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Abstract
Understanding the fundamental dynamics of epigenome variation during normal aging is

critical for elucidating key epigenetic alterations that affect development, cell differentiation

and diseases. Advances in the field of aging and DNA methylation strongly support the

aging epigenetic drift model. Although this model aligns with previous studies, the role of

other epigenetic marks, such as histone modification, as well as the impact of sampling spe-

cific CpGs, must be evaluated. Ultimately, it is crucial to investigate how all CpGs in the

human genome change their methylation with aging in their specific genomic and epige-

nomic contexts. Here, we analyze whole genome bisulfite sequencing DNAmethylation

maps of brain frontal cortex from individuals of diverse ages. Comparisons with blood data

reveal tissue-specific patterns of epigenetic drift. By integrating chromatin state information,

divergent degrees and directions of aging-associated methylation in different genomic re-

gions are revealed. Whole genome bisulfite sequencing data also open a new door to inves-

tigate whether adjacent CpG sites exhibit coordinated DNA methylation changes with

aging. We identified significant ‘aging-segments’, which are clusters of nearby CpGs that re-

spond to aging by similar DNA methylation changes. These segments not only capture pre-

viously identified aging-CpGs but also include specific functional categories of genes with

implications on epigenetic regulation of aging. For example, genes associated with develop-

ment are highly enriched in positive aging segments, which are gradually hyper-methylated

with aging. On the other hand, regions that are gradually hypo-methylated with aging (‘neg-

ative aging segments’) in the brain harbor genes involved in metabolism and protein ubiqui-

tination. Given the importance of protein ubiquitination in proteome homeostasis of aging

brains and neurodegenerative disorders, our finding suggests the significance of epigenetic

regulation of this posttranslational modification pathway in the aging brain. Utilizing aging

segments rather than individual CpGs will provide more comprehensive genomic and epi-

genomic contexts to understand the intricate associations between genomic neighborhoods

and developmental and aging processes. These results complement the aging epigenetic

drift model and provide new insights.
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Introduction
Recent advances in DNAmethylation analysis technology and the availability of large aging co-
horts have enabled dramatic progression in our knowledge regarding DNAmethylation
changes with aging. Recent large-scale studies have clearly demonstrated that DNA methyla-
tion patterns diverge, or undergo ‘epigenetic drift’, with aging. In particular, aging-associated
global hypo-DNA methylation has been observed across several tissues and cell types [1–4].
On the other hand, promoters and CpG islands tend to exhibit hyper-methylation with aging
as exceptions to this global pattern [2,5–12]. Moreover, other epigenetic marks also exhibit
aging-associated changes often in conjunction with DNA methylation. For example, CpGs are
hyper-methylated in polycomb target genes and bivalent chromatin domains [13–16], whereas
CpGs in enhancers often exhibit aging-associated hypo-methylation [11,15–17]. Another excit-
ing discovery involves the identification of ‘aging CpGs’, which can be used to estimate ‘biolog-
ical’ ages of specific individuals [15,18–22].

Despite these advancements, several fundamental questions remain. A prominent issue is
the potential bias introduced by non-random sampling of CpGs. Most previous studies em-
ployed a sampling strategy to reduce the number of CpGs from ~30 million (the total number
of CpGs in the human genome) to statistically manageable numbers. For instance, the widely
used Illumina 27K Chip analyzes approximately 0.1% of total CpGs in the human genome.
These ‘selected’ CpGs, especially those used in commercially developed methylation arrays, are
often biased toward promoters and CpG islands. However, DNAmethylation is also highly
prevalent in gene bodies and distal intergenic regions, with significant functional consequences
(e.g., [23–26]). Moreover, most CpGs that exhibit variation of DNA methylation are located in
gene bodies and intergenic regions [27]. The next-generation methylation chip (e.g., Illumina
450K Chip) examines ~1.5% of total CpGs in the human genome, with similarly biased distri-
butions favoring promoters and CpG islands [27]. Thus, sampling strategies could have signifi-
cant consequences on the inference of DNA methylation changes with aging. Another
important potential factor involves the variability of aging-associated DNA methylation
changes across cell types and tissues. Although common aging modules may exist across differ-
ent tissues (e.g., [5,11,15,28,29]), the extent to which tissue- or cell type-specific processes drive
aging-associated DNAmethylation changes remains unknown [29].

To shed light on these questions, it is necessary to compare patterns of aging-associated
DNAmethylation among different tissues. Moreover, performing such analyses using data
from whole genome bisulfite sequencing, thus in principle examining all CpGs in the human
genome, will yield unbiased genome-wide patterns. In addition, given that previous studies on
the association between aging CpGs and chromatin states typically relied on limited numbers
of a priori selected CpGs, it is useful to re-evaluate the relationship between chromatin states
and CpG methylation using bisulfite-sequencing data.

Here, we perform a comprehensive analysis of DNAmethylation variation with aging using
recently generated whole genome bisulfite sequencing DNAmethylation data from the frontal
cortex brain region of eight individuals [25,30]. We also generate a chromatin state map of the
frontal cortex utilizing extensive histone modification data from the NIH RoadMap Epige-
nomics Project [31]. Although various patterns that are consistent with the random ‘aging epi-
genetic drift’model are identified, we also observe that specific genomic regions follow
distinctive aging patterns of DNAmethylation. Notably, the integration of DNAmethylation
data sets and chromatin state maps reveals extensive co-variation of these two epigenetic
marks. By comparing these results with previously reported genome-wide DNA methylation
variation from CD4+ T lymphocytes [2], we can begin to address the heterogeneity of aging
patterns among tissues. Furthermore, we introduce a new method to identify ‘aging segments’.
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Aging segments are genomic regions with consecutive CpGs whose methylation changes in a
concerted fashion with aging. Analyses of aging segments provide insights into the co-variation
between DNA methylation and chromatin states as well as differences in the molecular mecha-
nisms of aging-associated hyper- and hypo-DNAmethylation.

Results

Tissue-divergent patterns of epigenetic drift based on nucleotide
resolution whole-genome methylation maps
We first describe global patterns of DNA methylation with respect to aging using whole-ge-
nome bisulfite sequencing data. Of the total 26.8 X 106 autosomal CpG sites (in the human ge-
nome hg19 / GRCh37 build), we examine 25.4 X 106 sites in frontal cortex samples from eight
individuals ranging in age from newborn to 82 years and 9.0 X 106 sites in CD4+ T-cells
(blood) samples from three individuals (newborn and 26 and 103 years old). These compre-
hensive data confirm that the whole genome is heavily methylated: the average fractional meth-
ylation levels are 0.7976 (± 0.0093)/CpG in brain and 0.7756 (± 0.0097)/CpG in blood.
Patterns of DNA methylation variation across different functional regions are generally consis-
tent with previous findings: promoters, gene bodies and repetitive regions exhibit low, medium
and high methylation, respectively (Fig 1A and 1B). CpG islands and Alu elements exhibit the
lowest and highest levels of DNA methylation, respectively, in both data sets (Fig 1A and 1B).

With respect to genome-wide patterns of aging-associated DNA methylation changes, the
blood data unequivocally indicate global hypo-methylation with aging accompanied with local
hyper-methylation with aging at CpG islands (Fig 1A, S1A Fig). These patterns are hallmarks
of the global aging epigenetic drift model [1–3,9,10,14,21,29,32,33]. Interestingly, brain methyl-
ation maps reveal a very different picture. Compared with the blood data set, the brain samples
exhibit much less variation of DNA methylation with aging (Fig 1B, S1B Fig). Moreover, con-
trary to the aging epigenetic drift model, a slight increase in DNAmethylation is noted in most
genomic regions of brain.

However, although the global pattern in the brain data does not conform to the previous
model, CpG sites with extreme initial DNA methylation follow the expected trend. We exam-
ined extremely hyper-methylated (fractional methylation level> 0.8) and hypo-methylated
(fractional methylation level< 0.2) CpGs. A significant increase in DNAmethylation with age
in hypo-methylated CpGs and a significant decrease in DNAmethylation in hyper-methylated
CpGs are detected regardless of the genomic context and tissue type. These patterns are espe-
cially pronounced during the time period up to young adulthood (ages 26 and 25 in blood and
brain data, respectively) (Fig 1C, S2 Fig, paired t-test, one-tailed). Notably, no statistically sig-
nificant differences in brain data were observed in samples from individuals between the ages
25 and 82, whereas the blood data exhibit a significant decrease in DNA methylation. Never-
theless, mean DNA methylation levels of hyper-methylated and hypo-methylated CpGs are
highly negatively correlated in brain data, and this correlation is most pronounced in CpG is-
lands (Fig 1D). These analyses complement the aging epigenetic drift model by supporting its
predictions from extremely hyper- and hypo-methylated CpGs in brain.

Distinctive patterns of aging DNAmethylation across chromatin states in
brain
We then sought to elucidate detailed patterns of coordinated age-associated changes between
DNAmethylation and chromatin states. Here, we focus on brain data, utilizing the availability
of eight relatively well-separated aging samples. We first generated a brain-specific chromatin
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Fig 1. Aging-associated changes in DNAmethylation based on whole-genome bisulfite sequencing
data. To represent aging patterns more clearly and in a comparable manner between the two data sets, only
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state map. From the 6 different histone modification profiles (H3K9me3, H3K27me3,
H3K27Ac, H3K4me1, H3K4me3 and H3K36me3) generated by Chip-Seq of brain tissue from
the NIH Roadmap Epigenomics database, we inferred 14 chromatin states using ChromHMM
[34,35] (Materials and Methods, S1 Text, S3 Fig). These include the following defined states
(Fig 2A): active transcription (TxS), weak transcription (TxWk), active enhancers in tran-
scribed regions (TxEnhAc), poised/weak enhancers or low signal (EnhP/low), active intergenic
enhancers (EnhAc), weak intergenic enhancers (EnhWk), active 5’ flanking promoters/enhanc-
ers (TssFAc), weak 5’ flanking promoters/enhancers (TssFWk), weak promoters (TssWk), ac-
tive promoters (TssAc), poised promoters (TssP), polycomb-repressed regions (PcRepr),
heterochromatin or low signal (Heter/low), and constitutive heterochromatin (ConHeter). The
proportion of sites assigned to different chromatin states is presented in S4 Fig.

We then examined variations in DNAmethylation across different chromatin states. DNA
methylation levels of different chromatin states are highly and significantly different from each
other (Fig 2B). Promoters, in particular active promoters (TssAc), exhibit the lowest methyla-
tion (0.0408 ± 0.0041). On the other hand, transcription (TxS, TxWk) and heterochromatin or
low signal (Heter/low) states exhibit the highest mean methylation levels (Fig 2B). These results
are consistent with strong gene body methylation (TxS and TxWk) and methylation of hetero-
chromatic regions (Herer/low). Interestingly, active and weak enhancers that are distally locat-
ed in intergenic regions (EnhAc, EnhWk) are also highly methylated (65–70% methylated),
which is in contrast to previous results reporting that enhancers are generally hypo-methylated
(e.g., [36]). However, the DNAmethylation levels of these regions are highly significantly re-
duced compared with flanking intergenic regions (Fig 2C), which is concordant with the rela-
tive hypo-methylation of enhancers [36,37]. On the other hand, states harboring strong
chromatin signatures enhancers (including H3K4me1 and H3K27Ac) and located nearby tran-
scription start site (states TssFAc, TssFWk, annotated as flanking promoters/enhancers) are
strongly hypo-methylated.

Moreover, different chromatin states exhibit different degrees of aging-associated methyla-
tion changes (Fig 3A). A linear regression model was employed using ages as predictors and
DNAmethylation levels as response (Materials and Methods, S5 Fig). Combining chromatin
states and DNA methylation changes with aging, we demonstrate that CpGs that are located in
active promoters (TssAc) tend to remain stably hypo-methylated throughout the aging process
and exhibit the least amount of variation (Fig 3A and 3B). On the other hand, active enhancers
located in intergenic regions and gene bodies (TxEnhAc and EnhAc) exhibit the most dynamic
patterns of DNAmethylation during aging, undergoing significant hypo-methylation with
aging. Interestingly, chromatin states harboring enhancer signals yet residing nearby TSSs
(such as TssFWk and TssFAc, Fig 2A) exhibit less variability with aging (Fig 3A and 3B). In
contrast, CpGs located in the ‘poised promoters’ state (TssP) and polycomb-repressed regions
(PcRepr) exhibit substantial hyper-methylation with aging (Fig 3B). Overall, regions corre-
sponding to chromatin states associated with active histone marks tend to exhibit negative
DNAmethylation changes with age (Fig 3C). In contrast, DNA methylation of chromatin

brain data from three individuals (with comparable ages to those in the blood data set) are presented.
Patterns from all eight individuals are highly similar to the simplified pictures. Data from 10,000 randomly
selected CpGs are presented. (A) Comparisons of mean fractional methylation levels among 3 individuals
(with 95% confidence intervals) across different genomic regions in blood. (B) Comparisons of mean
fractional methylation levels (with 95% confidence intervals) among 3 individuals across different genomic
regions in brain. (C) Data from extremely hypo-methylated (fractional methylation levels < 0.2) CpGs (upper
panel) and extremely hyper-methylated (fractional methylation levels > 0.8) CpGs from the two data sets. (D)
Methylation levels of extremely hyper- and hypo-methylated CpGs are strongly negatively correlated in brain.

doi:10.1371/journal.pone.0128517.g001
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states that harbor repressive or poised histone marks are positively correlated with age (Fig
3C).

One caveat of the present analysis is that it utilized the chromatin state map generated from
data from a specific individual. Consequently, the observed pattern may reflect individual-spe-
cific patterns. To take into account such variability, we first extracted genomic regions that ex-
hibit consistent chromatin states in 9 different cell lines (including embryonic stem cells,
erythrocytic leukemia cells, B-lymphoblastoid cells, hepatocellular carcinoma cells, umbilical
vein endothelial cells, skeletal muscle myoblasts, normal lung fibroblasts, normal epidermal
keratinocytes and mammary epithelial cells) [35]. We subsequently re-examined the relation-
ship between chromatin states and DNA methylation in this ‘consistent’ chromatin state map.

Fig 2. Chromatin states and DNAmethylation in brain data. (A) The emission probability matrix indicating the composition of 6 histone modifications in
each state. Candidate annotation for each chromatin state is also presented. (B) DNAmethylation levels of CpGs located in different chromatin states. Data
(mean fractional methylation levels ± standard error) from three individuals (a newborn as well as a 25-year-old and 82-year-old individual) are presented. In
total, 1,000 CpGs were randomly chosen for each state. (C) Enhancers residing in distal intergenic regions (states EnhWk and EnhAc) are significantly hypo-
methylated compared with nearby regions. The position 0 indicates the focal enhancer, and the levels of DNAmethylation up to 2 kb from the enhancers in
either direction are presented (200-bp bin size).

doi:10.1371/journal.pone.0128517.g002
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Interestingly, intergenic distal enhancers (states 5 and 7 in ref [35]) tend to variable across the
9 cell lines. This observation is potentially explained by the highly variable epigenetic nature of
enhancers across various biological processes [30,38–41]. Genomic regions corresponding to
other chromatin states across the 9 cell lines reveal similar aging DNA methylation dynamics
as shown above (S6 Fig).

Novel aging segments define distinctive epigenomic and functional
neighborhoods
Neighboring positions in the genome may exhibit similar epigenetic profiles and facilitate com-
plex regulation [42,43]. For example, DNAmethylation levels of nearby sites are highly corre-
lated in diverse genomes [44–46]. Consequently, it is of great interest to investigate whether
explicit genomic neighborhoods exist that epigenetically respond to aging in a similar manner.
Aging methylation maps of approximately all CpGs in the human genome provide an exciting
opportunity to explore this question. Specifically, we examine clusters of adjacent CpGs that
exhibit similar patterns of methylation changes with aging using the maximal scoring subse-
quence algorithm [47]. This approach aims to identify all non-overlapping and continuous
subsequences with highest local scores and is used in a variety of genomic analyses (e.g., [48–
50]). In our approach, subsequences correspond to clusters of adjacent CpG that exhibit similar
positive or negative correlations with age (Materials and Methods). We subsequently identified
133,650 positive aging segments (length: 140.2 X 106 bps) and 7,661 negative aging segments
(length: 31.9 X 106 bps) from the brain data (S7 Fig, S1 Table).

This novel analysis reveals several intriguing aspects of the epigenomic response to aging.
First, genomic regions covered by the positive and negative aging segments exhibit variable
lengths in the brain data (S7 Fig). Although the number of positive individual CpGs (those that
increase methylation with aging) is highly similar to the number of negative CpGs based on the
regression analysis (50.9% versus 45.7%, not including zeros; S5 Fig), the total length of nega-
tive aging segments is considerably shorter than positive segments. This observation, at least
on the surface level, is consistent with the notion that increases in DNAmethylation reflect reg-
ulation, whereas decreases in DNAmethylation are caused by stochastic processes (e.g.,
[17,29]).

We next examine the overlaps between the aging segments defined in this study using the
aging CpGs identified in previous studies [11,15,51]. A critical difference between these previ-
ous studies and the current study is that the previous studies utilized methylation arrays, which
include CpGs that were pre-selected (Illumina Infinium 27K chip, approximately 27,000 CpG

Fig 3. DNAmethylation changes in CpGs across the 14 chromatin states. To facilitate the visualization
of aging-associated DNAmethylation changes, we divided CpGs into five classes based on their regression
coefficients from the linear model. CpGs that rarely exhibit DNAmethylation alterations (absolute value of
regression coefficients < 0.0002, 5% quantile), those slightly exhibit DNAmethylation alterations with aging
(absolute regression coefficients in [0.0002, 0.0034), 5~20% quantiles), CpGs that change DNAmethylation
medially (absolute regression coefficients between [0.0034, 0.0272), 20~80% quantiles), and CpGs that
strongly (absolute regression coefficients between [0.0272, 0.0591), 80~95% quantile) and very strongly
(absolute regression coefficients > = 0.0591, top 5%) alter DNAmethylation are referred to as never (never),
slightly (slight), medially (medium), strongly (strong) or very strongly (very strong), respectively. CpGs with
fractional methylation levels between 0 ~ 0.05 and 0.05 ~ 0.2 are defined as unmethylated and hypo-
methylated, respectively. CpGs with fractional methylation levels between 0.95 ~ 1.00 and 0.80 ~ 0.95 are
defined as methylated and hyper-methylated, respectively. (A) The proportions of CpGs in different classes in
genomic regions occupied by different chromatin states. (B) Changes of CpGmethylation with aging across
three individuals (newborn, 25 years old and 82 years old). (C) The mean regression slopes of the most
significant (top 5% in regression coefficients, P-values < 10−3) aging CpGs reveal contrasting patterns of
aging-associated DNAmethylation changes between active versus poised/repressed chromatin states.

doi:10.1371/journal.pone.0128517.g003
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sites). On average, the Infinium 27K BeadChip covers 2 CpG sites per RefSeq gene, and this
value is several orders of magnitude fewer CpG sites than that analyzed in the current study.
On the other hand, these studies exhibit greater statistical power than our study because they
focus on fewer positions (reducing the burden of multiple testing problem) in a considerably
larger number of samples. Despite such differences, we observe that previously reported aging
CpGs are highly enriched in aging segments (Fig 4A). In other words, our aging segments effec-
tively capture previously identified aging patterns. Interestingly, positive aging segments exhib-
it enhanced enrichment for previously identified aging CpGs compared with negative
segments (S8A and S8B Fig); the only exceptions include fetal and child brain samples [51].
This is again consistent with the idea that positive aging segments more strongly reflect regula-
tory processes compared to negative aging segments.

Positive and negative aging segments also exhibit distinctive patterns of enrichment and de-
ficiencies of specific chromatin states. Negative aging segments are enriched for strong tran-
scription, active intergenic enhancers and 5’ flanking regions (TxS, TxEnhAc, EnhAc, TssFAc).
In addition, these segments are significantly devoid of poised promoters, polycomb-repressed
regions and repetitive regions (ConHeter, Heter/low, PcRepr, Tssp) (Fig 4B). In contrast, posi-
tive aging segments are enriched for poised promoters and polycomb-repressed regions but
lack transcribed regions and active enhancers (Fig 4B). These observations are consistent with
results from the previous section, indicating coordinated epigenetic responses between DNA
methylation and chromatin states. Furthermore, positive and negative aging segments are en-
riched in distinctive gene functional categories (Table 1). Positive aging segments are involved
in cell adhesion and development. In contrast, negative aging segments harbor many genes in-
volved in RNA processing, metabolic processes, and protein ubiquitination (Table 1).

Common and divergent patterns between blood and brain based on
whole genome data
To identify common aging patterns across tissues, we analyzed blood data (CD4+ T cells from
three individuals, Heyn et al. [2]). Based on the extensive 51 chromatin state map of CD4+ T
cells from Ernst and Kellis [53], we determined whether different chromatin states exhibit dif-
ferential patterns of DNA methylation with aging. Unlike the brain data set (S9A Fig), most
CpGs in the blood data set exhibit hypo-methylation with aging across different chromatin
states (S9B Fig), consistent with the observed genome-wide hypo-methylation with aging (Fig
1A). Of note, the weak/repressed promoters exhibit hyper-methylation with aging (positive re-
gression coefficients with age) in the blood data as well (S9B Fig).

When we applied the maximal segment algorithm, the number of resulting negative aging
segments is significantly greater than the resulting positive aging segments (36,294 negative
segments vs. 2,845 positive segments, S7 Fig, S1 Table). This finding is also consistent with that
the blood data set exhibits pervasive hypo-methylation with aging (Fig 1). However, these re-
sults should be taken with caution, as they are exclusively based on three individuals. A direct
comparison of the brain and blood aging segments is technically not feasible due to the differ-
ences in the sample size (eight versus three individuals) as well as the total numbers of CpGs
analyzed (three-fold difference between the two data sets, Materials and Methods). Neverthe-
less, 1,174 and 1,512 genes are included in the positive and negative segments, respectively, in
both samples (S3 Table). Interestingly, genes appearing on the positive segments in both sam-
ples are highly over-represented in gene ontology terms associated with development
(Table 2). For example, genes corresponding to the term ‘embryonic morphogenesis’ are 5-fold
enriched in the positive aging segments. This term includes genes such as HOX genes, which
are epigenetically suppressed post-embryonically. Common positive aging segments thus
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Fig 4. Aging segment analyses. (A) Significant overlaps between aging segments and previously identified ‘aging CpGs’. Each panel represents the
distribution of the expected overlaps between aging segments and aging CpGs based upon random permutation. The observed overlap is denoted by a red
dotted line, and its probability (based upon the permutation test) is indicated based on aging CpGs identified in Horvath [15]; Day et al. [52] using aging CpGs
from brain and blood; and Numata et al. [51] using aging CpGs from fetal brains as well as brains from patients less than or greater than 10 years of age. (B)
Enrichment and deficiency of different chromatin states in positive and negative aging segments. (C) Three HOX gene clusters in positive aging segments
are occupied by polycomb-repressed regions and poised promoters.

doi:10.1371/journal.pone.0128517.g004
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capture genomic neighborhoods of genes that are epigenetically silenced via gradual increases
in DNA methylation. Genes located in the negative aging segments in both samples are en-
riched in GO terms related to metabolic process and phosphorylation (Table 2).

Table 1. Gene ontology (GO) enrichments in positive and negative aging segments of brain. q-values are P-values and are adjusted via
Bonferroni correction.

GO Term Fold Enrichment q-value

Positive Cell adhesion 1.3 2.80E-10

Embryonic morphogenesis 1.4 3.40E-07

Skeletal system development 1.4 2.00E-06

Homophilic cell adhesion 1.6 2.80E-06

Cell-cell signaling 1.3 8.50E-06

Pattern specification process 1.4 1.30E-05

Regionalization 1.5 1.80E-05

Cell-cell adhesion 1.4 4.70E-05

Ion transport 1.2 8.10E-05

Anterior/posterior pattern formation 1.5 2.10E-04

Negative RNA splicing 2.4 4.60E-07

RNA processing 2.0 5.50E-07

Regulation of ubiquitin-protein ligase activity 4.1 1.00E-06

Regulation of ligase activity 3.9 2.60E-06

mRNA metabolic process 2.1 1.00E-05

Positive regulation of ubiquitin-protein ligase activity 4.0 1.40E-05

Regulation of protein ubiquitination 3.4 1.90E-05

Positive regulation of protein ubiquitination 3.6 3.00E-05

Positive regulation of ligase activity 3.9 3.40E-05

Positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle 4.0 4.00E-05

doi:10.1371/journal.pone.0128517.t001

Table 2. Genes located in common aging segments in brain and blood exhibit distinctive functional enrichments. q-values are P-values are adjusted
via Bonferroni correction.

GO Term Fold Enrichment q-value

Positive Pattern Specification Process 5.2 6.20E-17

Embryonic Morphogenesis 4.7 5.90E-16

Regionalization 5.5 2.60E-13

Anterior/Posterior Pattern Formation 6.1 4.40E-11

Neuron Differentiation 3.3 1.10E-09

Homophilic Cell Adhesion 5.9 3.50E-09

Tube Development 4.4 6.00E-09

Skeletal System Development 3.7 6.50E-09

Appendage Development 6.6 7.20E-09

Limb Development 6.6 7.20E-09

Negative Phosphorus Metabolic Process 1.8 1.90E-02

Phosphate Metabolic Process 1.8 1.90E-02

Transmission of Nerve Impulse 2.5 3.50E-02

Protein Amino Acid Phosphorylation 2 4.80E-02

Phosphorylation 1.9 4.90E-02

doi:10.1371/journal.pone.0128517.t002
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Discussion
Our study demonstrates widespread aging-associated variations in DNAmethylation in brain,
by examining approximately all CpGs in the human genome. Understanding the molecular
mechanisms of such epigenetic drift will advance our knowledge on aging and aid in elucidat-
ing the dynamics of DNA methylation turnover at individual CpG sites. One previously ob-
served pattern in the aging process and cancer involves global hypo-methylation coupled with
promoter hyper-methylation [1,2,29,54]. After re-examining this hypothesis using whole-ge-
nome methylation maps, the expected pattern is observed for blood but not for brain (Fig 1A
and 1B). In light of these results, we propose that CpGs with extreme initial methylation levels
are more prone to DNA methylation drift regardless of genomic context (Fig 1C and 1D). Age-
associated dysregulation of DNAmethylation maintenance may cause these extreme states of
hypo- and hyper-methylation to revert to intermediate methylation levels.

However, for the remaining genomic regions, the direction of methylation changes with
aging cannot be exclusively explained based upon the initial or mean methylation levels. For
example, many hypo-methylated promoters exhibit minimal epigenetic drift with aging. In-
stead, we demonstrate that integrating histone modification data with aging DNA methylation
maps provide the specific chromatin context to the observed patterns in brain (Fig 2 and Fig
3).

Among the 14 chromatin states defined, active intergenic enhancers exhibit the most dy-
namic variation in DNAmethylation with aging (Fig 3). This finding is consistent with previ-
ous studies indicating that enhancer hypo-methylation occurs with aging [11,13–17], thus
emphasizing the co-variation of histone modification and DNAmethylation marks in aging.
Furthermore, given that we could examine a much larger number of CpGs compared with pre-
vious studies, we demonstrate that originally hyper-methylated intergenic and intragenic en-
hancers are subject to strong hypo-methylation, which differs from the patterns for proximal
enhancers. This observation may provide clues to identifying the underlying mechanisms of
the co-variation between chromatin states and DNAmethylation changes with aging. For ex-
ample, many intergenic and intragenic enhancers are located in low CpG density genomic re-
gions with high initial DNAmethylation, whereas proximal enhancers and promoters are
typically located in regions of high CpG density with low initial DNA methylation. These geno-
mic differences and the initial epigenetic signals may affect how DNAmethylation levels of
specific CpGs change with aging. Future studies are necessary to refine the co-variation be-
tween chromatin states and DNAmethylation changes, and to elucidate the underlying mecha-
nisms. We also demonstrate that poised promoters and polycomb-repressed regions continue
to increase DNA methylation with aging. A prominent example of this phenomenon is ob-
served in the HOX clusters, which are epigenetically suppressed cooperatively via both DNA
methylation and histone modifications (Fig 4C). Hyper-methylation of poised promoters
could also be related to the initiation of de novo DNAmethylation following H3K27me3 modi-
fication induced by polycomb complexes [55,56].

Comparing aging whole-genome methylation maps of brains to those of blood reveals in-
triguing similarities and differences between the two tissues. In both data sets, age-associated
changes in DNA methylation are concentrated in intragenic and intergenic regions instead of
promoters or exons (Fig 1A and 1B). Unfortunately, commercially available methylation chips
tend to target genic and promoter regions, thus potentially limiting our ability to grasp the full
extent of DNAmethylation changes with aging. Numerous previous analyses of DNAmethyla-
tion and aging focused on CpG islands and consequently observed aging-associated hyper-
methylation [57–60]. We also identify some common features of co-variation between chroma-
tin states and DNA methylation variation. Specifically, aging-associated hyper-methylation of
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poised promoters and hypo-methylation of distal/intergenic enhancers are apparent in both
data sets.

Interestingly, blood samples exhibit a pronounced global hypo-methylation with aging [2],
whereas brain samples do not exhibit an obvious pattern at the global level (Fig 1). Although
caution should be used when interpreting this difference given the small number of samples,
blood samples notably exhibited consistent hypo-methylation across many different types of
CpGs compared with other tissues in a previous study [5]. Additional aging whole-genome
methylation maps from diverse tissues will elucidate the details of the long-observed tissue dif-
ferences in aging patterns noted among tissues. For example, epidermal whole-genome methyl-
ation maps exhibit minimal differences between young versus old populations; however, only
two whole-genome methylation maps were compared [16]. The causes of among tissue differ-
ences in aging patterns are unclear. Some suggest the differences in proliferative potential
across tissues as a factor in these differences [61]. This hypothesis may be worth re-visiting in
light of a recent suggestion that a similar factor underlie differential cancer susceptibility across
tissues [62].

Although analysis of whole-genome nucleotide maps provides an unbiased representation
of aging and DNAmethylation, it also offers a significant challenge to commonly used linear
model methods given the extremely large number of CpGs in the entire genome, thus posing a
tremendous burden of multiple testing corrections. Additionally, a strong spatial correlation of
DNAmethylation of nearby CpGs has been observed across diverse species [44–46]. To over-
come such statistical limitations and efficiently utilize the spatial correlation, here we investi-
gated clusters of CpGs that respond to aging in a similar manner. Our method offers a
statistically robust framework to analyze aging whole-genome methylation maps. Notably,
aging CpGs identified in previous studies using Illumina 27K data [15,51,52] are highly signifi-
cantly enriched in our aging segments, suggesting that the aging segments capture biologically
meaningful genomic neighborhoods. Moreover, aging segments could be more robust in the
presence of SNPs. Aging CpGs are highly affected by individual SNPs occurring at each CpGs,
whereas aging segments harbor a large number of CpGs.

We also observe intriguing functional ontology associations with positive and negative
aging segments. Positive aging segments, which exhibit gradual hyper-methylation with aging,
are highly enriched with genes associated with developmental ontology terms in the brain
(Table 1). This finding is consistent with the notion that DNA methylation down-regulates
neurodevelopmental genes [25]. Notably, positive aging segments are highly enriched for the
Homeobox domain in the DAVID INTERPRO database (q< 10−13 after Bonferroni correc-
tion). In particular, three HOX gene clusters (A, B and D) reside in positive aging segments
(Fig 4C) occupied by poised promoters (TssP) and polycomb-repressed regions (PcRepr).
These results indicate that DNAmethylation and histone modification synergistically suppress
HOX expression in adult brains [25,63].

Negative aging segments in brain are enriched with genes associated with metabolism, RNA
processing, and protein ubiquitination (Table 1). Enrichment of these gene ontology terms in
the negative aging segments may indicate epigenetic up-regulations of these genes. For exam-
ple, protein ubiquitination is an essential posttranslational modification for the removal of
damaged or misfolded proteins [64]. Thus, ubiquitin plays a critical role in proteome homeo-
stasis during aging [65,66]. Impairment of ubiquitination pathways leads to the accumulation
of damaged and aggregated proteins, which are associated with aging as well as neurodegenera-
tive disorders, such as Alzheimer’s [67,68]. Gradual hypo-methylation of genes in the protein
ubiquitination pathways may indicate an epigenetic up-regulation of this pathway
during aging.
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Our study has several potential caveats. The brain data used only included 8 individuals,
and the blood data were derived from 3 individuals. In addition, the fact that data from brain
and blood were obtained from different sets of individuals should be taken into consideration
when comparing the extent of epigenetic drift between the two tissues. The histone modifica-
tion data were obtained from a single individual; however, these data were complemented with
data from multiple cell types. In addition, the brain methylation maps were generated from
cortex samples and thus could be affected by cellular heterogeneity [69]. A recent study sug-
gests that cellular heterogeneity may have only negligible effects on aging-associated DNA
methylation changes [15]. Nevertheless, our analyses provide a good comparison with previ-
ously identified aging patterns from similar cortex samples [11,15,28,51,57]. Analyses of DNA
methylation and chromatin modification data from a larger number of biological replicates ob-
tained from cell-sorted samples will allow researchers to avoid the aforementioned potential bi-
ases. Such data will almost certainly become available in a near future. Our methods will be
fully applicable to such data and help reveal the details of genome-wide differences across tis-
sues and cell types and ultimately elucidate the molecular mechanisms underlying such differ-
ences and similarities between tissues.

Materials and Methods

DNAmethylation and gene expression data
We analyzed DNA methylation maps generated by whole-genome bisulfite sequencing from
the frontal cortex [25,30] samples from eight individuals spanning a diverse spectrum of ages
(a 35-day-old male; 2-, 5-, 12-, 16- and 25-year-old males; 81- and 82-year-old females). We
also analyzed whole-genome methylation maps of CD+ T-cells from a male newborn, a
26-year-old individual of unknown sex and a 103-year-old male [2]. In total, 25.4 X 106 CpGs
from frontal cortex and 9.0 X 106 CpGs from CD4+ T-cells were analyzed. To eliminate con-
founding effects of gender [51,70], data from sex chromosomes were excluded. The fractional
methylation level of each CpG was calculated as “the number of methylated reads / total num-
ber of reads (= number of methylated reads + number of unmethylated reads)” [37,70].

Our main focus was the first data set (‘brain’ data set). We limited our interpretation of the
second data set (‘blood’ data set) as it contained only three samples and fewer mapped CpGs.
Gene expression data were obtained from the BrainSpan Atlas of the Developing Human Brain
[63,71].

Age-based methylation modeling
Age-associated DNAmethylation changes at individual sites were assessed using a linear
model [11,15,51]. We used ln(age+1) as a predictor and fractional methylation level as a re-
sponse variable to account for the rapid changes of DNA methylation that occur during early
development [15,51]. Regression coefficients from this model indicate the strength and direc-
tion of age-associated DNA methylation changes.

Chromatin states map of brain
Chip-seq data containing 6 chromatin modifications H3K9me3, H3K27me3, H3K27Ac,
H3K4me1, H3K4me3 and H3K36me3 from the prefrontal cortex of a 75-year-old female were
downloaded from NIH Roadmap Epigenomics (www.roadmapepigenomics.org/). The GSM
numbers for these data sets are GSM772833 for H3K27me3, GSM772834 for H3K9me3,
GSM773012 for H3K4me3, GSM773013 for H3K36me3, GSM773014 for H3K4me1,
GSM773015 for H3K27ac, and GSM773010 for ChIP-Seq input. We used ChromHMM [34] to
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train a multivariate Hidden Markov Model. First, histone modification reads were transformed
into binary values using a default 200-bp bin size. Second, the LearnModel function was used
to learn models. A transmission probability matrix and an emission probability were generated.
Based on these priors, each bin was given posterior probabilities for each state. The state with
the highest probability was used to label that bin. To maximally define possible chromatin
states with 6 histone modifications, 7 to 15 state models were trained. We selected the 14 state
model because it demonstrated key interactions amongst the chromatin marks without incur-
ring unnecessary redundancies.

Identifying aging segments
We used a maximal scoring subsequence algorithm [47] to define aging segments. This ap-
proach aims to identify all non-overlapping and continuous subsequences with maximal local
scores [47,48]. For all mapped CpGs, the t-statistics from the linear regression model were
used as pre-scores. It is advantageous to use t-statistics from the regression because these values
represent the impacts of both the strength of correlation (P-value) as well as the degree of the
changes with aging (regression coefficients). After excluding outliers, the ‘pre-scores’ were then
normalized to a [-1,1] scale.

Each mapped CpG was given a positive score for increase of DNA methylation with aging
or a negative score if it exhibited decreased DNAmethylation with aging. The outliers are
strong positive and negative CpG sites and therefore given 1 or -1, respectively. Unmapped
CpGs are coded as 0. All other nucleotides are given -0.00257 to ensure the maximum distance
of 250 bp between any two CpGs within a segment (see below).

The maximum distance between two adjacent CpGs is determined based upon the pattern
of spatial correlation of DNAmethylation in the human genome. The correlation rapidly de-
creases to the baseline near or before ~500 bp (S10 Fig). Consequently, we used 100, 250 and
500 bp and found that the results are highly similar (e.g., S8C Fig). We present results using the
maximal distance between two adjacent CpGs as 250 bp (more details are provided in the S1
Text). Under this scheme, CpGs with a stronger increase or decrease of DNAmethylation are
given higher absolute scores. We then used the calculated scores as templates for the maximal
segment algorithm using a custom in-house script (available upon request). Among the ini-
tially identified segments, only those subsequences (‘aging segments’) that exhibited statistical-
ly significant associations with age in a linear model (FDR-corrected q-value< 0.05) were
retained. Consequently, we identified maximal clusters of adjacent CpGs that increase DNA
methylation with aging (positive segments) and those that decrease DNA methylation with
aging (negative segments).

Gene ontology, permutation test, and visualization
The DAVID 6.7 functional annotation tools [72,73] were used to examine enrichments of spe-
cific gene ontology (GO) terms. P-values were adjusted using the Bonferroni correction. En-
richment of aging CpGs from other datasets in our segments was performed by a permutation
test as follows: if our aging segments have n CpGs overlapping with another dataset, we ran-
domly choose n CpGs from the Illumina 27K chip and counted the number of overlaps with
another data set, designated asm. This procedure was repeated T (= 100,000) times, and empir-

ical P-values were calculated as: P � T½m>n�
T

. We used R base [74] and ggplot2 [75] plotting sys-

tems to generate figures. The Gviz package was used to visualize and annotate UCSC tracks
[76].
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