblastoma Oncogene Promoting proliferation
in vitro and GSCs
tumorigenesis in vivo

Promoting expression of FOXM1
nascent transcripts by interacting
with FOXM1-AS

[44]

Breast cancer Oncogene Promoting capacity for
tumor initiation to increase
the number of breast cancer
stem cells

Strengthening NANOG mRNA stability
by catalyzing m6A demethylation
in 3′ UTR of NANOG

[21]

YTHDF1 Melanoma and
colon cancer

Oncogene Promoting tumor growth by
regulating tumor immune

Promoting the expression of transcripts
encoding lysosomal proteases to
degradate tumor antigen

[58]

YTHDF2 Liver cancer Oncogene Promoting HCC cell proliferation
and migration

Interacting with METTL3 to regulate
its target, SOCS2

[48]

IGF2BP1 Ovarian and
Liver cancer

Oncogene Promoting tumor cell growth
and cell invasion

Enhancing SRF mRNA stability in an
m6A-dependent manner

[59]
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m6A miRNA modification [77]. DDX3 can lead to m6A
RNA demethylation by interacting with ALKBH5. It may
also contribute to miRNA demethylation by interacting
with the AGO2 protein. In summary, DDX3 function is ac-
tivated mainly through its interaction with ALKBH5 and
AGO2 to regulate cell growth and proliferation. Further-
more, the regulation of miRNAs by m6A modifications also
contributes to endocrine resistance in breast cancer cells.
HNRNPA2/B1, as a “reader,” can recognize m6A methyla-
tion. It was demonstrated that HNRNPA2/B1 expression is
higher in breast cancer cells than in normal breast cells,
which indicated that HNRNPA2/B1 promotes breast
cancer cell proliferation. HNRNPA2/B1 overexpression
promotes increases in m6A-modified miRNA levels by en-
hancing the process by which pri-miRNAs develop into
pre-miRNAs and mature miRNAs. Moreover, pre-miRNAs
and mature miRNAs can contribute to endocrine resistance
by acting on targets or pathways [78]. Knocking down
HNRNPA2/B1 can inhibit breast cancer cell proliferation
and promote tumor cell apoptosis. Recently, Fish et al. re-
ported that TAR RNA-binding protein 2 (TARBP2), as an
RNA-binding protein, recruits a methyltransferase complex
to its target transcripts, leading to m6A methylation of
transcripts. Then, m6A methylation results in TARBP2-

bound transcripts intron retention and nuclear RNA
decay. In addition, the authors revealed that TARBP2
promoted lung cancer growth by downregulating the
expression of ABCA3 and FOXN3 [79]. RNA-induced
silencing complex (RISC) is a 200–500 kDa multipro-
tein effector complex that has endonuclease activity
and integrates mature miRNA. Then, integrated miRNA di-
rects RISC to its target mRNA, causing target mRNA cleav-
age [80–82]. In addition, TARBP2 is an essential component
of the RISC loading complex [83, 84]. Thus, TARBP2-
mediated m6A modification may regulate miRNA processes,
such as miRNA integration, maturation, and degradation;
however, this hypothesis needs to be confirmed by further
research.
In summary, miRNA regulation by m6A modifications

has an important effect on cancer progression. Thus, we
believe that an increasing number of m6A and miRNA
regulatory mechanisms will be discovered in the future.

Regulation of lncRNAs by m6A modifications
LncRNAs are a class of transcripts more than 200 nucle-
otides long with no protein-coding function [85]. There
are 16,193 genes encoding lncRNAs (Gencode v30) in
the human genome, and more than 30,000 lncRNA

Fig. 2 Regulation of miRNAs by m6A modifications. Maturation of miRNA occurs in the nucleus and cytoplasm. Ι In the nucleus, the intranuclear
enzyme Drosha, an RNase III endonuclease, cleaves primary microRNA (pri-miRNA) to precursor microRNA (pre-miRNA). In addition to Drosha,
DGCR8 has also been shown to be critical for miRNA maturation. METTL3-methylated pri-miRNA is recognized and processed by DGCR8.
Meanwhile, HNRNPA2B1 recognizes m6A methylation sites. In conclusion, m6A modifications assist DGCR8 in targeting pri-miRNA and promote
pre-miRNA formation. II Dicer, another RNase III enzyme, cleaves pre-miRNA into mature miRNA after pre-miRNA is transported into the
cytoplasm. Then, RISC integrates the mature miRNA and is guided to m6A methylation regulator mRNAs, resulting in disruption of translation by
target mRNA cleavage
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transcripts can be produced. Most lncRNAs have 5′ caps
and are spliced and polyadenylated, similar to mRNAs.
LncRNAs have m6A modifications and may also regu-
late gene expression through certain pathways. The ef-
fect of m6A modifications on lncRNAs may involve
several regulatory mechanisms. On the one hand, m6A
modifications might modulate the function of lncRNAs
by providing a binding site for the m6A reader proteins
or by modulating the structure of the local RNA to in-
duce RNA-binding protein entry. On the other hand,
m6A modifications might also regulate the relationship
between lncRNAs and specific DNA sites by affecting
the RNA-DNA triple helix structure.
The long noncoding RNA X-inactive-specific tran-

script (XIST) is proficient at gene-silencing transcrip-
tion, which it performs by recruiting specific protein
complexes to the X chromosome during female mam-
malian development [86]. A recent study showed that
XIST could regulate the transcriptional silencing of
genes by forming the RNA-binding protein 15 (RBM15)/
RBM15B-WTAP-METTL3 complex, which recruits the
silencing complex [64]. In addition, knocking down
METTL3 or RBM15 reduced the level of m6A modifica-
tions on specific transcripts such that the lncRNA X
chromosome was inactivated. Furthermore, YTHDC1
recognized the m6A residues on XIST and prompted

subsequent mediation of the regulation initiated by
lncRNA-induced gene silencing. In glioblastoma stem
cells (GSCs), an m6A demethylase, ALKBH5, was shown
to interact with the lncRNA Forkhead box protein M1
(FOXM1)-AS to promote cancer cell proliferation and
tumorigenicity. ALKBH5 can induce high levels of
FOXM1 transcripts by demethylating FOXM1 nascent
transcripts. In this process, the lncRNA FOXM1-AS
interacts with ALKBH5, which purportedly enhances the
demethylation of the 3′ UTRs of FOXM1 nascent
transcripts. However, this research only proved that
FOXM1-AS binds with ALKBH5, whether ALKBH5 me-
diates the demethylation of the FOXM1-AS sequence
needs to be further explored [44] (Fig. 3).
Metastasis-associated lung adenocarcinoma transcript

1 (MALAT1) is also a lncRNA that is highly expressed
in the nucleus. MALAT1 contains a series of m6A modi-
fications and is upregulated in neoplastic diseases. Stud-
ies have confirmed that MALAT1 undergoes structural
changes due to m6A modifications, which regulate the
interaction between RNAs and some special binding pro-
teins [87]. In addition, m6A modifications of MALAT1
can also affect its localization and activity in the nucleus.
M6A modifications of MALAT1 promote the binding of
HNRNPG, HNRNPC, or METTL16 to transcripts, which
in turn regulates gene expression. LncRNA 1281 is located

Fig. 3 Regulation of lncRNAs by m6A modifications. Ι. XIST efficiently silences gene transcription by recruiting specific protein complexes to the X
chromosome. XIST regulates the transcriptional silencing of genes by forming the (RBM15)/RBM15B-WTAP-METTL3 complex to recruit the
silencing complex. Knocking down METTL3 or RBM15 reduces the level of m6A modifications, leading to impaired XIST-mediated gene silencing.
II ALKBH5, as an m6A demethylase, interacts with the lncRNA FOXM1-AS to enhance its function. Then, ALKBH5 facilitates the binding of HuR to
FOXM1 nascent transcripts. Ultimately, ALKBH5 induces a high level of FOXM1 by demethylating the 3′ UTRs of FOXM1 nascent transcripts
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in the cytoplasm and undergoes frequent m6A modifica-
tions. LncRNA 1281 contains several different m6A modi-
fication sites, which are essential for the combination of
let-7 [33]. It was revealed that altering the m6A modifica-
tion level of lncRNA 1281 can significantly affect let-7
levels, thereby influencing ESC differentiation. In addition,
a recent study revealed that Olfr29-ps1 relies on m6A
modifications to exert its biological function. Olfr29-ps1 is
a lncRNA pseudogene that is expressed in myeloid-derived
suppressor cells (MDSCs) and is regulated by the inflam-
matory factor interleukin-6 (IL-6). First, GM-CSF and IL-6
induce m6A modifications of Olfr29-ps1. Among these
regulators, METTL3 has an important role, as indicated by
its specific performance when knocked down; that is,
METTL3 downregulation reduces the expression of
Olfr29-ps1 in MDSCs, indicating that m6A modifications
induce Olfr29-ps1 formation and stability. Then, m6A
modifications of Olfr29-ps1 prompt a functional interaction
between Olfr29-ps1 and miR-214-3p by recruiting Olfr29-
ps1 into the Ago2-related RNA complex. Finally, MyD88 is
regulated by miR-214-3p, and knocking down MyD88 ex-
erts an important effect on MDSC immunosuppression
and differentiation [88]. In conclusion, Olfr29-ps1 relies
mainly on the m6A-modified Olfr29-ps1/miR-214-3p/
MyD88 regulatory pathway to modulate MDSC immuno-
suppression and differentiation [89].
Recently, a number of lncRNAs modified by m6A have

been discovered, and they can regulate gene expression
and function through a series of complex mechanisms.
We believe that other lncRNAs regulated by m6A modi-
fications will be identified in the future.

Regulation of circRNAs by m6A modifications
CircRNAs were first discovered in an RNA virus in the
1970s, and they belong to the noncoding RNA family
lacking 3′ and 5′ ends, which are generally generated by
pre-mRNA back-splicing such that they are in the form
of loop RNAs [29, 90]. As cyclically structured noncod-
ing RNAs involved in many physiological or pathological
processes [91], circRNAs have the characteristics of
structural stability, sequence conservation, and tissue-
specific expression.
Similarly, researchers have found that circRNAs, espe-

cially exon-derived circRNAs, can be modified by m6A.
Moreover, methylated circRNAs show protein-encoding
ability. A study showed that a consistent m6A motif is
highly expressed in circRNAs and that a single m6A site
can fully drive translation initiation. The study also
revealed that circRNAs have m6A modifications, which
are regulated by the demethylase FTO and the METTL3/
14 methyltransferase complex. Further studies have shown
that m6A modifications of circRNAs can promote the
translation processes of circRNAs by mediating the
eukaryotic translation initiation factor 4G2 (eIF4G2) and

binding protein YTHDF3 [31, 65] (Fig. 4). Furthermore,
the authors discovered that when circRNAs are in heat
shock, their translation function is increased, indicating
that circRNA-encoded proteins play an important role in
stress environments. In a recent study, Chen et al. demon-
strated that m6A modifications of human endogenous cir-
cRNAs exerted the important function of inhibiting innate
immunity. The authors also revealed that exogenous cir-
cRNAs could induce antigen-specific T and B cell activa-
tion, antibody production, and antitumor immunity
in vivo, while the m6A modifications of these exogenous
circRNAs could inhibit immunity activation. In addition,
YTHDF2 was essential for inhibiting innate immunity by
recognizing m6A [92]. Therefore, these results imply that
circRNAs might also regulate tumor progression through
their m6A modifications. However, stronger evidence is
needed to confirm the regulatory mechanisms involved.
Taken together, these findings suggest that the regula-

tory mechanisms by which circRNAs interact with m6A
members are important to cancer progression and might
provide new insights into tumorigenesis and development.
However, there are relatively few examples of m6A modi-
fications that regulate circRNAs, and we have not per-
formed a sufficient number of studies to explore these
modifications. We strongly believe that the role of m6A
modifications in circRNA function will be further revealed
by studies on circRNA methylation modifications.

Regulation of m6A modifications by noncoding RNAs
As explained above, m6A modifications have regulatory
effects on noncoding RNAs, including their generation,
splicing, transport, degradation, and expression. Interest-
ingly, abnormalities in noncoding RNA levels will also
affect m6A levels. For example, miRNAs can influence
stem cell differentiation by altering m6A modification
levels [38]. In this study, it was revealed that the consen-
sus sequence RRACH (R = G or A and H = A, C, or U)
motif of m6A sites was reversely complementary to the
seed sequences of miRNAs, indicating that, to a certain
degree, miRNAs might target m6A peak regions. Not-
ably, miRNAs use a sequence pairing mechanism to
regulate m6A modifications. Specifically, miRNAs regulate
the binding of METTL3 methyltransferase to mRNAs with
miRNA targeting sites to modulate m6A abundance. Then,
the increase in m6A abundance induces a series of func-
tions, including the initiation of cell reprogramming that
leads to pluripotent mouse embryonic fibroblasts (MEFs).
In contrast, reducing the number of m6A modifications
can inhibit cell reprogramming. In summary, miRNAs play
a significant role in m6A modifications and lay the founda-
tion for cell reprogramming. Another example involves
miR-33a, which can affect the proliferation of non-small
cell lung cancer (NSCLC) by targeting METTL3 mRNA
[39]. METTL3 is a methyltransferase with an important
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role in m6A modifications. It was found that the
METTL3 mRNA expression level was higher in lung
cancer tissues than in normal tissues from cancer pa-
tients. MiR-33a was shown to be capable of binding
directly to the 3′ UTR of METTL3 mRNA in NSCLC
cells. However, the miR-33a expression level was nega-
tively correlated with METTL3, and miR-33a could simul-
taneously cause a decrease in mRNA and METTL3 levels.
Then, downregulating METTL3 expression inhibited
tumor cell growth and invasion and promoted cell apop-
tosis [20, 54]. In conclusion, miR-33a exerted tumor-
suppressive effects by targeting METTL3 in NSCLC cells.
This discovery provides new insights into the mechanisms
by which miRNAs regulate m6A modification.
In addition, aberrant expression of mammalian HBXIP, a

tumor protein, plays an important role in the occurrence
and development of breast cancer [93, 94]. HBXIP is highly
expressed in breast cancer and can upregulate METTL3
expression. MiRNA let-7g acted as a tumor suppressor and
inhibited tumorigenesis by targeting the 3′ UTR of
METTL3 mRNA. HBXIP promoted the expression of
METTL3 by inhibiting miRNA let-7g, which resulted in in-
creased m6A modifications. Then, the upregulation of
METTL3 expression, in turn, promoted the expression of
HBXIP. This regulatory mechanism led to the formation of
a positive feedback loop of HBXIP/let-7g/METTL3/HBXIP

in breast cancer cells and promoted the occurrence, prolif-
eration, and invasion of breast cancer cells [40]. Further-
more, miR-145 regulated the level and function of m6A
modifications by modulating the level of YTHDF2 [34]. In-
creasing evidence suggests that m6A reader proteins are
necessary for m6A modifications to exert their biological
functions [95]. YTHDF2 was the first identified m6A reader
protein found to regulate mRNA stability. MiR-145 has a
variety of biological functions and has been demonstrated
to be associated with many human diseases, such as colon,
prostate, renal, esophageal, and ovarian cancer [96–100]. It
was reported that miR-145 reduced YTHDF2 expression by
targeting its 3′ UTR, leading to increased m6A mRNA
levels in hepatocellular carcinoma (HCC) cells. Then,
YTHDF2 downregulation inhibited the occurrence, prolif-
eration, invasion, and metastasis of HCC cells (Fig. 5).
Taken together, the regulation of YTHDF2 by miR-145
plays an important role in the biological function of hepa-
toma cells. In addition, miR-29a is another example that is
worthy of mention. MiR-29a inhibited WTAP and ERK ex-
pression by downregulating QKI-6 expression, thereby af-
fecting the PI3K/AKT pathway and inhibiting the
occurrence, proliferation, and metastasis of GSCs [41].
In addition to miRNAs, lncRNAs also have a regula-

tory effect on m6A methylation. LncRNA growth arrest
special 5 (GAS5) is a tumor suppressor gene that inhibits

Fig. 4 Regulation of circRNAs by m6A modifications. The regulatory mechanism through which m6A modifications affect circRNA occurs in the
cytoplasm. CircRNA is regulated by the demethylase FTO and methyltransferase complex METTL3/14. Methyltransferase complex METTL3/14
induces m6A methylation modifications of circRNA, while the demethylase FTO removes m6A methylation of circRNA. YTHDF3 recognizes the
m6A methylation site and then recruits eIF4G2 to the circRNA, thus leading to circRNA translation. Therefore, circRNAs can be modified by m6A,
and the methylated circRNAs show protein-encoding ability.
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the proliferation, invasion, migration, epithelial mesenchy-
mal transition (EMT), and radiation resistance of cancer
cells [101–103]. LncRNA GAS5-AS1 is the antisense RNA
of GAS5, and its downregulation is closely related to the
TNM stage, lymph node metastasis, and prognosis of tu-
mors, such as NSCLC and liver cancer [104, 105]. A re-
cent study reported that GAS5-AS1 enhanced GAS5
stability by acting on the demethylase ALKBH5 and regu-
lating m6A modifications of GAS5, thereby inhibiting the
proliferation, invasion, migration, and metastasis of cer-
vical cancer cells. Moreover, m6A-mediated degradation
of GAS5 depends on the participation of YTHDF2 [106].
Recently, another study reported that the upregulation of
lncRNA ARHGAP5-AS1 promoted chemoresistance in
gastric cancer cells. Furthermore, ARHGAP5-AS1 stimu-
lates m6A modifications of ARHGAP5 mRNA by recruit-
ing METTL3 to stabilize ARHGAP5 mRNA in the
cytoplasm. Ultimately, ARHGAP5-AS1 enhanced the ex-
pression of its target gene ARHGAP5 and promoted che-
moresistance in gastric cancer cells. Therefore, targeting
the ARHGAP5-AS1/ARHGAP5 axis might serve as a po-
tential therapeutic strategy to overcome chemoresistance
in gastric cancer [107].
Studies have confirmed that circRNAs, as miRNA

sponges, competitively bind miRNAs and affect their ac-
tivity and the expression of their downstream target

genes [90, 108–110]. MiRNA regulation by circRNAs
has been identified in some cancers [111–115]. More-
over, miRNAs have been shown to regulate m6A modifi-
cations [40, 41]. Therefore, to some extent, circRNAs
might indirectly regulate m6A modifications; however,
the mechanisms of these regulatory functions need fur-
ther confirmation. In summary, with the increasing re-
search on noncoding RNAs and m6A modifications, the
regulation of m6A modifications by noncoding RNAs
has become apparent, and the associated regulatory
mechanisms have been shown to play a significant role
in the biological function of cells.

Potential clinical application of m6A and
noncoding RNAs in cancer
M6A as a potential biomarker and therapeutic target
Most studies have shown that m6A modifications are very
common in cancer [24, 75]. For example, Huang et al. have
demonstrated that m6A RNA methylation is significantly
higher in circulating tumor cells (CTCs) than in whole blood
cells, which indicates its role in tumor metastasis. Early de-
tection of m6A upregulation in CTCs plays an important
role in monitoring and preventing the occurrence and devel-
opment of metastatic diseases, indicating that m6A RNA
methylation in CTCs is a promising noninvasive diagnostic
biomarker for cancer detection [23]. In addition, the Cancer

Fig. 5 Regulation of m6A modifications by noncoding RNAs. Mature miR-145 and mRNAs are transported to the cytoplasm where they perform
their respective roles. MiR-145 reduces the expression of YTHDF2 by targeting the 3′ UTR of YTHDF2 mRNA in HCC cells. Then, the reduction in
YTHDF2 increases m6A mRNA levels, leading to decreases in the occurrence, proliferation, invasion, and metastasis of HCC cells. Taken together,
the regulation of m6A modifications by miR-145 plays an important role in the biological function of HCC cells
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Genome Atlas (TCGA) data analysis revealed that METTL3
was upregulated in multiple cancers, including liver cancer,
breast cancer, colorectal cancer, prostate cancer, and bile
duct cancer. High METTL3 levels were significantly associ-
ated with poor prognosis in patients with HCC [24]. Similar
to METTL3, WTAP overexpression is linked to a poor prog-
nosis in malignant glioma patients [116]. The expression of
the reader YTHDF1 also indicates a poor prognosis in pa-
tients with HCC [117]. In conclusion, as a potential bio-
marker, m6A could be utilized to predict the diagnosis and
prognosis of cancer patients.
In addition, m6A modifications have the potential to

be involved in combined tumor therapy. In a previous
study, Kwok et al. analyzed TCGA datasets and found
that alterations in m6A regulatory genes were closely
related to TP53 mutations in acute myeloid leukemia
(AML) patients. Furthermore, the analysis results showed
that alterations in m6A regulatory genes reduced the sur-
vival rate of AML patients. Thus, m6A regulatory genes
may be new molecular targets for the treatment of AML
[26]. PD-L1 immunotherapy against tumors is well estab-
lished. Han et al. found that YTHDF1 deletion significantly
enhanced the therapeutic efficacy of PD-L1 checkpoint
blockade, suggesting that YTHDF1, which plays a key role
in m6A modifications, might be a potential therapeutic
target in anticancer immunotherapy. Furthermore, m6A
regulators play important roles as possible therapeutic in-
terventions for treating cancer. Chemoradiotherapy is the
main treatment method for cancer patients after surgical
operation or during disease progression. Individual differ-
ences lead to different chemoradiation sensitivities. There-
fore, it is very important for patients to know their own
chemoradiation sensitivity by using an indicator, and an
m6A regulator may be such an indicator. Studies have
shown that METTL3 loss in pancreatic cancer cells is
linked to higher sensitivity to anticancer reagents, such as
gemcitabine, 5-fluorouracil, cisplatin, and irradiation. It has
been suggested that METTL3 promotes chemoradiation
resistance in pancreatic cancer [118]. Additionally, FTO ex-
pression levels were found to be higher in CSCC tissue than
in adjacent normal tissues. FTO promotes chemoradiother-
apy resistance in vitro and in vivo by decreasing m6A
modification levels in its targets. Significantly, scholars
found that the prognostic value of FTO in CSCC samples
was dependent on β-catenin expression, which might indi-
cate that detecting these factors in combination may be im-
portant in determining the chemoradiotherapy regimen for
a patient [25]. These findings suggest that m6A regulators
might be potential molecular targets for patients undergo-
ing chemoradiotherapy. As we discussed, Chuan et al. re-
ported that R-2HG showed antitumor activity by blocking
FTO to induce MYC degradation in AML patients with an
IDH mutation. TCGA data reveal high MYC levels and low
FTO levels in tissue cells with an IDH mutation. The use of

R-2HG and MYC inhibitors could enhance cytotoxicity,
which indicates that the combined utilization of R-2HG
and MYC may be an effective treatment method for
patients with leukemia characterized by an IDH muta-
tion [59]. In summary, the analysis of m6A modifica-
tions could be used as a potential therapeutic target
for cancer treatment.

Potential clinical application of regulatory mechanisms
between m6A and noncoding RNAs
In addition to the clinical application of the m6A modi-
fications described above, intervention through m6A
modifications, and/or noncoding RNA regulatory mech-
anisms at certain carcinogenic sites may affect tumor
proliferation. Targeted therapy may also be applied to
the regulation of noncoding RNAs.
MiRNAs have been described as promising therapeutic

targets in cancers [119, 120]. Poudyal et al. demon-
strated that miRNA-6852 overexpression could induce
G2/M phase arrest in cervical cancer cells [121]. Zhao
et al. revealed that miR-143 might regulate the prolifera-
tion and apoptosis of cervical cancer cells by targeting
HIF-1α [122]. These results suggest that miRNAs could
be potential therapeutic targets for patients with cervical
cancer. Increasing studies have also shown that lncRNAs
can act as biomarkers for clinical cancer treatment
[123]. A study revealed that lncRNA RP11-708H21.4 up-
regulation not only inhibited the migration and invasion
of tumor cells and promoted apoptosis but also en-
hanced the 5-FU sensitivity of colorectal cancer cells by
inactivating the mTOR signaling pathway [124]. Further-
more, lncRNA PVT1 upregulation can promote the pro-
liferation, migration, and invasion of osteosarcoma by
regulating the miR-195/FA synthase (FASN) signaling
pathway. Silencing lncRNA PVT1 expression can restore
the inhibitory effect of miR-195 on FASN and thus in-
hibit the proliferation, migration, and invasion of osteo-
sarcoma [125]. LncRNA RP11-708H21.4 and lncRNA
PVT1 also have potential as therapeutic targets for can-
cer. The potential clinical application of circRNAs has
been gradually highlighted due to biotechnology innova-
tions [126, 127]. A recent study demonstrated that ciRS-
7 promoted tumor cell proliferation, migration, and in-
vasion by blocking the miR-7-mediated PTEN/PI3K/
AKT signaling pathway [128]. Weng et al. also revealed
that ciRS-7 could regulate the EGFR/RAF1/MAPK sig-
naling pathway in colorectal cancer through competition
with miR-7 [129]. The above data indicate that ciRS-7 is
a promising target for cancer therapy.
Recent studies have discovered that DCGR8 could be

recruited by METTL14 to m6A-modified pri-miRNA.
After being subjected to a series of regulatory actions,
DCGR8 affects the expression of tumor cells in HCC
[75]. In this case, as a protein molecule, DGCR8 has
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potential as a therapeutic target. Another study reported
that the upregulation of METTL3 caused an increase in
miR-25-3p and that miR-25-3p could promote the ex-
pression of its target protein PHLPP2 to promote pan-
creatic ductal adenocarcinoma occurrence [76]. Similar
to DGCR8, the protein PHLPP2 also shows potential for
use in targeted therapy. Targeting PHLPP2 specifically
could reduce its expression, thereby inhibiting the oc-
currence and proliferation of tumor cells in pancreatic
ductal adenocarcinoma. In addition, it was speculated
that noncoding RNAs could be used as breakthrough
points in targeted therapy. Targeting the consensus se-
quence RRACH might block the binding of m6A to non-
coding RNAs. The m6A modification of MALAT1 could
regulate gene expression. Studies have confirmed that
MALAT1 is upregulated in various tumor tissues, such
as NSCLC, breast cancer, cervical cancer, and bladder
cancer, and is closely associated with the occurrence, de-
velopment, and metastasis of tumors [87]. A recent
study also revealed that altering the modification levels
of m6A in lncRNA 1281 could significantly affect ESC
differentiation [33]. Therefore, noncoding RNAs have
the potential to become new therapeutic targets. By acting
specifically on the consensus sequences of noncoding
RNAs, the levels of m6A modification transcripts are
decreased, which affects the expression of downstream
genes, thereby regulating the biological functions of tumor
cells. Thus, as a potential target, noncoding RNAs can
provide new possibilities for clinical treatment through
their associations with m6A modifications. However, the
specific mechanism of noncoding RNAs for use in tar-
geted therapy needs to be further confirmed.

Conclusions
M6A is one of the most common RNA modifications and
plays a significant regulatory role in the biological function
of cells, especially in cancer. M6A modifications of noncod-
ing RNAs have been demonstrated to control gene expres-
sion, as demonstrated by their ability to regulate the
biological functions of cells in cancer, including prolifera-
tion, metastasis, stem cell differentiation, and homeostasis.
Similarly, noncoding RNAs have the ability to regulate
m6A modifications, thereby affecting gene expression in
cancer progression. The association of m6A modifications
and noncoding RNAs provides a new direction for explor-
ing the underlying regulatory mechanisms of gene expres-
sion in cancer. Furthermore, the clinical application of
m6A modifications and noncoding RNAs includes their use
as cancer indicators and targets for therapeutic interven-
tions in cancer treatment. Further studies are needed to ex-
plore the mutual regulatory mechanisms between m6A
modifications and noncoding RNAs in additional types of
cancers and the effective therapeutic interventions of m6A
modifications and noncoding RNAs for cancer patients.
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