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Natural killer (NK) cells, the effectors of the innate immune system, have a remarkable
influence on cancer prognosis and immunotherapy. In this study, a total of 1,816 samples
from nine independent cohorts in public datasets were enrolled. We first conducted a
comprehensive analysis of single-cell RNA-sequencing data of lung adenocarcinoma
(LUAD) from the Gene Expression Omnibus (GEO) database and determined 189 NK cell
marker genes. Subsequently, we developed a seven-gene prognostic signature based on
NK cell marker genes in the TCGA LUAD cohort, which stratified patients into high-risk
and low-risk groups. The predictive power of the signature was well verified in different
clinical subgroups and GEO cohorts. With a multivariate analysis, the signature was
identified as an independent prognostic factor. Low-risk patients had higher immune cell
infiltration states, especially CD8+ T cells and follicular helper T cells. There existed a
negative association between inflammatory activities and risk score, and the richness and
diversity of the T-cell receptor (TCR) repertoire was higher in the low-risk groups.
Importantly, analysis of an independent immunotherapy cohort (IMvigor210) revealed
that low-risk patients had better immunotherapy responses and prognosis than high-risk
patients. Collectively, our study developed a novel signature based on NK cell marker
genes, which had a potent capability to predict the prognosis and immunotherapy
response of LUAD patients.
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INTRODUCTION

Lung cancer is the global leading cause of cancer-related
mortality (1), among which lung adenocarcinoma (LUAD)
represents the main histological subtype, comprising nearly
50% of all lung cancers (2–4). Despite the significant advances
in therapeutic strategies for LUAD, the 5-year overall survival
(OS) of LUAD remains below 20% (5). Recently, the clinical
application of immunotherapies targeting immune checkpoints
has dramatically improved clinical benefits and shifted the
treatment paradigm of LUAD (6, 7). Several biomarkers are
now widely used in clinical practice to predict immunotherapy
response, including PD-L1 expression and tumor mutation
burden (TMB) (8). However, these biomarkers could not fully
reflect the heterogeneous tumor microenvironment (TME) and
clinical benefits from immunotherapy is still limited to a portion
of LUAD patients (9). As a result, it is imperative to develop
prediction models and identify new biomarkers to predict
prognosis and therapeutic effect.

Tumor cells are surrounded by the TME, which is quite
complex and comprises different immune cells, stromal cells,
extracellular matrix molecules, and various cytokines (10, 11).
Emerging evidence has demonstrated that the components of the
TME are recognized to play vital roles in tumor initiation and
progression. Furthermore, abnormal changes in TME not only
impact the prognosis of patients but could also be used as a
biomarker for immunotherapy (12). In the context of anti-tumor
immunity, the focus is mainly on the adaptive T-cell response,
while the role of innate immune cells has not yet received enough
attention. Natural killer (NK) cells, a subtype of innate immune
cells, can rapidly recognize and kill tumor cells (13). The efficient
activity of NK cells depends entirely on a balance of inhibitory
and activating receptors that can interact with ligands on target
cells (14). NK cells can participate in anti-tumor immunity in the
early presence of tumors by directly killing tumor cells and
promoting adaptive T-cell immunological responses (15),
thereby limiting tumor cell aggressiveness (16). NK and T cells
work together to control cancer progression, indicating the
importance of NK cells in shaping anti-tumor immunity,
which has also been demonstrated by several previous studies.
Reduced NK cell activity in the peripheral blood increases the
risk of malignancy (17). Additionally, the higher abundance of
tumor-infiltrating NK cells was significantly linked with better
prognosis in different types of tumors (18–21). Given the roles of
NK cells in immunity, previous studies have investigated the
molecular characteristics of NK cells in infectious diseases and
cancers (22–27), whereas a comprehensive molecular analysis of
NK cells in LUAD is relatively poorly known.

The development of single-cell RNA-sequencing (scRNA-seq)
technology and associated methods for data analysis has provided
an unprecedented opportunity to unravel the molecular
characteristics of diverse immune cell populations in the TME
(28). Previous studies have reported that exploring gene expression
signatures based on molecular characteristics of immune cells
derived from scRNA-seq data might be a potent method to
predict the prognosis and immunotherapy response of cancer
patients (29, 30). In this study, we first performed a
Frontiers in Immunology | www.frontiersin.org 2
comprehensive analysis of scRNA-seq of LUAD to dissect the
molecular characteristics of tumor-infiltrating NK cells and
identify the marker genes of NK cells. Next, a NK cell marker
gene signature (NKCMGS) was constructed for prognosis
prediction of LUAD through bulk RNA-seq analysis.
Furthermore, the predictive power of the NKCMGS was validated
in six independent cohorts from the Gene Expression Omnibus
(GEO) database, and the relationship between the NKCMGS and
immunotherapy response in LUAD was investigated.
MATERIALS AND METHODS

Data Collection
Totally, 1,816 samples were enrolled in this study, namely, 11
LUAD samples with scRNA-seq data, 500 LUAD samples from
the TCGA, 1,007 LUAD samples from six independent GEO
cohorts (https://www.ncbi.nlm.nih.gov/geo/), and 298 samples
treated with immunotherapy from the IMvigor210 cohort. Single-
cell RNA-sequencing data from 11 primary LUAD samples of
GSE131907 were obtained from the GEO database, and were used
to determine the NK cell marker genes of LUAD. The Cancer
Genome Atlas (TCGA) bulk tumor transcriptomic data (FPKM
normalized) and clinical information of 500 patients with LUAD
were downloaded from the UCSC Xena (https://xenabrowser.net/)
for identifying survival-related genes and constructing prognostic
signatures. Six independent microarray datasets, namely,
GSE30219 (n = 83), GSE3141 fimmu.2022.850745(n = 58),
GSE50081 (n = 127), GSE26939 (n = 115), GSE72094 (n = 398),
andGSE31210 (n=226),were alsoobtained fromtheGEOdatabase
for external validation. In this study, the TCGA RNA-sequencing
data of were converted into transcripts per kilobase million (TPM)
values, which are more comparable between TCGA samples and
microarrays (31). Transcriptomic and matched clinical data of
patients who received anti-PD-L1 treatment from the IMvigor210
cohort were collected from http://research-pub.gene.com/
IMvigor210CoreBiologies to explore the value of NKCMGS in
speculating on the immunotherapy response (32). The study used
publicly available datasets with preexisting ethics approval from
original studies.

Identification of NK Cell Marker Genes by
scRNA-seq Analysis
We conducted an analysis of scRNA-seq data by R packages,
including “Seurat” and “SingleR” (33). To retain high-quality
scRNA-seq data, three filtering measures were applied to the raw
matrix for each cell: only genes that were expressed in at least 5
single cells were included, cells that expressed less than 100 genes
were eliminated, and cells with more than 5% of mitochondrial
genes were also removed. We first used the “Seurat” R package to
normalize scRNA-seq data by the “NormalizeData” function,
setting the normalization method as “LogNormalize.”
Normalized scRNA-seq data were then transformed into a
Seurat object, and the top 1,500 highly variable genes were
identified using the “FindVariableFeatures” function. After
that, we applied the “RunPCA” function of the “Seurat” R
package to perform the principal component analysis (PCA) to
June 2022 | Volume 13 | Article 850745
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reduce the dimension of the scRNA-seq data based on the top
1,500 genes. We used JackStraw analysis to identify significant
PCs, and we selected the first 15 PCs for cell clustering analysis
according to the proportion of variance explained. The
“FindNeighbors” and “FindClusters” functions in the “Seurat”
package were used for cell clustering analysis. The k-nearest
neighbor graph was constructed based on Euclidean distance in
PCA using the “FindNeighbors” function to determine the
closest neighbors of each cell. Then, t-distributed stochastic
neighbor embedding (t-SNE) was performed using the
“RunTSNE” function. Cell clustering was demonstrated using
t-SNE-1 and t-SNE-2. The “FindAllMarkers” function in the
“Seurat” package was used to calculate the differentially
expressed genes (DEGs) of each cluster using Wilcoxon–
Mann–Whitney tests. To identify the marker genes for each
cluster, the cutoff threshold values, adjusted p-value <0.01 and |
log2 (fold change)| >1 were used. For cluster annotation, we
performed a reference-based annotation using reference data
from the Human Primary Cell Atlas (34).

Construction and Validation of Prognostic
Signature Based on NK Cell Marker Genes
A univariate Cox regression analysis was performed to evaluate
the prognostic value of NK cell marker genes for OS in TCGA
LUAD patients, and genes with p <0.01 were identified as
prognostic genes. Next, to minimize overfitting, prognostic
genes were assessed by least absolute shrinkage and selection
operator (LASSO) Cox proportional hazards regression using the
“glmnet” package. LASSO is a popular method for regression
with high-dimensional predictors and is broadly applied to the
Cox proportional hazard regression model for survival analysis
(35). By using the function “cv.glmnet”, 10-fold cross-validation
was conducted to select the best model. The tuning parameter l
was chosen by 1 − SE (standard error). We got a list of genes with
non-zero beta coefficients. Finally, based on the genes generated
by LASSO Cox regression analysis, we used a stepwise
multivariate Cox regression analysis to identify the prognostic
values of specific gene signatures. The risk model was
constructed by a linear combination of the mRNA expression
of the genes and the relevant risk coefficient. Based on the
median cut-off value, the patients were classified into the low-
risk or high-risk groups. To validate the prognostic power of the
NKCMGS, the area under the curve (AUC) was calculated using
the “survivalROC” package (36). The Kaplan–Meier method was
employed for survival analysis, and the log-rank test was used to
determine the statistical significance of the differences using the
R package “survminer” (37). The predictive ability of the
signature was validated using survival analysis and AUC in 6
independent GEO datasets.

Pathway and Function Enrichment
Analysis
We performed Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis by using the R package
“clusterProfiler” (38). GO analysis was performed using the
enrichGO function of the R package “clusterProfiler” and GO
Frontiers in Immunology | www.frontiersin.org 3
annotations were based on genome-wide annotation packages
(org.Hs.eg.db) released by the Bioconductor project (39). KEGG
analysis was performed using the enrichKEGG function of the R
package “clusterProfiler” and “clusterProfiler” queries the latest
online KEGG database through a web API to obtain the pathway
data and perform functional analysis. A p-value of < 0.05 was
considered significant enrichment.

Immune Cell Infiltration Analysis and Gene
Sets Variation Analysis (GSVA)
The CIBERSORT algorithm, a useful method for obtaining
infiltrating characteristics of 22 immune cell types with gene
expression profiles (40), was applied to dissect the proportion of
immune cell infiltration in high-risk and low-risk groups. A
seven-metagene (HCK, IgG, Interferon, LCK, MHC-I, MHC-II,
and STAT1) has been extensively used to assess the
inflammatory activity in TME (41). Therefore, we conducted
GSVA analysis to investigate the associations between the
NKCMGS and metagenes of inflammatory activities by using
the “GSVA” package (42). Heatmap plots were generated using
the “ComplexHeatmap” R package from Bioconductor (43).

Estimation of Stromal and Immune Scores
The ESTIMATE algorithm was employed to assess levels of
stromal and immune cell infiltration using expression profiles
by the “estimate” R package (44). Stromal score, immune score,
ESTIMATE score, and tumor purity score were calculated using
the RNA-sequencing data of the TCGA LUAD cohort and a
Wilcoxon t-test was performed to compare these scores between
different risk groups.

Immunotherapy Response Prediction
We first applied PD-L1 expression, tumor mutation burden
(TMB), and TCR repertoire to predict the response to immune
checkpoint blocking therapy. The PD-L1 mRNA expression of
LUAD patients was collected from RNA-sequencing data of the
TCGA LUAD cohort. Gene mutation data of LUAD patients
were downloaded from the TCGA database and TMB was
calculated using “maftools” package (45). TMB was determined
as the number of somatic indels and base substitutions per
million bases in the coding region of the genome detected, and
was calculated as previously described (46). The richness and
Shannon diversity indexes were used to characterize the diversity
of the TCR repertoire. The richness measures the number of
unique TCRs in the sample, while the Shannon diversity index
reflects the relative abundance of the different TCRs. The
richness values and Shannon diversity index valves of TCR in
the TCGA LUAD patients were obtained from the Pan-Cancer
Atlas study (47). Additionally, 298 urothelial carcinoma patients
with both transcriptomic data and treatment response to
immunotherapy from the IMvigor210 cohort were used for
speculating the immunotherapy response of the signature.

Statistical Analysis
Categorized variables between different risk groups were
compared by the Wilcoxon t-test. Univariate and multivariate
Cox regression analyses were used to investigate the prognostic
June 2022 | Volume 13 | Article 850745
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value of the NKCMGS and different clinicopathological
characteristics. P <0.05 was set as a significant threshold.
Benjamini–Hochberg was implemented to adjust the P-value
for multiple testing using the R function “p.adjust”. For data
analysis and generation of figures, R software version 4.1.0
(http://www.R-project.org) was used.
RESULTS

Identification of NK Cell Marker Gene
Expression Profiles
Based on scRNA-seq data of GSE131907, we obtained gene
expression profiles of 45,149 cells from 11 primary LUAD
samples for further analysis (Figure 1A). We conducted PCA
using the top 1,500 variable genes to reduce the dimensionality,
and 17 cell clusters were then identified (Figure 1B). Subsequently,
the cell identity of each cluster was annotated using a reference
dataset from the Human Primary Cell Atlas, and cells in cluster 7
were defined asNKcells (Figure 1C). This cluster was also found to
Frontiers in Immunology | www.frontiersin.org 4
have distinct gene expression profiles, with 189 genes
differentially expressed between the 17 clusters (Figure 1D),
which were identified as LUAD-related NK cell marker genes
(Supplementary Table 2). The functional enrichment, including
GOandKEGGanalysis, showed that theNKcellmarker geneswere
mostly related to immune features, such as positive regulation of
leukocyte activation, MHC protein complex, antigen binding, and
hematopoietic cell lineage (Supplementary Figure 1).

Establishment of the Seven-Gene
Prognostic Signature Based on NK Cell
Marker Genes
To construct a prognostic signature based on the 189 NK cell
marker genes, we first used the TCGALUAD cohort as the training
set to perform a univariate Cox regression analysis, and 25 NK cell
marker genes were significantly related to OS (Supplementary
Table 3). Next, LASSO Cox regression analysis with one standard
error (SE) and10-fold cross-validationwas conductedon the 25NK
cellmarker genes, and 16 genes were screened out (HPGDS, CTSG,
SLC18A2, GCSAML, ADRB2, ACTG1, ACOT7, CLIC1,
A B

C D

FIGURE 1 | Single-cell RNA-sequencing analysis identifies NK cell marker genes. (A) t-SNE plot of 45,149 cells from 11 primary LUAD samples. (B) t-SNE plot
colored by various cell clusters. (C) The cell types identified by marker genes. (D) Heatmap showing the top 5 marker genes in each cell cluster.
June 2022 | Volume 13 | Article 850745
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SELENOK, PEBP1, BEX4, BIRC3, DDIT4, TRBC1, ACAP1, and
S100A10) for further analysis (Supplementary Figures 2A, B).
Finally, we used stepwise multivariate Cox regression analysis to
optimize the prognostic signature to only include the 7 most
predictive genes: Risk score = (−0.614 × GCSAML expression) +
(1.893 × ACTG1 expression) + (1.022 × ACOT7 expression) +
(−1.715 × SELENOK expression) + (−1.840 × PEBP1 expression) +
(1.077 × BIRC3 expression) + (−1.180 × ACAP1 expression)
(Supplementary Figure 2C). The relative expression of the 7
marker genes in various clusters is shown in Supplementary
Figure 3, which indicates the specificity of the expression of the
signature genes.Themedian risk scorewas0.956 by ranking the risk
score fromhigh to low,whichwas used to classify patients into low-
risk (n = 250) and high-risk (n = 250) groups. Figure 2A exhibited
the distribution of risk scores and survival status, which suggested
more deaths in the high-risk group.Figure 2B shows the expression
details of the 7 NK cell marker genes.

Kaplan–Meier analysis demonstrated that patients with high-
risk scores had significantly inferior OS than patients with low-
risk scores (Figure 2C). To assess the predictive accuracy of the
risk model, time-dependent area under the ROC curves for OS
was calculated, and the 1-, 3-, and 5-year AUC values were 0.710,
Frontiers in Immunology | www.frontiersin.org 5
0.725, and 0.730, respectively (Figure 2D). The performance of
the model was then evaluated using a ten-fold cross-validation
procedure, and the 1-, 3-, and 5-year mean AUC values were
0.669, 0.674, and 0.652, respectively.

Validation of the NKCMGS in Different
Clinical Subgroups
The predictive value of NKCMG was first assessed in TCGA LUAD
patients with different genders, ages, smoking histories, and tumor
stages. The results revealed that high-risk score was significantly
correlated with an inferior prognosis in the male (P = 1.5 × 10−4,
SupplementaryFigure4A), female (P=3.563×10−5,Supplementary
Figure 4B), young (P = 7.8 × 10−4, Supplementary Figure 4C) or old
(P=1.306×10−6,SupplementaryFigure4D),non-smoker (P=0.016,
SupplementaryFigure4E), smoker (P=4.465×10−6,Supplementary
Figure4F), early stage (P=1.709×10−5,SupplementaryFigure4G)or
advanced stage (P = 0.0094, Supplementary Figure 4H) LUAD
patients. Next, we further evaluated the predictive performance of
NKCMGS in the TCGA LUAD patients stratified by different
molecular characteristics, including EGFR, KRAS, and TP53
mutations. Similarly, we observed that the NKCMGS showed robust
predictive power in the EGFR wild-type (WT) (P = 9.923 × 10−7,
A

B

C

D

FIGURE 2 | Establishment of the NKCMGS in the TCGA LUAD cohort. (A) The distribution of risk score and survival status. (B) Heatmap showed the expression
characteristics of the identified 7 NK cell marker genes. (C) Kaplan–Meier curves of survival analysis compared the overall survival of LUAD patients between high-
risk and low-risk groups. (D) ROC curves of the NKCMGS for predicting the risk of death at 1, 3, and 5 years.
June 2022 | Volume 13 | Article 850745
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Supplementary Figure 5A), EGFR mutation (MUT) (P =
0.032, Supplementary Figure 5B), KRAS WT (P = 1.23 × 10−6,
Supplementary Figure 5C), KRASMUT (P = 0.012, Supplementary
Figure 5D), TP53WT (P = 6.9 × 10−4, Supplementary Figure 5E) or
TP53MUT (P = 2.377 × 10−5, Supplementary Figure 5F) subgroup.

External Validation of the Robustness of
the NKCMGS in Six Independent Cohorts
To validate the robustness of the NKCMGS, we included 6
independent GEO cohorts in this study, and the clinical
features of these 6 GEO cohorts are shown in Table 1. We
used the same formula to calculate the risk score of each patient
in 6 GEO cohorts. Patients were sorted into the high-risk and
low-risk groups in each cohort by the median risk score. Kaplan–
Meier analysis demonstrated that the high-risk group had
inferior prognosis than the low-risk group in all 6 GEO
cohorts, namely, GSE30219 (Figure 3A, HR: 3.557, 95% CI:
1.856–6.818, P = 1.32 × 10−4), GSE3141 (Figure 3B, HR: 3.064,
95% CI: 1.457–6.443, P = 0.002), GSE50081 (Figure 3C, HR:
1.932, 95% CI: 1.099–3.394, P = 0.02), GSE26939 (Figure 3D,
HR: 2.312, 95% CI: 1.390–3.846, P = 9.3 × 10−4), GSE72094
(Figure 3E, HR: 2.038, 95% CI: 1.387–2.995, P = 2.1 × 10−4), and
GSE31210 (Figure 3F, HR: 1.555, 95% CI: 0.789–3.063, P = 0.2).
The ROC curves of the risk score in the 6 validation cohorts also
showed good performance (Supplementary Figure 6).
Additionally, a prognostic meta-analysis was performed by R
package “meta” using the random-effects model to evaluate the
integrated predictive value of NKCMGS in these 6 cohorts (48).
The results of the meta-analysis indicated that NKCMGS was a
significant prognostic indicator for patients with LUAD (HR:
2.227, 95% CI: 1.782–2.784, P = 1.96 × 10−12) (Figure 3G).

Independent Prognostic Role of the
NKCMGS for Patients With LUAD
To further investigate whether the risk score can independently
affect the prognosis of LUAD, we conducted univariate and
Frontiers in Immunology | www.frontiersin.org 6
multivariate Cox regression analysis using clinical features,
molecular factors, and the risk score in the TCGA LUAD
patients. As expected, the results of multivariate Cox regression
analysis proved that the risk score was an independent
prognostic factor (HR: 1.889, 95% CI: 1.373–2.599, P = 9.37 ×
10−5) (Table 2). Meanwhile, we performed a LASSO Cox
regression analysis with the risk score and all these clinical
features to select the most predictive variables. The results
demonstrated that the risk score and tumor stage were the best
predictive factors for the prognosis.

Functional Enrichment Analysis of the
NKCMGS Related Genes
To elucidate the potential mechanism of the excellent predictive
capability of NKCMGS, we further investigated biological
pathways related to NKCMGS. Firstly, the correlation analysis
was performed using the TCGA LUAD dataset to identify the
genes that were closely correlated with the risk score (Pearson |R|
>0.4, P <0.05). As shown in Supplementary Figure 7A, 100
positively correlated genes and 24 negatively correlated genes
were filtered out (Supplementary Table 4). Subsequently, we
performed GO and KEGG enrichment analyses using the
“ClusterProfiler” package for these selected genes. GO analysis
revealed that these genes were mainly implicated in the biological
processes of mitotic division, namely, chromosome segregation,
mitotic nuclear division, and the G2/M transition of the mitotic
cell cycle (Supplementary Figure 7B). KEGG analysis also
verified that these genes were closely involved in the cell cycle
pathway (Supplementary Figure 7C).

The NKCMGS Was Associated With the
Immune Cell Infiltration of the TME
As NK cells play a vital role in anti-tumor immunity, we explored
the relationship of the NKCMGS with immune cell infiltration in
LUAD patients. By using the ESTIMATE algorithm, we found
that high-risk patients had lower immune score, stromal score,
TABLE 1 | Clinical characteristics of lung adenocarcinoma from multiple cohorts.

Variables TCGA N = 500 GSE30219 N = 83 GSE3141 N = 58 GSE50081 N = 127 GSE26939 N = 115 GSE72094 N = 398 GSE31210 N = 226

Age (year)
Median 66 60 – 70 65 70 61
Range 33–88 44–84 – 40–86 41–90 64–77 30–76

Gender
Male 230 65 – 65 53 176 105
Female 270 18 – 62 62 222 121

Smoking
Yes 415 – – 92 100 300 111
No 71 – – 23 12 31 115
NA 14 – – 12 3 67 0

TNM stage
I and II 387 83 – 127 71 321 226
III and IV 105 0 – 0 16 72 0
NA 8 0 – 0 28 5 0

OS Status
Alive 318 40 26 76 49 285 191
Death 182 43 32 51 66 113 35
June 2022 | Volume
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A B

C D

E

G

F

FIGURE 3 | Validation of the NKCMGS in six independent GEO cohorts. (A) GSE31210 (n = 226). (B) GSE30219 (n = 83). (C) GSE37745 (n = 106). (D) GSE50081
(n = 127). (E) GSE26939 (n = 115). (F) GSE42127 (n = 133). (G) A meta-analysis of six GEO cohorts and the P-value was adjusted for 7 hypothesis tests.
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ESTIMATE score, and higher tumor purity than low-risk
patients (Figures 4A–D), which suggested that the risk score
was negatively correlated with the level of immune cell
infiltration. Subsequently, we applied the CIBERSORT
algorithm to estimate the infiltration level of different types of
immune cells in the TME. The CIBERSORT analysis revealed
that high-risk patients had a higher fraction of resting NK cells,
M0macrophages, M2macrophages, activated dendritic cells, and
activated mast cells, but had a lower fraction of plasma cells,
CD8+ T cells, follicular helper T cells, regulatory T cells, resting
dendritic cells, and resting mast cells (Figure 4E). In Figure 4F,
the fractions of different immune cells between high- and low-
risk groups are shown. We further conducted a correlation
analysis between the risk score and immune cell infiltration,
which showed that the risk score was positively related to
macrophages and neutrophils but was negatively related to T,
B, and mast cells (Supplementary Figure 8).

Inflammatory and Immune Profiles
of the NKCMGS
To figure out the relationship between NKCMGS and
inflammatory activities, we explored the associations between
the NKCMGS and 7 clusters of metagenes (HCK, LCK, IgG,
Interferon, MHC-I, MHC-II, and STAT1), representing various
inflammatory and immune activities as previously reported (41).
Frontiers in Immunology | www.frontiersin.org 8
Supplementary Figure 9A shows the expression details of these
metagenes in the TCGA LUAD dataset. Next, we used Gene Sets
Variation Analysis (GSVA) to calculate the expression of 7 gene
clusters and the correlation between the NKCMGS and each
cluster of metagenes is shown in Supplementary Figure 9B. The
results showed that the risk score was negatively correlated with
HCK, IgG, LCK, MHC-I, and MHC-II.

The NKCMGS Could Predict
Immunotherapy Benefits in LUAD Patients
Given the important roles in anti-tumor immunity of NK cells
and the promising treatment efficacy of NK cell-based
immunotherapy, we explored whether the NKCMGS could
predict responses of LUAD patients to immune checkpoint
inhibitors. First, we analyzed the relationship between the
NKCMGS and widely recognized immunotherapy biomarkers
(PD-L1 expression and TMB) in the TCGA LUAD cohort. The
results indicated that PD-L1 expression exhibited no significant
difference between the low-risk and high-risk patients, but low-
risk patients harbored a significantly lower TMB than high-risk
patients (Figures 5A, B). In previous studies, the T-cell receptor
(TCR) is in charge of the recognition of antigens presented by the
MHC, and the repertoire analysis of TCR has been demonstrated
as a useful biomarker for stratification and monitoring of
patients on immunotherapy (49–51). Subsequently, we
TABLE 2 | Univariable and multivariable Cox regression analysis of the NK cell marker genes signature in TCGA LUAD cohort.

Characteristics Univariable analysis Multivariable analysis

HR 95% CI P-Value HR 95% CI P-Value

Age
≤60 1.0 (ref)
>60 1.217 0.906–1.635 0.192

Gender
Female 1.0 (ref)
Male 1.049 0.784–1.405 0.747

Smoking history
No 1.0 (ref)
Yes 0.881 0.583–1.330 0.546

T stage
T1 + T2 1.0 (ref) 1.0 (ref)
T3 + T4 2.298 1.568–3.366 <0.001 1.646 1.077–2.515 0.021

Lymphatic metastasis
No 1.0 (ref) 1.0 (ref)
Yes 2.579 1.918–3.469 <0.001 1.903 1.326–2.733 <0.001

TNM stage
I + II 1.0 (ref) 1.0 (ref)
III + V 2.584 1.893–3.527 <0.001 1.337 0.885–2.022 0.168

EGFR mutation
No 1.0 (ref)
Yes 1.332 0.872–2.035 0.185

KRAS mutation
No 1.0 (ref)
Yes 1.068 0.764–1.494 0.698

TP53 mutation
No 1.0 (ref) 1.0 (ref)
Yes 1.413 1.054–1.893 0.021 1.152 0.851–1.561 0.359

Risk score
Low 1.0 (ref) 1.0 (ref)
High 2.356 1.740–3.190 <0.001 1.889 1.373–2.599 <0.001
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analyzed the TCR repertoire and found that the TCR richness
and diversity of low-risk patients was significantly higher than
that of high-risk LUAD patients (Figures 5C, D). Finally, to
further explore the value of NKCMGS in predicting the
immunotherapy response, 298 patients from the IMvigor210
cohort who received anti-PD-L1 treatment were enrolled in this
study for analysis. Kaplan–Meier analysis showed an inferior
survival rate for high-risk patients after immunotherapy
(Figure 5E). Lower risk scores were associated with an
objective response to anti-PD-L1 treatment (Wilcoxon test, P =
0.01; Figure 5F). The objective response rate of anti-PD-L1
treatment was significantly elevated in the low-risk group
(two-sided chi-square test, P = 0.005; Figure 5G). The ROC
curves showed that the combination of TMB, PD-L1, and risk
score models could predict anti-PD-L1 response with 76.1%
accuracy, which was superior to that of TMB (AUC = 0.728),
PD-L1 (AUC = 0.569), or risk score (AUC = 0.603) alone
(Figure 5H). Collectively, these findings indicate that patients
with a low-risk score are more likely to benefit from
immunotherapy, and the NKCMGS may be a useful biomarker to
identify LUAD patients who may benefit from immunotherapy.
Frontiers in Immunology | www.frontiersin.org 9
DISCUSSION

With the rapid development of scRNA-seq technologies,
researchers are increasingly exploring molecular characteristics
of tumor-infiltrating immune cells in the TME. However, most
current studies have focused on adaptive immune cells, and the
roles of innate immune cells have not yet received enough
attention, which may markedly affect the prognosis and
treatment response, especially with immunotherapy. The
abundance of tumor-infiltrating NK cells is tightly associated
with the prognosis of patients with various solid tumors (18–21).
Recently, Cursons et al. developed a transcriptional signature
based on NK cell marker genes to evaluate nature killer (NK) cell
infiltration in the TME, and an increased NK score significantly
stratified patients with superior prognosis in metastatic
cutaneous melanoma (21). Inspired by this research, we
attempted to explore the NK cell marker genes of LUAD
through scRNA-seq analysis in our study. A novel prognostic
prediction signature based on NK cell marker genes (NKCMGS)
was developed for LUAD patients in the TCGA database and
well verified in 6 independent cohorts from the GEO dataset.
A B C D

E F

FIGURE 4 | The association between the NKCMGS and the immune cell infiltration in the TME. Differences among immune score (A), stromal score (B), ESTIMATE
score (C), and tumor purity (D) between high-risk and low-risk groups. The P-value was adjusted for 4 hypothesis tests. (E) The comparison of immune cells
infiltration level of 22 immune cell types between high-risk and low-risk groups. (F) The fractions of different immune cells between high- and low-risk groups. The
P-*value was adjusted for 22 hypothesis tests.
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Low-risk scores of NKCMGS were closely correlated with
abundant infiltration of immune cells and a high level of TCR
richness and diversity. Furthermore, we discovered that the
immunotherapy response rate of patients with low-risk scores
was dramatically higher than that of patients with high-risk
scores, indicating that immune checkpoint blockade therapy is
more appropriate for low-risk patients.

In this study, NKCMGS was composed of 7 NK cell marker
genes (GCSAML, ACTG1, ACOT7, SELENOK, PEBP1, BIRC3,
and ACAP1), most of which are correlated with the prognosis of
LUAD patients or the activity of NK cells. ACTG1 encodes g-
actin, which is a component of the cytoskeleton. Increased
expression of ACTG1 was linked to the enhanced ability of cell
migration in lung adenocarcinoma (52) and upregulated
expression of ACTG1 was also markedly associated with poor
prognosis in patients with lung cancer (53). As one of the acyl-
CoA metabolic enzymes, ACOT7 was implicated in the
progression of LUAD by regulating the cell cycle through the
p53/p21 signaling pathway (54), which is consistent with our
findings that the signature was closely related to the cell cycle
pathway. ACOT7 expression levels were found to be high in
LUAD and were linked to impaired prognosis (54). SELENOK
encodes a membrane selenoprotein (SelK), which is expressed
Frontiers in Immunology | www.frontiersin.org 10
abundantly in NK cells and is involved in regulating the function
of NK cells (55, 56). SELENOK may modulate cell proliferation
and migration through regulating Ca+ flux (56), and the
expression of SELENOK was also associated with a poor
prognosis in LUAD (57). Moreover, PEBP1, also known as Raf
kinase inhibitory protein (RKIP), was downregulated in LUAD
tissues compared with normal adjacent tissues (58). Low PEBP1
expression led to reduced survival in LUAD, and in vitro
experiments demonstrated that upregulation of PEBP1
expression can suppress the proliferation and invasion of
LUAD cells, which indicates that PEBP1 may act as a tumor
suppressor gene (58). BIRC3 is a hallmark of tumor-infiltrating
NK cells, and upregulation of BIRC3 can inhibit NK cell activity
(59). Besides, BIRC3 expression was dramatically higher in
LUAD tissues, and higher BIRC3 expression was correlated
with a poorer prognosis (60). These reports indicated that
genes identified in the NKCMGS might provide potential
targets for experimental design in the laboratory to illuminate
molecular mechanisms in LUAD.

In this study, the NKCMGS prognostic signature proved to be
a powerful predictive tool for the prognosis of patients in both
training and validation cohorts. The excellent predictive ability
of the NKCMGS inspired us to investigate the potential
A B C D

E F G H

FIGURE 5 | The role of NKCMGS in predicting immunotherapeutic benefit. The comparison of PD-L1 expression (A), tumor mutation burden (TMB) (B), TCR richness
(C), TCR diversity (D) between high-risk and the low-risk patients. (E) Kaplan–Meier curves for patients with high-risk and low-risk scores in the IMvigor210 cohort.
(F) The comparison of risk scores in groups with different anti-PD-L1 treatment response status in the IMvigor210 cohort. NR represents progressive disease (PD)/stable
disease (SD); R represents complete response (CR)/partial response (PR). (G) Treatment response rates of anti-PD-L1 immunotherapy in high- and low-risk groups in the
IMvigor210 cohort (P = 0.005). NR represents SD/PD; R represents CR/PR. (H) ROC curves evaluating the predictive accuracy of the TMB, PD-L1, risk score, and
combination of TMB, PD-L1, and risk score in the IMvigor210 cohort.
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underlying mechanism. We first performed GO and KEGG
analyses to explore the enriched pathways for genes closely
related to the NKCMGS and found that these correlated genes
were mostly enriched in the biological processes of cell division
and cell cycle pathway. Hence, the inferior prognosis of patients
with high-risk scores may be partly attributed to the abnormal
regulation of the cell cycle, which is intimately linked to tumor
proliferation and progression (61). Besides, tumor-infiltrating
immune cells in the TME play a vital role in tumor development
and significantly affect prognosis (62). We then compared the
abundance of immune cell infiltration between high-risk and
low-risk groups by ESTIMATE and CIBERSORT algorithms.
The results revealed that high-risk tumors had a lower
infiltration level of immune cells, especially T and B cells,
which suggested that tumors with a high-risk score were
characterized as so-called “cold tumors” with decreased anti-
tumor activity (63). The low level of immune cell infiltration can
promote tumor cell escape from immune surveillance and
facilitate tumor progression, which may partly account for the
significantly decreased survival of high-risk LUAD patients.

Furthermore, the NKCMGS was evaluated in relation to
immune and inflammatory activities by analyzing immune-
related metagenes, and the risk score was found to correlate
negatively with HCK, IgG, LCK, MHC-I, and MHC-II clusters.
HCK is pivotal in innate immunity by regulating the
phagocytosis of neutrophils and macrophages (64). LCK, a Src-
related protein linked to CD8 and CD4 molecules, is required for
the maturation and stimulation of T cells (65). MHC-I and
MHC-II are closely associated with the function of antigen-
presentation and tumor cells can escape T-cell killing by losing
the expression of MHC-I and MHC-II (66). Therefore, high-risk
patients showed an immunosuppressive microenvironment,
which may be partly responsible for the significantly inferior
prognosis. Collectively, according to all the findings above, we
inferred that the potential mechanism of the powerful predictive
ability of the NKCMGS may lie in the dysregulation of the cell
cycle and immunosuppressive microenvironment.

The discrepancy in immune cell infi l tration and
inflammatory activities between different risk groups prompted
us to explore the value of the NKCMGS in predicting
immunotherapy response. We first analyzed the association
between the NKCMGS and the well-recognized biomarkers,
including PD-L1 expression TMB. The results revealed that
PD-L1 expression showed no significant difference between
high-risk and low-risk patients, but low-risk patients harbored
a significantly lower TMB, which indicated the low
immunogenicity of low-risk tumors. TCR is a unique molecule
on the T-cell surface that recognizes antigens presented by MHC.
Several studies have recently used high-throughput TCR
sequencing to analyze the characteristics of T-cell repertoires
in patients with diverse cancer types, demonstrating that TCR
repertoires could act as a potent tool to predict immunotherapy
response (49–51). We evaluated the richness and diversity of the
TCR repertoire and discovered that low-risk patients were
associated with a higher level of TCR richness and diversity,
which reflected higher functionality of T cells in recognizing
Frontiers in Immunology | www.frontiersin.org 11
antigens and killing tumor cells in low-risk LUAD patients. The
success of immune checkpoint blockade therapy was associated
with many factors, namely, the immunogenicity of the tumor,
the abundance and functionality of tumor-infiltrating T cells,
and the expression of immune checkpoints. In this study,
although low-risk tumors had lower immunogenicity, the
abundance and functionality of tumor-infiltrating T cells in
low-risk groups was dramatically elevated compared with that
in high-risk groups. Therefore, an immunotherapy cohort was
needed to verify the predictive value of the NKCMGS. By using
an immunotherapy cohort (Imvigor210), we explored the ability
of NKCMGS to predict immunotherapeutic efficacy and
observed that low-risk patients were more sensitive to anti-PD-
L1 therapy response, which demonstrated that the impact of the
abundance and functionality of tumor-infiltrating T cells on
immunotherapy response is more important than tumor
immunogenicity. Taken together, low-risk patients were more
likely to benefit from immunotherapy. With further validation,
NKCMGS might act as a reliable biomarker for predicting
immunotherapy response.

Despite the promising findings obtained, this study has
several limitations. First, the expression and prognostic role of
the genes in NKCMGS at protein-level warrant further
investigation. Second, the candidate genes involved in our
study were restricted to the NK cell marker genes, and the
tumor immune microenvironment is highly spatially
heterogeneous. Hence, the prognosis-predicting ability of the
signature was limited. Lastly, all the mechanistic analysis in our
study was descriptive. Future research must explore the
underlying mechanism between the expression of genes in
NKCMGS and the prognosis of LUAD.

In conclusion, a seven-gene signature based on NK cell marker
genes was identified and validated to have powerful performance
to predict prognosis and immunotherapy response in LUAD
patients. It might serve as a prognostic biomarker for clinical
decision-making regarding individualized prediction and facilitate
the selection of appropriate patients who can benefit
from immunotherapy.
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