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ABSTRACT  Programmed cell death protein 4 (PDCD4) exerts critical 
functions as tumor suppressor and in immune cells to regulate in-
flammatory processes. The phosphoinositide 3-kinase (PI3K) promotes 
degradation of PDCD4 via mammalian target of rapamycin complex 1 
(mTORC1). However, additional pathways that may regulate PDCD4 
expression are largely ill-defined. In this study, we have found that 
activation of the mitogen-activated protein kinase p38 promoted deg-
radation of PDCD4 in macrophages and fibroblasts. Mechanistically, 
we identified a pathway from p38 and its substrate MAP kinase-
activated protein kinase 2 (MK2) to the tuberous sclerosis complex 
(TSC) to regulate mTORC1-dependent degradation of PDCD4. Moreo-
ver, we provide evidence that TSC1 and TSC2 regulate PDCD4 expres-
sion via an additional mechanism independent of mTORC1. These nov-
el data extend our knowledge of how PDCD4 expression is regulated 
by stress- and nutrient-sensing pathways. 
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INTRODUCTION 
Programmed cell death protein 4 (PDCD4) is an RNA-
binding tumor suppressor protein that is vital for inhibiting 
carcinogenesis, tumor progression and invasion [1]. Low 
PDCD4 expression promotes neoplastic transformation [2]. 
The activity of the PDCD4 protein seems to be mainly de-
termined by its stabilization [3]. 

Recent data showed that PDCD4 is also a modifier of in-
flammatory processes in macrophages [4–7]. Cellular 
PDCD4 levels remain stable throughout the process of 
monocyte/macrophage differentiation [8], but are upregu-
lated upon starvation or induction of apoptosis [9]. Inter-
estingly, macrophages reduce PDCD4 expression in cancer 
cells by mTOR-mediated proteasomal degradation [10]. In 
contrast to starvation, mitogenic signals such as growth 

factors or pathogen-associated molecules such as lipopoly-
saccharide (LPS) lead to the ubiquitination of PDCD4 by  
F-box/WD repeat-containing protein 1A (βTRCP) ubiquitin 
ligases and its subsequent degradation by the proteasome 
[11]. Mechanistically, mitogenic signals activate the phos-
phoinositide 3-kinase (PI3K)-mammalian target of rapamy-
cin complex 1 (mTORC1) pathway. mTORC1 then phos-
phorylates its substrate ribosomal protein S6 kinase beta-1 
(S6K1), which directly phosphorylates PDCD4 as trigger for 
its ubiquitination and degradation [11]. Inhibition of 
mTORC1 with rapamycin prevents degradation of PDCD4 
[5]. 

Whether other signal transduction pathways in addi-
tion to PI3K regulate PDCD4 expression via mTORC1 is 
largely unknown. We and others have previously found 
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that the mitogen-activated kinase (MAPK) p38α contrib-
utes to the activation of mTORC1 [12, 13]. Specifically, the 
p38 substrate MAP kinase-activated protein kinase 2 (MK2) 
phosphorylates Ser1210 on the tuberous sclerosis complex 
2 (TSC2, Tuberin), a negative regulator of mTORC1 signal-
ing, and contributes to inflammatory cytokine expression 
in macrophages [12]. In the current study, we wanted to 
investigate whether p38 controls PDCD4 expression. 

 

RESULTS 
p38 negatively regulates PDCD4 
To study a potential role of p38 on PDCD4, we used the 
two well-known p38 activators anisomycin and LPS. Ani-
somycin has an inhibitory effect on protein translation [14], 
whereas LPS stimulates inflammatory protein synthesis. In 
bone marrow-derived macrophages (BMDMs) we found 
that LPS and anisomycin induced the reduction of PDCD4 
(Fig. 1A). Interestingly, chemical inhibition of p38 with 
BIRB796 [15] prevented the LPS- or anisomycin-induced 
decrease of PDCD4 (Fig. 1A). To genetically corroborate 
these findings, we analyzed p38α-deficient BMDMs. We 
detected higher levels of PDCD4 in unstimulated p38α-
deficient BMDMs compared to their control cells (Fig. 1B). 
Of note, PDCD4 was still partially lost in LPS- or anisomycin-
stimulated p38α-deficient cells. Moreover, levels of PDCD4 
were increased in a macrophage cell line that expressed a 
catalytic dead mutant of MK2 (K79R) to prevent p38-
mediated phosphorylation and activation (Fig. 1C). These 
data suggest that p38 and its substrate MK2 negatively 
regulate the expression of PDCD4 in macrophages. 

 
p38 controls PDCD4 via TSC1/TSC2 
The complex of TSC1 (Hamartin) and TSC2 is a major nega-
tive regulator of mTORC1, and its involvement in mTORC1-
mediated degradation of PDCD4 has been recently sug-
gested [16]. Indeed, deletion of TSC2 in BMDMs strongly 
abrogated expression of PDCD4 (Fig. 2A). This effect was 
reversible by rapamycin and thus dependent on mTORC1 
(Fig. 2A). In addition, serum starvation induced the expres-
sion of PDCD4 in Tsc1+/+ and Tsc2+/+ fibroblasts (Fig. 2B and 
D). In contrast, PDCD4 levels were strongly reduced in ei-
ther non-starved as well as starved Tsc1-/- and Tsc2-/- fibro-
blasts similar to macrophages (Fig. 2B and D). Inhibition of 
p38 or mTORC1 prevented anisomycin-induced degrada-
tion of PDCD4 in Tsc1+/+ and Tsc2+/+ fibroblasts (Fig. 2C and 
D) and in Tsc2fl/fl BMDMs stimulated with anisomycin or 
LPS (Fig. 2E and F). However, BIRB796 failed to rescue 
PDCD4 degradation in anisomycin-stimulated Tsc1-/- and 
Tsc2-/- fibroblasts (Fig. 2C and D) and in Tsc2Lyz2 BMDMs (Fig. 
2E). These results show that p38 controls PDCD4 expres-
sion via TSC1/TSC2. In contrast, rapamycin and the catalyt-
ic mTOR inhibitor Torin1 partially restored PDCD4 levels in 
anisomycin-stimulated Tsc1-/- and Tsc2-/- fibroblasts (Fig. 2C 
and D). As an ATP-competitive inhibitor, Torin1 effectively 
prevents both mTORC1 and mTORC2 phosphorylation [17]. 
Interestingly, neither rapamycin nor Torin1 restored 
PDCD4 in Tsc1-/- and Tsc2-/- cells to a level that is seen in 
starved Tsc1+/+ and Tsc2+/+ fibroblasts, suggesting that 

TSC1/TSC2 promotes basal expression of PDCD4 that is 
independent of mTORC1 (Fig. 2C and D). Similar results 
were obtained with anisomycin in BMDMs (Fig. 2E and F). 
However, we noticed that the inhibitors restored PDCD4 
levels in LPS-supplied Tsc2Lyz2 BMDMs to a comparable 
level as seen in wild type-representing BMDMs. These re-
sults support the concept that anisomycin does not just 
simply block PDCD4 translation but actively promotes deg-
radation of PDCD4. Previous studies have found that acti-
vation of Erk contributes to PDCD4 degradation by enhanc-
ing proteasome activity [18]. Our experiments revealed an 
Erk-independent manner of PDCD4 degradation in Tsc2-/- 
fibroblasts since Erk expression was even reduced in the 
TSC2-deficient cells (Fig. 2D). The p90 ribosomal S6 kinases 

FIGURE 1: p38 promotes PDCD4 degradation. (A) Bone marrow-
derived macrophages (BMDMs) were treated with BIRB796 (BIRB) 
as depicted and then stimulated with LPS or anisomycin (Aniso) 
only for 4 hours. (B) p38fl/fl and p38αΔM BMDMs were stimulated 
with Aniso or LPS for 4 hours. (C) Mk2-/- macrophages reconsti-
tuted with either MK2 K79M mutant or WT MK2 were stimulated 
with Aniso or LPS for 4 hours. Cell lysates were analyzed by im-
munoblotting. 
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(RSKs) act downstream of Erk [19] and were shown to be 
promote proteasomal degradation of PDCD4 [20]. However, 
there was not clear association of p90RSK phosphorylation 
at Ser380 and PDCD4 levels in Tsc2fl/fl and Tsc2Lyz2 BMDMs 
(Suppl. Fig. 1A). Although PDCD4 can be transcriptionally 
regulated [21, 22], qRT-PCR analysis of PDCD4 mRNA did 
not reveal significant differences between Tsc2Lyz2 and 
Tsc2fl/fl BMDMs (Suppl. Fig. 1C). 
 
p38 activation subjects PDCD4 to proteasomal degrada-
tion 
Finally, we tested whether p38 promotes degradation of 
PDCD4 via the proteasome. We noticed that the pro-
teasome inhibitor MG-132 restored PDCD4 levels in aniso-
mycin-treated Tsc1+/+ and Tsc2+/+ fibroblasts as well as ani-
somycin- and LPS-stimulated BMDMs (Fig. 3A, 2D-F). How-
ever, in Tsc1-/- and Tsc2-/- fibroblasts as well as Tsc2Lyz2 
BMDMs, MG-132 could not fully restore PDCD4 levels argu-

ing again of an TSC1/TSC2-dependent effect that is inde-
pendent of mTORC1 and proteasomal degradation (Fig. 3A, 
2D-F). Treating BMDMs with the p38-activating translation 
elongation inhibitor cycloheximide (Chx) [23, 24] confirmed 
that PDCD4 translation is under strong control of this 
MAPK (Fig. 3B). 
 

DISCUSSION 
The MAPK p38α is ubiquitously expressed in most cell 
types and regulates diverse functions such as cell prolifera-
tion, differentiation, apoptosis, tissue repair, tumorigenesis, 
or inflammation [25]. Physicochemical stress signals such 
as heat, osmotic shock, arsenite or anisomycin result in 
activation of p38 [25]. p38 has been described as either 
tumor suppressor or oncoprotein depending on the cell 
type [26]. It will be interesting to evaluate whether PDCD4 
contributes to the cell type-specific anti- or pro-
tumorigenic functions of p38. 

FIGURE 2: The TSC complex links p38 to PDCD4. (A) BMDMs from Tsc2fl/fl and Tsc2Lyz2 were cultivated with or without rapamycin for 12 
hours. (B) Tsc1+/+ and Tsc1-/- fibroblasts were non-starved or serum-starved as indicated and subsequently, cell lysates were prepared. (C) 
Tsc1+/+ and Tsc1-/- fibroblasts were serum-starved overnight. Afterwards, cells were treated with the indicated inhibitors for 90 minutes fol-
lowed by Aniso stimulation for 2 and 4 hours, respectively. (D) Tsc2+/+ and Tsc2-/- fibroblasts were non-starved where indicated or were se-
rum-starved overnight. Inhibitor treatment of cells for 90 minutes preceded 4 hours of Aniso treatment. Cell lysates were analyzed by im-
munoblotting. (E, F) BMDMs from Tsc2fl/fl and Tsc2Lyz2 mice were pretreated with the inhibitors BIRB796, rapamycin, Torin 1 or MG-132 for 
90 minutes and subsequently elicited with LPS or Aniso for 4 hours. 
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PI3K promotes PDCD4 degradation by mTORC1 activity 
in response to mitogenic signals [11]. Our data now sug-
gests that also p38 induces degradation of PDCD4 via 
mTORC1 and TSC1/TSC2. We have previously shown that 
PI3K and p38 coordinately modulate mTORC1 signaling via 
TSC1/TSC2 in murine macrophages and human monocytes 
[13]. In agreement, LPS or anisomycin still induced partial 
degradation of PDCD4 in p38-deficient macrophages sug-
gesting that PI3K and p38 also coordinately control PDCD4 
degradation in macrophages (Fig. 3C). PDCD4 is expressed 
in unstressed, proliferating cells [27] and even though the 
heterozygous deletion of TSC2 in Tsc2Lys+/- BMDMs creates 
a more proliferative macrophage type, degradation of 
PDCD4 by hyperactive mTORC1 in these cells outweighs 
healthy upregulation of PDCD4. Interestingly, rapamycin 
and the catalytic inhibitor Torin1, which fully blocks 
mTORC1 activity, did not restore PDCD4 expression in Tsc1- 
or Tsc2-deficient fibroblasts to wild-type levels. This indi-
cates an additional positive regulatory role for the TSC 
complex on PDCD4 expression in fibroblasts independently 
of mTORC1. The broad PDCD4 network comprises numer-
ous feedback loops, e. g. on PI3K/Akt [28] and dysfunction-
al recycling of proteins like PDCD4 by the proteasome can 
be compensated by autophagy [29]. PDCD4 is associated 
with cell cycle regulation and programmed cell death and is 
controlled by apoptosis inducers [9, 27, 30]. Hence, phos-
phorylation by protein kinases regulating survival pathways, 
such as casein kinase 2 (CK2), seems plausible. CK2 was 
already shown to interact with PDCD4 within the nucleus 
[31, 32] with their expression levels being inversely corre-
lated in the tumor setting [33]. This connection would also 
fit into the overall picture in which PDCD4 acts pro-
apoptotic [34]. Of note, CK2 can directly phosphorylate Akt 
to promote proliferation via mTORC1 [35]. Since PDCD4 is 
widely known to be regulated by microRNAs, mainly miR-
21, their involvement cannot be ruled out. miR-21 is up-
regulated in the inflammatory and tumor-associated con-
text [36]. However, we did not find a prominent upregula-
tion of miR-21 in Tsc2-/- fibroblasts (data not shown). 

The precise elucidation of the upstream regulatory 
network that controls PDCD4 in cancer and immune cells 
may be important to define novel anti-cancer and anti-
inflammatory strategies. In conclusion, we showed that 

activation of p38 promotes degradation of PDCD4 via the 
TSC-mTORC1 pathway (Fig. 4). 
 
MATERIALS AND METHODS 
Reagents 
LPS (Lipopolysaccharide Escherichia coli serotype O111:B4, 
#LPS25), anisomycin (#A5862), rapamycin (#553211), MG-132 
(#474791) and cycloheximide (#C-0943) were purchased from 
Sigma, BIRB796 (#5989) and Torin1 (#4247) from Tocris.  

 
Cell culture 
Mouse embryonic fibroblasts (MEFs) were cultured in Dulbec-
co’s Modified Eagle’s Medium (DMEM) containing 4.5 g/L 
glucose, 2 mM L-glutamine, 100 µg/ml streptomycin, 100 
U/ml penicillin and 10% heat-inactivated fetal bovine serum 
(FBS, Performance Plus, #10082147, Gibco). Tsc2+/+ p53-/- and 
Tsc2-/- p53-/- as well as Tsc1+/+ and Tsc1-/- MEFs were described 
previously [37]. Mk2-/- immortalized murine macrophages 
stably reconstituted with MK2 or MK2K79R were kindly pro-
vided by Matthias Gaestel, Hannover, Germany. B6;129-
Tsc2fl/fl mice were kindly provided by Michael J. Gambello, 
Atlanta, USA [38] and were crossed to B6.129P2-Lyz2tm1(cre)lfo/J 
(The Jackson Laboratory) to obtain Tscfl/flLyz2cre/+ (denoted 
Tsc2Lyz2) or Tscfl/flLyz2+/+ (denoted Tsc2fl/fl) littermates. Animal 
care was in accord with institutional guidelines. Bone marrow-
derived macrophages (BMDMs) were generated as described 
before [16]. BMDMs from p38fl/fl and p38αΔM mice were isolat-
ed and grown as described [39]. 
 
Analysis of signal transduction events 
BMDMs and Mk2-/- macrophages were replated one day prior 
to stimulation in full medium containing 2% FBS overnight (16 
h), whereas 70% confluent MEFs were completely serum-
starved overnight if not stated otherwise. The cells were then 
treated with either 100 nM rapamycin, 200 nM BIRB796, 100 
nM Torin1 or 1 µM MG-132 for 90 minutes and subsequently 
stimulated with 100 ng/ml LPS or 100 ng/ml anisomycin for 2 
or 4 hours if not mentioned otherwise. Treatments were per-
formed in full medium with 2% FBS, non-starved samples re-
ceived 10% FBS during that time. Extract preparation and im-
munoblotting was done as described [40]. Antibodies were 
PDCD4 (clone D29C6, #9535, 1:1000 and 1:500), TSC2 (#3612 
and clone D93F12, #4308, both 1:1000), p-TSC2 (Ser1254, 
#3616, 1:1000), p-S6 (Ser240/244, #2215 and clone D68F8, 
#5364, both 1:1000), p-p38 (Thr180/Tyr182, #9211, 1:1000), 

FIGURE 3: Reduction of PDCD4 is 
caused by p38-stimulated pro-
teasome degradation. (A) Tsc1+/+ 
and Tsc1-/- fibroblasts were serum-
starved overnight prior to treat-
ment with the indicated inhibitors 
for 90 minutes and subsequent 
Aniso stimulation for 4 hours. (B) 
BMDMs were treated with MG-132, 
LPS or cycloheximide (Chx) as indi-
cated for 4 hours. Immunoblots 
were analyzed as depicted. 
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Erk1/2 (Thr202/Tyr204, #9102, 1:1000), p-Erk1/2 
(Thr202/Tyr204, #9101, 1:1000), p-p90RSK (Ser380, #9341,  
1:1000), p-H3 (Ser10, #9701, 1:1000), Vinculin (clone E1E9V, 
#13901, 1:1000) (all from Cell Signaling Technology) and 
GAPDH (#2275-PC, 1:1000, Trevigen). Molecular weight of the 
proteins was determined with PageRuler Prestained Protein 
Ladder (#26616, Thermo Scientific). With regard to quantifica-
tion, data was generated either with X-ray or fluorescence 
detection. For X-ray detection, we applied HRP-conjugated 
secondary antibodies (1:10000, Bethyl Lab) and the Pierce ECL 
Western Blotting substrate (Thermo Scientific). Bands were 

visualized with Amersham Hyperfilm ECL (GE-Healthcare) and 
the Medical X-ray Processor 2000 system (Kodak). Fluores-
cence was recorded after secondary antibody incubation 
(IRDye IgG antibodies, 1:20000, LI-COR Biosciences) with Od-
yssey CLx Imaging System and analyzed with Image Studio 
Software (both LI-COR Biosciences). Bands were framed in 
unchanged manner between the samples. Normalization was 
performed with respect to the untreated sample of the un-
modified genotype. 

 
mRNA expression analysis 
Total RNA from BMDMs was isolated via the RNeasy Plus Mini 
Kit (#74134, QIAGEN) according to the manufacturer’s instruc-
tions. cDNA synthesis was performed with the RevertAid RT 
Reverse Transcription Kit (#K1691, ThermoFisher Scientific) 
prior to proceeding with qRT-PCR using the GoTaq® qPCR 
Master Mix (#A6001, Promega). Data were acquired with a 
StepOnePlus Real-Time PCR System (Applied Biosystems). 
Relative expression was normalized to Peptidyl-prolyl cis-trans 
isomerase A (PPIA). The following primer pairs were used: 
Pdcd4, AGTTTTGCCCCTGGATGAGA, GCTAAGGACAC-
TGCCAACAC; PPIA, TCCTGGCATCTTGTCCAT, 
TGCTGGTGCCATTCCT. 
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FIGURE 4: Model of p38 and mTORC1-mediated regulation of 
PDCD4. LPS activates Toll-like receptor 4 (TLR4) signaling. Subse-
quent signal transmission via phosphoinositide 3-kinase (PI3K) 
and mitogen-activated kinase p38 leads to inhibition of the sup-
pressor protein tuberous sclerosis complex 2 (TSC2), followed by 
activation of mammalian target of rapamycin complex 1 
(mTORC1). mTORC1 phosphorylates ribosomal protein S6 kinase 
beta-1 (S6K1), which in turn phosphorylates programmed cell 
death protein 4 (PDCD4). PDCD4 is ubiquitinated and degraded 
by the proteasome. 
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