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Parkinson’s disease (PD) causes impaired movement and cognition. PD can

involve profound changes in cortical and subcortical brain activity as measured by

electroencephalography or intracranial recordings of local field potentials (LFP). Such

signals can adaptively guide deep-brain stimulation (DBS) as part of PD therapy.

However, adaptive DBS requires the identification of triggers of neuronal activity

dependent on real time monitoring and analysis. Current methods do not always identify

PD-related signals and can entail delays. We test an alternative approach based on

linear predictive coding (LPC), which fits autoregressive (AR) models to time-series data.

Parameters of these AR models can be calculated by fast algorithms in real time. We

compare LFPs from the striatum in an animal model of PD with dopamine depletion in

the absence and presence of the dopamine precursor levodopa, which is used to treat

motor symptoms of PD. We show that in dopamine-depleted mice a first order AR model

characterized by a single LPC parameter obtained by LFP sampling at 1 kHz for just 1

min can distinguish between levodopa-treated and saline-treated mice and outperform

current methods. This suggests that LPC may be useful in online analysis of neuronal

signals to guide DBS in real time and could contribute to DBS-based treatment of PD.

Keywords: levodopa, linear predictive coding, local field potential, mice, Parkinson’s disease

1. INTRODUCTION

Parkinson’s disease (PD) and other neurodegenerative conditions involve impaired movement and
cognition. Although PD is a complex disease, a feature common to all cases is loss of midbrain
dopamine neurons that project throughout the brain, including the cerebral cortex and basal
ganglia (Narayanan et al., 2013). Neuronal activity as measured by electroencephalography (EEG)
or local field potentials (LFPs) can be abnormal in PD patients (McCarthy et al., 2011), and aspects
of these abnormalities can be recapitulated in rodent models of PD that are based on dopamine
depletion (Parker et al., 2015; Alberico et al., 2017).

One effective treatment for PD is deep brain stimulation (DBS), in which high-frequency
electrical current (generated by an implanted, battery-powered impulse generator) is applied
directly to the subthalamic nucleus (STN) or globus pallidus to modulate PD-related neuronal
activity and alleviate motor symptoms (Deuschl et al., 2006). The parameters used by clinicians
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performing DBS are generally adjusted only rarely—weeks or
months apart. This conventional DBS (cDBS) is associated
with an average battery life of 4 years with replacement
requiring general anesthesia and substantial hardware costs (Bin-
Mahfoodh et al., 2003).

However, recent work has suggested that ‘adaptive’ DBS has
the potential to be more effective and more energy-efficient
then cDBS, resulting in potentially longer battery life (Little
et al., 2013, 2016a). Adaptive DBS (aDBS) refers to a deep-
brain stimulation system where parameters such as stimulation
voltage and frequency are changed in real time based on local
brain activity. The goal of aDBS is to adjust these parameters
dynamically to deliver the most effective brain stimulation. For
such adjustments, current approaches of aDBS utilize the power
of the beta rhythm (12–30 Hz), which can be abnormal in PD
(Priori et al., 2004; López-Azcárate et al., 2010). Initial studies
using this strategy have shown it to be more efficacious and
efficient than non-adaptive stimulation (Little et al., 2013, 2016a;
Beudel and Brown, 2016); aDBS based on the beta rhythm
resulted in 27% improvement in motor scores and a 52%
reduction in total electrical energy delivered (Little et al., 2013).

Although aDBS may be more effective and energy-efficient
than cDBS, it faces some challenges. One of these challenges
is finding an optimal control algorithm. For example, STN
beta-power can be correlated with bradykinesia and rigidity
but not with tremor (Meidahl et al., 2017), implying that
all PD symptoms may not be ameliorated by aDBS. Other
limitations of aDBS include the available computing power
of the implanted system and aDBS power consumption.
For example, beta-power responsive aDBS systems deliver
132 µW per side (Little et al., 2013), whereas energy
consumed by a low-energy circuit for a single channel power
classifier can be as low as 10µW. These constraints can
impose severe limitations on using multi-dimensional feedback
and more sophisticated control systems (Meidahl et al.,
2017). Conventional machine-learning algorithms may require
considerable processing power and processing time; however,
aDBS may benefit from computationally-efficient algorithms.
Moreover, aDBS requires brain stimulation to be adjusted based
on ongoing neuronal activity. These “online” adjustments require
that stimulation triggers be activated in real time with short
latencies (in the order of milliseconds) (Little et al., 2013).
Although existing algorithms can be used to determine the
predictive aspects of neuronal signals (Jiang et al., 2017), in
the context of adaptive applications it may be advantageous
to use algorithms with as few parameters as possible. Such
algorithms will confer the necessary computational efficiency
and compatibility with real time processing of neuronal signals,
which are inherently complex and noisy. We thus seek to develop
a novel signal-processing approach that is capable of detecting
features of neuronal activity in PD based on a minimal set of
parameters which results in low computational latency and low
device power.

We introduce an approach for analyzing neuronal activity
that is based on linear predictive coding (LPC) and meets the
above-described requirements (Anderson and Moore, 1979).
Specifically, our approach involves rapidly encoding time-series

of LFP data into a single LPC parameter. We provide a
proof-of-principle demonstration that changes in this parameter
can distinguish between levodopa-treated and saline-treated
dopamine-depleted mice and discuss the implications for future
aDBS approaches.

2. LPC PRIMER

This section provides a brief introduction to LPC, a fundamental
part of our approach. For notational simplicity, vectors and
matrices are denoted by bold letters throughout this section.
LPC constitutes a powerful tool for predicting behaviors in time-
series and for distinguishing between time-series (Anderson and
Moore, 1979). Pioneering work of various groups (Makhoul,
1975; Markel and Gray, 1982; Schroeder and Atal, 1985; Atal,
2006; Schroeder et al., 2008) has made LPC the dominant
technical device in speech processing, enhancement, and coding.
It has also been used in EEG coding (Kiryu et al., 1994),
economics (Mittnik, 1989), control theory (Gevers and Wertz,
1983), filtering (Kailath, 1968), and a host of other applications.
At its core, LPC fits an autoregressive (AR)model to a time-series.
Specifically, suppose one has the time-series subsequence:

x(0), x(1), ..., x(L− 1) (1)

with the arguments representing the sample indices. The Nth

order LPC model for the time-series signal x(n) approximates it
with x̂(n), given by

x̂(n) =
N

∑

k=1

aNk x(n− k) (2)

The coefficients aN
k
are predictor coefficients. They are chosen to

minimize the mean square error J, where

J = E
[

|x(n)− x̂(n)|2
]

(3)

The solution to the underlying optimization is provided by
the classical Yule–Walker equations, given below (Makhoul,
1975). With complex conjugate denoted as ∗, we define the
autocorrelation of lag l as:

rxx(l) = E[x(n)x∗(n− l)] (4)

We define the N × N, autocorrelation matrix as

RN =











rxx(0) r∗xx(1) . . . r∗xx(N − 1)
rxx(1) r∗xx(0) . . . r∗xx(N − 2)

...
...

. . .
...

rxx(N − 1) rxx(N − 2) . . . rxx(0)











(5)

With the vector of predictor coefficients defined as:

aN =











aN1
aN2
...
aNN











(6)
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and the vector of autocorrelation functions defined as

rN =











r∗xx(1)
r∗xx(2)

...
r∗xx(N)











(7)

The optimum aN is given by

aN = R−1
N rN (8)

As RN is Toeplitz, it is amenable to efficient inversion. Fast
recursive algorithms (e.g., the Levinson-Durbin algorithm) can
recursively provide aN from aN−1. Other recursions, even for
non-stationary time-series, that explicitly avoid inversion in (8)
can be found in the literature (Anderson and Moore, 1979;
Lopez-Valcarce et al., 2000). In this paper, we focused on first and
second order LPC. The first order case is characterized by a single
LPC parameter, a1. In the second order case, two alternative
characterizations are possible. The first uses the 2-vector, a2. The
second uses pi, the poles of the transfer function:

H(z) = 1

1− a21z
−1 − a22z

−2
= 1

(1− p1z−1)(1− p2z−1)
(9)

Note that, for the second order case, pi are the roots of the
following polynomial:

F(z) = 1− a21z
−1 − a22z

−2 (10)

Should pi be a conjugate pair, which our results show that they
are, their phase provides an estimate of the dominant frequency
component that characterizes the time-series. Specifically, if the
time-series has a dominant spectral component at frequency f0
Hz, then the LPC poles will be of the form pi = Aej2π f0Ts , where
Ts is the sampling interval. Thus, in the second order case, poles
pi may provide better interpretation than the LPC coefficients.

3. METHODS

3.1. Animal Experiments and Surgical
Procedures
Eight male C57/B6 wild-type mice (Harlan, Madison, WI)
were included in this study. Details of animal behavior and
experimental protocols were described in depth previously
(Alberico et al., 2017). Some data from Alberico et al. (2017)
were used for our present study. Note that this paper describes
a proof-of-principle rather than a hypothesis-testing study.

All procedures were approved by the Animal Care and Use
Committee at The University of Iowa. We used a standard
rodent model of PD, in which the median forebrain bundle
(MFB) is depleted of dopamine by unilateral injection of the
neurotoxin 6-OHDA (Dauer and Przedborski, 2003; Schober,
2004) using stereotaxic procedures. This dopamine-depletion
procedure causes cell death of dopamine neurons in the
injected hemisphere and models various aspects of PD including
movements, electrophysiology (an increase in 13–30 Hz power),

and response to treatments like levodopa and DBS (Deumens
et al., 2002; De Jesús-Cortés et al., 2015; Parker et al., 2015;
Alberico et al., 2017; Kim et al., 2017).

Mice were anesthetized using ketamine (100mg/kg) and
xylazine (10mg/kg) and injected with desipramine (25mg/kg;
i.p.) to protect catecholaminergic neurons other than the
dopaminergic subset. Four animals (mice 1–4) were subjected
to unilateral injection of 1µL of 6-OHDA (1µg/µL; dissolved
in 0.02–0.03% ascorbic acid; example of dopamine-depletion
shown in Figure 1) into the MFB (from bregma: AP: −1.2, ML:
−1.2, DV: −4.7 from dura). Four different animals (mice 5–
8) were stereotactically injected with 0.02% ascorbic acid at the
same site to control for effects of dopamine-depletion. During
these surgeries, one 16-channel stainless-steel microwire array
was lowered into the dorsal striatum (Figure 1; 50µm, 4 × 4
with contacts 250µm apart. MicroProbes, Gaithersburg, MD; 8
animals: AP: +0.1, ML: 2.0, DV: −3.0). In all animals, the arrays
were grounded via a stainless steel wire wrapped around two skull
screws. The craniotomy was sealed with cyanoacrylate (“SloZap,”
Pacer Technologies, Rancho Cucamonga, CA) and methyl
methacrylate (dental cement; AM Systems, Port Angeles, WA).

After a week of recovery, MFB-injected animals were screened
for effectiveness of unilateral dopamine depletion using the
amphetamine-induced rotation test. Animals were injected with
amphetamine (5mg/kg; i.p.) to induce ipsilateral rotation, and
performance was recorded 30 min post injection (Healy-Stoffel
et al., 2012; Chotibut et al., 2014). A criterion of 6 ipsilateral
amphetamine-induced rotations per minute was used to verify
dopamine-depletion; all mice met this criterion (Paquette et al.,
2009).

3.2. LFP Recordings
After assessing all mice as suitable for analysis, a multi-
electrode recording system (Plexon, Dallas, TX) was used to
record activity in neuronal ensembles. Electrical activity of LFP
channels was recorded in parallel with single unit channels
using a wideband board. During signal acquisition, LFPs were
sampled at 1,000 Hz, high pass filtered at 0.05 Hz and low
pass filtered at 200 Hz (Plexon). LFPs were recorded from
the dorsal striatum of both dopamine-depleted mice (6-OHDA
injected: mice 1–4) and control mice (ascorbic-acid injected:
mice 5–8), both following injection with saline and following
injection with levodopa, a dopamine precursor used to treat
motor symptoms of both dopamine-depleted mice. For levodopa
sessions, we administered 20mg/kg of L-DOPA-methylester
(levodopa; Sigma) dissolved in 0.09% NaCl sterile saline at a
concentration of 4mg/mL with Benserazide (2mg/mL; Sigma).

The LFPs were recorded from the dorsal striatum during a 40-
min period of free movement after injection. During recording
sessions, animals were placed in a 6-inch diameter, 7-inch tall
plexiglass chamber. Animals were awake and mobile for the
entire session as verified by video camera and 3-dimensional
motion capture, which was performed according to methods
described in detail previously (Alberico et al., 2017). Briefly,
OptiTrack Prime infrared cameras tracked the position of
infrared reflective spheres attached to the animals’ headstage
sampled at 120 frames/s. Levodopa-related activity was verified
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FIGURE 1 | Experimental and analytic approach. Left and bottom middle: Flow chart depicting individual steps from implantation of electrodes to readout of

whether mouse had been treated with levodopa or saline (sham-treated control). Top right: coronal section of striatum (0.1 mm anterior to bregma) from mouse

subjected to dopamine depletion on right side (injection with neurotoxin 6-OHDA) to model PD and immunostained for tyrosine-hydroxylase (red), the rate limiting

enzyme for dopamine synthesis in dopaminergic axons. Sites of microelectrode-array implantation are indicated by arrows. White scale bar is 1 mm. Bottom right:

microelectrode.

by movement velocity and experimenter observation of the
animal. All animals were awake and freely-moving as monitored
by an experimenter throughout the recording. Movements were
quantified via infrared tracking of head position (OptiTrack).
Beyond levodopa vs. saline administration, all other procedures
were identical. The same animals were injected on different days
with levodopa and saline.

For all mice, neuronal activity was recorded from
microelectrodes implanted into the striatum. For all recordings
levodopa or saline was injected immediately prior to each
recording session. LFPs were sampled at 1 kHz and recorded
from the same 4 of 16 channels (#1, 5, 9, and 13) in all mice.

3.3. Post-recording Procedures
After the mouse experiments were completed, the animals were
euthanized by injection of 100mg/kg sodium pentobarbital and
then transcardially perfused with 4% paraformaldehyde. Brains

were post-fixed in 4% paraformaldehyde and cryoprotected in
30% sucrose and then sectioned using a cryostat. Brain slices were
mounted and stained for tyrosine hydroxylase (TH; polyclonal
rabbit anti-TH, 1:500) (Millipore, Temecula, CA). Sections were
imaged using anOlympus Systems VS120microscope (Figure 1).

3.4. Signal Processing
Our goal was to obtain one LFP time-series from each mouse
in order to compute LPC coefficients. The steps of our signal
processing method are illustrated with a flowchart in Figure 1

and described below.

3.4.1. Filtering
For each mouse, LFP recordings of 4 channels were obtained
and data from each channel was filtered separately using a zero-
phase, Finite Impulse Response (FIR) 2.5–50 Hz bandpass filter.
No other artifact removal algorithm was used on the signals.
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3.4.2. Normalization
Filtered data were then normalized to retain unit power.
Specifically, for a time-series defined in (1), signal power is
given by,

P = 1

L

L−1
∑

n=0

|x(n)|2 (11)

Then, the normalized time-series will be,

x(0)√
P
,
x(1)√
P
, . . . ,

x(L− 1)√
P

(12)

3.4.3. Averaging
Normalized LFP recordings from 4 channels were then averaged
in the time domain to obtain one single time-series for
each mouse.

3.5. Feature Extraction Using LPC
After processing the LFP data, we used first and second order
LPC for feature extraction. For first order LPC, a single LPC
parameter, a1 was computed using (8). For the second order LPC,
poles pi were calculated using (10).

For the striatal LFP data from healthy control mice (no
dopamine depletion, mice 5–8), first order LPC coefficients are
calculated for the entire 40-min session. We investigated whether
the session could be characterized by a value that consistently
marks the separation between the first order LPC parameters
for levodopa-injected vs. saline-injected treatments in dopamine-
depleted animals.

For the striatal LFP data from four dopamine-depleted mice
(mice 1–4), we calculated LPC coefficients for three cases.

3.5.1. Full-Length Data
First, we computed the first order LPC coefficients for the entire
40-min trial for the striatal LFP data from 4 dopamine-depleted
mice (mice 1–4) and observed the performance. Then, the second
order LPC poles, pi were computed for the entire sessions.

3.5.2. Segmented Data
Next, we divided the LFP data for each 40-min trial into epochs
of 1, 3, 10, and 40 min (a full-length window) and obtained
first order LPC coefficients for each data segment to observe
the stability and the amount of separation for different signal
lengths. In order to determine the effect of movements on the
LPC coefficients, we investigated whether LPC coefficients were
related to movement velocity. For each saline and levodopa
session, we used linear mixed-effects model for LPC coefficients
with fixed effects for average velocity and random effects for
intercept and average velocity grouped by the mouse number.
This was done with 1 and 3 min epochs.

3.5.3. Expanding Time-Window
To emulate the performance of LPC coefficients for real time
data, we next calculated the LPC coefficients using an expanding
time window. An initial estimate of an LPC parameter can be
made based on a small number of samples and it can be updated

in real time as each additional sample is measured (Lopez-
Valcarce et al., 2000). We used a 1 kHz sampling rate; thus,
new samples are available every millisecond and once the initial
LPC estimate is made, updates can be generated within a few
milliseconds. The first order LPC coefficient was generated for
the first second of LFP data. The window was then expanded in
increments of 1 s.

3.6. Performance Comparison
We compared our approach with several established methods
from the literature (López-Azcárate et al., 2010; de Hemptinne
et al., 2013; Sanders et al., 2013; Little et al., 2016a,b). The
goal was to observe how well our method separates saline and
levodopa sessions for a PD mouse model compared to state-of-
the-art methods. Striatal LFPs from dopamine-depleted PD mice
were used for this purpose. Analyzing power spectral density
(PSD) and Phase-amplitude coupling (PAC) are two common
approaches to analyze LFP data.We compared our approach with
methods based on these two techniques (López-Azcárate et al.,
2010; de Hemptinne et al., 2013; Sanders et al., 2013; Little et al.,
2016a,b).

For PSD-based approaches, we focused on beta-power (12–
30 Hz), which is currently used as a threshold trigger for aDBS
and can characterize ON vs. OFF Parkinsonian motor state
(López-Azcárate et al., 2010; Little et al., 2016a,b). We computed
the beta-power using Little et al. (2016a,b). For PAC-based
approaches, modulation of the amplitude of oscillations in high
frequency band (HFO) caused by the phase of low frequency
band is measured (López-Azcárate et al., 2010; Tort et al., 2010;
de Hemptinne et al., 2013; Sanders et al., 2013). We measured
PAC according to the method of de Hemptinne et al. (2013).
—coupling between β-phase (13–30 Hz) and γ - amplitude (50–
200 Hz), and the method described by López-Azcárate et al.
(2010) coupling between low-beta (12–30 Hz) and HFO (200–
350 Hz). We measured 36 PAC modulation indices by using six
spectral sub-bands within the 3–60Hz range (delta: 3–4Hz, theta:
5–7 Hz, alpha: 8–11 Hz, low beta: 12–19 Hz, high beta: 20–30 Hz,
and gamma: 31–60 Hz) and computed weighted combinations
of these modulation indices by using the method of canonical
correlation as described by Sanders et al. (2013).

We tested these methods with striatal data from dopamine-
depleted PD mice. First, entire 40-min sessions were used and
then we segmented the data by 3-min epochs. For an entire 40-
min session, only one LFP signal can be analyzed while in the case
of 3-min epochs, 13 signals can be analyzed using 13 epochs from
the entire LFP signal. For the method described by Sanders et al.
(2013), notice that the total number of signals must be greater
than the number of PAC measurements so the method can only
be applied on the 3-min epochs.

We also compared the computational efficiency of our
proposed method with the aforementioned methods by
calculating the total computation time. We used 3-min epochs
for this purpose. We ignored all filtering processes while
calculating the computation time for a fair comparison of the
methods. The calculation of time and execution of these methods
was done in MATLAB (version: R2019a) with Intel(R) Core(TM)
i7-8750H CPU @ 2.2GHz machine.
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FIGURE 2 | Spectrogram of Striatal LFP signals and velocity comparisons in saline-injected session (left) and levodopa-injected session (right) of Mouse 1.

3.7. Statistical Analysis
Due to the small dataset, two non-parametric methods were
chosen for statistical analysis: Wilcoxon rank sum test and
Kruskal–Wallis test. First order LPC coefficients obtained from
both the 40-min sessions and the 3-min epochs of striatal data
from the dopamine-depleted mice were used for the tests. We
also used these tests to analyze statistical significance of beta-
power and phase-amplitude coupling changes between saline
and levodopa-treated sessions for both 40- and 3-min epochs
using the PAC-based (López-Azcárate et al., 2010; de Hemptinne
et al., 2013; Sanders et al., 2013) and PSD-based (Little et al.,
2016a,b) approaches.

4. RESULTS

This section has three parts. The first two are on the analysis
of striatal data from dopamine-depleted PD mice and healthy
control mice, respectively. In the last part, we compared the
performance of our approach with established methods and
presented the statistical analysis of our findings.

4.1. Analysis of Striatal LFP From
Dopamine-Depleted PD Mice
Striatal LFP data from 4 dopamine-depleted mice (mice 1-4)
were analyzed. Each mouse had LFP data for two sessions: saline
and levodopa. Of note, dopamine-depleted mice moved with less
average velocity in saline-injected sessions (0.05 ± 0.01 mm/s;
mean ± SEM) compared with when they were given levodopa

[0.12 ± 0.01; paired t(3) = 6.2, p < 0.01]. Figure 2 shows the
velocity and spectrogram comparison of 40 min sessions of saline
and levodopa fromMouse 1.

4.1.1. LPC Coefficients for Full-Length Data
The nature of time-domain LFP data are depicted in Figure 3

using saline and levodopa sessions from dopamine-depleted
mouse 1. We investigated whether the entire 40-min session
could be characterized by a value that consistently separates
the first order LPC parameters of levodopa-treated session
vs. control (saline-treated) session of dopamine-depleted
mice. Figure 4 shows that such a boundary exists for all
four mice, suggesting that the onset of signals reflective
of dopamine depletion in the PD mouse model is quick
and efficient.

In the case of second order LPC coefficients for these 40-
min sessions, the outcome was similar. Figure 5 depicts the
poles, pi, in (9) and the dominant frequencies for each mouse
and demonstrates the differences between saline and levodopa
sessions of the dopamine-depleted mice. The separation of
the second order LPC coefficients did not improve over their
first order counterparts. The poles of the second order LPC
are complex conjugate pairs. Their phase equals the dominant
frequency normalized by the sampling rate. Figure 5 shows
that the dominant frequencies of levodopa sessions are in the
range of 13.8 Hz to 14.7 Hz which corresponds to the beta
band (12–30 Hz) while the frequencies of the saline sessions
ranged from 11.7 to 12.8 Hz which are in the lower end of the

Frontiers in Neuroscience | www.frontiersin.org 6 April 2020 | Volume 14 | Article 394

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Anjum et al. Linear Predictive Approaches Separate LFP

FIGURE 3 | Striatal LFP signals from saline-injected (red) and levodopa-injected session of dopamine-depleted mouse 1 (blue). Left: Signals as measured by

microelectrode array (raw signal) of 4 channels. Middle: Average signal over 5-s period. Right: Average signal over 1-s period.

same band. Nonetheless, the separation enhancement between
saline and levodopa session is marginal in going from first
to second order, and is overwhelmed by the fact that first
order LPC computations are twice as fast as second order
LPC. Figure 5 also shows that the dominant frequency is lower
under saline-injected conditions in a dopamine-depleted mouse
than following levodopa injection, consistent with the power
spectral density (PSD) of the mouse in the levodopa-treated
vs. saline-treated states (Figure 6). We also considered the
PSD of the first order AR model provided by the optimum
predictor and found a similar result which is illustrated in
Figure 6.

Both analyses indicate that the LFP is of smaller bandwidth
with saline-injections compared to levodopa. In other words,
levodopa increases the bandwidth of striatal LFPs in dopamine-
depleted animals which is an essential attribute captured by
both first and second order LPC for separating levodopa
and saline sessions. The lack of discernible separability in
second order LPC over first order also indicates that the
contribution of additional features by higher order LPC in
separating levodopa and saline sessions, if any, is marginal
and does not justify the additional computations second order
LPC requires.

4.1.2. LPC Coefficients for Segmented Data
Figure 7 depicts the first order LPC coefficients obtained for all
four mice for different epoch lengths. For all mice, the separation
between the LPC parameters before and after treatment is clear
when epochs are 3 min or longer in duration. In mice 1 and 3
this separation is evident even for 1-min epochs. These patterns
are consistent amongst mice 1-4, the difference being that some
show a clearer separation for the saline-injected vs. levodopa
data sets.

Figure 8 shows the correlation between velocity and LPC
coefficients with scatterplots of the first order LPC coefficients

FIGURE 4 | First order LPC coefficients for striatal LFPs in saline-injected (red)

and levodopa-injected (blue) dopamine-depleted mice. These coefficients are

sufficient for binary classification of the LFP data for mice 1–4. The threshold

(green) is calculated by taking the average of the minimum value in levodopa

session and the maximum value in saline session.

compared with average movement velocity for 1 and 3 min
epochs. Table 1 provides the details of the linear fixed-effects
models for LPC coefficients with fixed effects for average velocity
using 1 and 3 min epochs of saline and levodopa session. In
both cases of 1 and 3 min epochs, large confidence interval
along with high standard error and large p-value (> 0.05)
of the estimated coefficient for average velocity indicated the
lack of statistically significant effects of average velocity on the
LPC coefficient.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2020 | Volume 14 | Article 394

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Anjum et al. Linear Predictive Approaches Separate LFP

FIGURE 5 | Second order LPC model with dopamine-depleted mice (mice 1–4). Left: second order poles for striatal LFPs in dopamine-depleted mice. Shown are the

complex conjugate pairs p1 and p2, for data sets for dopamine-depleted mice following treatment with saline (red) or levodopa (blue). The unit circle line is shown in

light blue. The X and Y axes represent the real and imaginary, respectively, parts of the poles. Each symbol represents a single pole from a single epoch. Squares

represent data from mouse 1, circles from mouse 2, diamonds from mouse 3, and crosses from mouse 4. Right: dominant frequency components obtained from the

second order poles. The threshold (green) is obtained by averaging the maximum frequency for saline and minimum frequency for levodopa session.

FIGURE 6 | PSD as a function of frequency. PSD was determined based on sampled LFP (left) and our first order AR model (right), for data sets generated for

dopamine-depleted Mouse 1 following treatment with saline (red) or levodopa (blue).

4.1.3. LPC Coefficients for Expanding Time-Window
LPC coefficients were calculated for expanding time windows
and the resulting coefficients are shown for the first 4 min of
each session in Figure 9 which illustrates that, in this context,
the coefficients for Mouse 3 converged almost immediately and
those for the other mice converge within 1 min. These results
are consistent with those shown in Figure 7, in which segmented
data were used. Thus, levodopa and saline sessions of these four
dopamine-depleted mice showed clear separation with a single
LPC parameter calculated and updated based on an expanding
window and less than a minute’s worth of LFP data.

4.2. Analysis of Striatal LFP From Healthy
Control (Non-PD) Mice
The striatal LFP data from healthy control (i.e., mice without
dopamine depletion: Mice 5-8) were analyzed where each mouse
had saline and levodopa session. Figure 10 shows a comparison
of the LPC coefficients for control mice following administration
of levodopa vs. saline. In this group of mice, the signals
under the two conditions could not be distinguished using
first order LPC. These results are consistent with our findings
that the dopamine precursor levodopa has minimal effects in
mice with intact dopamine, likely because excess levodopa is
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eliminated through normal homeostatic mechanisms (Alberico
et al., 2017).

4.3. Performance Comparison
The LPC based approach was compared with the established
methods for striatal LFPs from dopamine-depleted PD mice.
Figure 11 compares each method for segmented data with 3-
min epochs. Table 2 provides the summary of the statistical

FIGURE 7 | First order LFP coefficients for dopamine-depleted mice following

injection with saline (red) or levodopa (blue). Entire 40-min data set was divided

into epochs of lengths 1, 3, 10 and 40 min. Y axis represents length of each

epoch, and X axis the value of the coefficient a1 plotted as (1+ a1)× 10−3.

Each symbol represents a single coefficient from a single epoch. Squares are

data from mouse 1, circles mouse 2, diamonds mouse 3, and crosses mouse

4. The threshold (green) is calculated by taking the average of the minimum

value in levodopa session and the maximum value in saline session for 40 min

epochs.

analysis for 3- and 40-min data. Differences were quantified
by using the Wilcoxon rank-sum test and the Kruskal–Wallis
test from 52 signals per condition for 3-min data and 4 signals
per condition for 40-min data, which demonstrates that only
LPC based approach achieved statistical significance in saline
vs levodopa separation with p < 0.05 for 3- and 40-min
data, although the PAC method by Sanders et al. (2013) and
de Hemptinne et al. (2013) showed statistical significance for
3-min epochs. In 3-min data, the method by Sanders et al.
(2013) showed promising results but it has some limitations.
Specifically, weights for the calculation of composite modulation
indices, which are used as the final outcome, are determined by
analyzing the whole dataset of signals which are computationally
expensive and heavily data-dependent as the weights will
vary for a new set of data. This increases the complexity
of the execution and reduces the generality of this method.
Taken together, these data demonstrate that LPC provides
reliable separation compared to other methods independent of
epoch length.

Figure 12 shows the computational efficiency of the LPC
based approach and the above established methods for 3-min
data. Total computation time for the LPC based approach was
1.1 s. de Hemptinne et al. (2013) had the lowest computation
time (5.17 s) among the established methods. The results show
that LPC based approach is almost 5 times faster than the
fastest established method. It should be mentioned that the LPC
based approach can be executed in a recursive fashion after
the first estimation which was not implemented here. This can
make the approach even more efficient and amenable to real
time applications.

5. DISCUSSION AND CONCLUSION

Our intent in this study is not to describe LFPs in animal models
of PD, whose behavior and neurophysiology has been well-
established in prior work (Betarbet et al., 2002; Alberico et al.,

FIGURE 8 | Scatter plot of first order LPC coefficients and average velocity for 3 min (solid dots) and 1 min (diamonds) epochs of striatal LFP signals in

dopamine-depleted mice (mice 1–4) following treatment with saline (left) or levodopa (right).
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TABLE 1 | Summary of the linear mixed-effects models of the average velocity and the LPC coefficient of mice 1–4 in saline (left) and levodpoa (right) session with 3-min

(upper half) and 1-min (lower half) epochs.

Saline session Levodopa session

Dependent variable: LPC coefficient Dependent variable: LPC coefficient

Coeff. Est.

(95% CI)

Standard

error
t-score p-value

Coeff. Est.

(95% CI)

Standard

error
t-score p-value

Velocity
1.67

(−1.2 to 4.5)
1.42 1.17 0.25

11.3

(−4.1 to 26.7)
7.66 1.47 0.15

3
m
in

Const.
2.86

(2.7 to 3)
0.08 36.48 1.1e-37

2.69

(1.1 to 4.3)
0.79 3.42 1.3e-3

Velocity
1.38

(−0.2 to 2.9)
0.8 1.72 0.09

5.3

(−0.6 to 11.2)
2.98 1.77 0.08

1
m
in

Const.
2.87

(2.7 to 3)
0.09 32.8 2.9e-72

3.34

(2.7 to 3.9)
0.3 11.13 1.3e-21

95% CI, 95% Confidence interval; Const., Constant interception; Coeff. Est., Coefficient Estimate; t-score and p-value shows the t-statistics for testing the null hypothesis that the

coefficient is equal to zero.

2017). Rather, our goal is to describe a proof-of-principle of the
LPC approach. Our study indicates that first and second order
LPC coefficients distinguish signals from a mouse model of PD
after treating the animals with either saline or levodopa. Our
data suggest that a single LPC parameter is enough to classify,
that it can be updated every second, and that only one update
is required. Given the short durations required (as little as 1
min), the amenability of LPC for rapid online implementation,
and the extremely small number of predictive coefficients needed,
an LPC-based method seems well-suited for use as a trigger
mechanism for adaptive brain stimulation. We have analyzed
striatal LFP data from healthy mice treated with either saline or
levodopa. For healthy mice, the signals in levodopa- vs. saline-
treated sessions cannot be distinguished by first order LPC. Thus,
the method is not distinguishing between the mere presence
or absence of levodopa treatment. Rather it is detecting the
benefits of levodopa only in dopamine-depleted mice. Although
this study uses channel-averaged signals from each mouse, the
approach can be extended to include multichannel analysis and
be potentially applicable to human EEG data for the detection of
cortical signals in PD.

Although signal-processing tools such as AR models, Kalman
filtering and nonlinear neural network-based models have been
used in previous studies of neural signals (Pfurtscheller et al.,
1998; Coyle et al., 2005; Sung-Phil et al., 2008; Coyle, 2009), our
results are particularly intriguing in that simple first order LPC
is sufficient for making the desired distinction. Current spectral
approaches based on Fourier transforms or non-linear cross-
frequency approaches generally require measurement of a larger
number of parameters and are much more computationally
intensive. Thus, they are more challenging to integrate into
real time applications as they reduce battery life. The fact
that a simple first order LPC model is capable of such a
distinction is remarkable, as no studies to date have reported
a first order LPC-model capable of distinguishing between
manifestly non-linear phenomena. Finally, although LPC is
sufficient for detecting differences caused by the injection of

levodopa in dopamine-depleted mice, it does not distinguish
between the administration of levodopa and saline in animals
without dopamine depletion. These data provide a proof-of-
principle demonstration that a first order LPC may useful for
indexing the disease state in humans with PD. Specifically, aDBS
may calculate LPC coefficients from basal ganglia LFPs, and
use LPC parameters as a control signal. If the LPC parameters
are abnormal, aDBS could theoretically be adjusted to bring
the LPC parameters closer to the range of levodopa-treated
and/or healthy humans, although determining these thresholds
will require considerable clinical efforts.

These results are of interest because they are able to separate
striatal LFPs from dopamine-depleted animals with saline- and
levodopa-treatments based on a single parameter and a few
minutes of data. While there is little doubt that today’s machine-
learning algorithms can reliably achieve such separation, first
order LPC’s simplicity makes it uniquely compatible with the
computational power and energy efficiency required by aDBS
applications. This method is a significant advance toward our
goal of developing novel signal-processing approaches that are
compatible with real time triggers of brain stimulation in PD
models. The experiments reported here involve LFP data sampled
at 1 kHz. In principle, it is possible to sample at rates as high as 40
kHz. Given that at 1 kHz sampling yields only one data point per
millisecond, a faster sampling rate yielding more data may lead
to faster convergence. However, we note that we are sampling a
biological phenomenon of medication and pathological state and
the necessary effects may not manifest over a shorter duration.
Still, LPCmay be helpful in the design of adaptive and responsive
brain stimulation systems where a rapid and robust LPC-based
analytical framework might enable more rapid and reliable
convergence to effective stimulation parameters or more effective
guidance of surgical approaches (Beudel and Brown, 2016; Telkes
et al., 2016).

Our work is limited to a proof-of-principle demonstration
in a rodent model; further studies will be required to correlate
LPC parameters with the effects of dopamine depletion on
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FIGURE 9 | LFP coefficients with window size expanding over time, for the indicated dopamine-depleted mouse. LPC coefficients were calculated using window that

expands in increments of 1 s for a 4-min time course. Coefficients for dopamine-depleted mice (mice 1–4) following treatment with saline (red) or levodopa (blue).

Each symbol represents a single coefficient from a single window that includes data for all the LFP samples up until that time point.

motor and non-motor function in rodents. Furthermore, we
are studying LFPs, and it is possible that further detail is
available from single unit neuronal recordings, although this is
not immediately applicable to human aDBS. In addition, because
levodopa increases movement in dopamine-depleted mice we
cannot be certain if differences in striatal LFP captured by LPC
are a cause or a consequence of motor changes, although there is
considerable data that neurons in this striatal region play a causal
role in modulating movement (Kravitz et al., 2010). Regardless
of whether LFP differences captured by LPC are the cause or
consequence of movement, LPC-based analyses may be useful for
aDBS as they can reflect the dopaminergic state of the striatum,
and function as an effective trigger to optimize and adjust aDBS.
Of note, dopamine-depleted mice treated with levodopa can
result in levodopa-induced dyskinesias (LIDs; Fasano et al., 2010;
Alberico et al., 2017). Our LPC metrics may be affected by LIDs.

Future studies might develop LPC metrics to differentiate LIDs
or other aspects of striatal LFPs.

This demonstration is a key step as understanding the human
effects of dopamine-depletion in humans is not straightforward.
Whereas it is possible to record LFPs from some structures
within the human basal ganglia, recording from the specific
brain regions that are directly affected by dopamine, such as
the striatum, remains a major challenge. Thus, future recordings
in rodent models, as well as humans, will be essential for the
development and refinement of novel therapeutic applications
for PD patients. It is possible that the LPC values reflect distinct
brain states between dopamine-depleted mice treated with saline,
those treated with levodopa, and healthy controls. We note that
our aim is not to describe these brain states which could be related
to complex features of dopamine signaling in the striatum, but
to describe a proof-of-principle demonstration of a novel signal
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processing algorithm in which a single LPC parameter can be
used to distinguish perturbations in striatal LFPs as a function
of dopaminergic manipulations.

PD is characterized by abnormal beta-oscillations in the range
of 12–30 Hz within the basal ganglia (Soikkeli et al., 1991; Priori
et al., 2004; Mallet et al., 2008; López-Azcárate et al., 2010).
Previous studies of PD patients have suggested that power may
shift in the beta-band (Priori et al., 2004) and that this shift can
be modulated by activity (Brown et al., 2001; Cassidy et al., 2002;

FIGURE 10 | First order LFP coefficients for striatal signals in mice with intact

dopamine (healthy control) mice (mice 5–8) following treatment with saline

(light blue) or levodopa (green).

Özkurt et al., 2011). Moreover, the power of these oscillations
can be modulated by levodopa, a change that could potentially
be useful for DBS applications (Giannicola et al., 2010; Whitmer
et al., 2012; Beudel and Brown, 2016). These approaches analyze
the envelope of beta-power and thus require a temporal window
adequate for Fourier/wavelet-based analysis (Little et al., 2013,
2016a). The LPC coefficients reflect more than just changes in
the beta band (12–30 Hz) power and take a more holistic view of
spectral changes. Because LPC analyses are first order readouts,
they can capture signal characteristics of PD using relatively few
parameters. Thus, they have the potential to be more rapidly and
readily configurable than current spectral methods. Extensive
future work with animal models and PD patients will help refine
LPC applications for diagnosing and treating human disease.

TABLE 2 | Summary of statistical analysis of the outcomes from first order LPC

and other established approaches with 40 min (left) and 3 min (right) epochs.

Method
40-min epoch 3-min epoch

Wilcoxon Kruskal–Wallis Wilcoxon Kruskal–Wallis

First Order LPC

approach

0.0286* 0.0209* 1.54e-18* 1.5e-18*

PAC: (Sanders et al.,

2013)

- - 5.62e-16* 5.47e-16*

PAC: (de Hemptinne

et al., 2013)

0.6857 0.5637 0.006* 0.006*

PAC: (López-Azcárate

et al., 2010)

0.8857 0.7728 0.6941 0.6917

Beta Power: (Little et al.,

2016a,b)

0.6857 0.5637 0.2459 0.2445

Statistical significance requires p-values < 0.05. Such p-values are marked with ∗.

FIGURE 11 | Box plot comparison of results obtained using striatum LFP data with 3-min epochs for saline vs levodopa session of dopamine-depleted mice (mice

1–4). From left: LPC based approach, PAC method by Sanders et al. (2013), de Hemptinne et al. (2013), López-Azcárate et al. (2010), and Beta power-based method

by Little et al. (2016a,b).
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FIGURE 12 | Computational efficiency comparison using striatum LFP data with 3-min epochs for saline vs levodopa session of dopamine-depleted mice (mice 1–4).

X-axis is total computation time in seconds on log scale. Compared methods are: LPC based approach, PAC method by Sanders et al. (2013), de Hemptinne et al.

(2013), López-Azcárate et al. (2010), and Beta power-based method by Little et al. (2016a,b).

Of note, human PD is a multifaceted disease that is only partially
captured by animal models. Some features of human PD, such
as resting tremor and freezing-of-gait, are not well-modeled in
rodents. Thus, our work will have to be extended to primate
or human models to explore if LPC can capture the range of
PD sympatomatology.
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