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Sample sizes in cluster surveys must be greater than those in surveys using simple random sampling in
order to obtain similarly precise prevalence estimates, because results from subjects examined in the same
cluster cannot be assumed to be independent. Therefore, a crucial aspect of cluster sampling is estimation of
the intracluster correlation coefficient (ρ): the degree of relatedness of outcomes in a given cluster, defined as
the proportion of total variance accounted for by between-cluster variation. In infectious disease epidemiology,
this coefficient is related to transmission patterns and the natural history of infection; its value also depends on
particulars of survey design.Estimation of ρ is often difficult due to the lack of comparable survey data with which to
calculate summary estimates. Here we use a parametric bootstrap model to estimate ρ for the ocular clinical sign
“trachomatous inflammation—follicular” (TF) among children aged 1–9 years within population-based trachoma
prevalence surveys. We present results from a meta-regression analysis of data from 261 such surveys completed
using standardized methods in Ethiopia, Mozambique, and Nigeria in 2012–2015. Consistent with the underlying
theory, we found that ρ increased with increasing overall TF prevalence and smaller numbers of children examined
per cluster. Estimates of ρ for TF were independently higher in Ethiopia than in the other countries.

clustering; intracluster correlation coefficient; prevalence; surveys; trachoma; trachomatous inflammation—
follicular

Abbreviations: CI, confidence interval; GPS, Global Positioning System; GTMP, Global Trachoma Mapping Project; MDA, mass
drug administration; PSU, primary sampling unit; TF, trachomatous inflammation—follicular.

Trachoma is a blinding disease caused by infection with
the bacterium Chlamydia trachomatis. Ocular infection is
mostly found in young children, with repeated infections
leading to chronic keratoconjunctivitis (1, 2). Over a period
of years, immunologically mediated scarring of the eyelid
occurs, causing permanent changes in eyelid morphology
and misdirection of the eyelashes so that they abrade the
front surface of the eye, leading to permanent opacifica-
tion of the cornea. Standardized clinical signs of trachoma,
defined according to the World Health Organization’s sim-

plified trachoma grading system (3), are used to provide
reproducibility in surveys. In this system, “trachomatous
inflammation—follicular” (TF) is defined as the presence of
5 or more follicles, each greater than or equal to 0.5 mm in
diameter, in the central part of the tarsal conjunctiva of the
upper eyelid. Estimates of the prevalence of TF in children
aged 1–9 years are used to guide intervention planning and,
in particular, to decide where and for how long to implement
annual mass distribution of azithromycin, the antibiotic used
to treat trachoma.
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From 2012 to 2015, standardized baseline prevalence sur-
veys took place throughout Ethiopia, Nigeria, and Mozam-
bique as part of the Global Trachoma Mapping Project
(GTMP), with the aim of identifying districts that needed
interventions in a push toward global trachoma elimination.
These surveys provided data that have been made available
to further analysis, to augment existing knowledge of tra-
choma epidemiology, and to refine future survey protocols
for greatest efficiency and accuracy.

Trachoma is found in isolated, socioeconomically de-
prived rural areas. Population-based prevalence surveys are
the gold standard for evaluating its prevalence (4). Although
ideally one would select individuals to be examined at ran-
dom from the target population, so that all residents were
equally likely to be selected (simple random sampling),
survey costs can be reduced by instead selecting clusters of
individuals within geographical locales (cluster sampling).
This increases fieldwork efficiency at the expense of the
statistical independence of each result. To compensate for
the relatedness of individuals within a given cluster and
the resulting increased variance in estimates produced as a
result of the cluster-sampled design, sample sizes must be
increased. The parameter used to describe the correlation
of results from individuals within a given cluster is known
as the intracluster correlation coefficient (ρ), defined as
the proportion of total variance accounted for by between-
cluster variation. In infectious disease epidemiology, this
coefficient is associated with transmission patterns and the
natural history of infection and may depend on the particu-
lars of survey design. An accurate estimate of ρ is needed
to design future surveys and, in particular, to determine an
appropriate sample size.

In this paper, we use parametric bootstrapping to estimate
ρ with 95% confidence intervals for each of 261 trachoma
prevalence surveys from Ethiopia, Nigeria, and Mozam-
bique. These estimates are then used to conduct a meta-
regression analysis with survey-level covariates to explore
variation across surveys and to investigate the influence of
key factors on ρ.

METHODS

Sampling design

All surveys were carried out using standardized method-
ology as part of the GTMP (5). A planned sample size
of 1,019 children aged 1–9 years was used to estimate an
expected TF prevalence of 10% with a precision of ±3% at
the 95% confidence level, using a design effect (the ratio of
the clustered sampling variance to simple random sampling
variance) of 2.65, the latter being derived from surveys
carried out prior to the GTMP.

At the first stage of sampling, primary sampling units
(PSUs) were identified in each district. The number of
households sampled per PSU (h) was set as that which a
single survey team could anticipate being able to sample
in 1 working day: 25 in Nigeria, 30 in Ethiopia, and 32 in
Mozambique. The number of PSUs in each survey was then
dependent on the mean number of children aged 1–9 years
that were expected to be found in each household, nH , with

the number of PSUs equal to 1,019/(h × nH). This meant that
24–26 PSUs were planned per survey. Typically, existing
census data were used to define the sampling frame for
PSUs, the resolution being limited by the population size of
the lowest administrative census units in the country. PSUs
were villages, groups of villages, or other administrative
areas. PSUs were sampled with a probability-proportional-
to-size methodology, giving more weight to larger (more
populous) PSUs. This provided self-weighting of samples
so that, despite the clustered design, each individual in the
evaluation unit had (as far as was practically possible) an
equal likelihood of being sampled.

At the second stage of sampling, within the PSU, compact
segment sampling (Ethiopia and Mozambique) or random-
walk sampling (Nigeria) was used to select households for
inclusion. In Ethiopia and Mozambique, each PSU was
divided into segments of 30 and 32 contiguous households,
respectively, so that each household in the PSU belonged
to a segment. One segment was then chosen at random
by drawing lots. All individuals resident in the households
of the chosen segment were visited by the survey team. In
Nigeria, using random-walk sampling, a starting point in the
center of the PSU was agreed upon and a pen was spun on
the ground at that point to identify, in quasirandom fashion,
a heading for the survey team to transect. A total of 25
households in that direction were enrolled.

In sampled households, all residents aged ≥1 year were
eligible for inclusion, and all consenting individuals were
examined for signs of trachoma using the World Health
Organization’s simplified trachoma grading system (3). For
children under age 18 years, consent was obtained from the
parent or guardian, and the children themselves gave assent
where possible. Data were collected electronically on An-
droid smartphones (Google, Inc., Mountain View, Califor-
nia) (5).

Ethical clearance

The overall GTMP protocol was approved by the ethics
committee of the London School of Hygiene & Tropical
Medicine. In Ethiopia, the protocol was approved by the
ethics committee of each participating regional state. In
Mozambique, the protocol was approved by the National
Committee on Bio-Ethics and the Provincial Directorate
of Health in each province. In Nigeria, the protocol was
approved by the National Health Research Ethics Com-
mittee. The secondary analyses of anonymized data that
underlie this paper were considered by the Ethics Review
Committee of the World Health Organization to be exempt
from full formal review.

Ethiopia

Between December 2012 and May 2015, a total of 168
standardized surveys were carried out in 7 regions—Afar;
Benishangul-Gumuz; Gambella; Oromia; Somali; Southern
Nations, Nationalities, and Peoples’ Region; and Tigray.
Survey environments ranged from deserts in the Somali
region to the highlands of Tigray and tropical rainforests
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in Gambella. Results of these surveys have been published
elsewhere (6–10).

Nigeria

Between February 2013 and February 2014, 121 stan-
dardized surveys were carried out in Katsina, Kano, Bauchi,
and Kaduna states. The results of these surveys have been
published elsewhere (11–14).

Mozambique

Between December 2011 and June 2015, 91 standardized
surveys were carried out in Cabo Delgado, Gaza, Inham-
bane, Manica, Maputo, Nampula, Niassa, Sofala, Tete, and
Zambezia provinces. The results of these surveys have been
published elsewhere (15).

Estimating ρ

The standard equation for the variance of a proportion
achieved through simple random sampling (SRS) of N indi-

viduals is given by VarSRS(p) = π
(

1−π
)

N , where p is the sam-
ple proportion of the outcome, π is the true proportion of the
outcome in the whole population, and N is the total number
of individuals examined. In cluster sampling, the increased
variance arising from the clustered design is represented by
the design effect (DE),

DE = [1 + (m − 1)ρ], (1)

so that

VarCluster( p) = π(1 − π)

nm
[1 + (m − 1)ρ],

where

p = 1

n

∑n

i=1
pi.

Here n is the number of clusters in the survey and m is the
average number of individuals examined per cluster. Hence,
nm = N, the total number of individuals examined.

Therefore,

ρ̂ =

(
VarCluster

(
p̄
)

VarSRS

(
p̄
)

)
− 1

m − 1
,

where VarSRS(p) is approximated as VarSRS
(
p
)
. We there-

fore need to estimate VarCluster
(
p
)

to calculate ρ̂ for a given
survey.

Estimating the between-cluster variance in p

We used parametric resampling with replacement (para-
metric bootstrapping) to estimate VarCluster

(
p
)
. Parametric

resampling makes no assumptions about the underlying dis-
tribution of the data (16), but the resampling process should
mirror, where possible, the sampling strategy that gave rise
to the data (17, 18).

The data can be represented as a vector of N independent
observations, yobs. We wish to estimate the variance of the
parameter p

(
yobs

)
by replicating the highest-level sampling

strategy used in the surveys. In this secondary analysis of
deidentified data sets, the underlying populations of selected
clusters were not known, so equal weighting (rather than
weighting proportional to size) was used.

For each ρ̂ estimate, the following algorithm was used:

1. Determine the number of unique clusters in the survey,
n, and sample n clusters randomly with replacement.
All children aged 1–9 years examined in these clusters
comprise the bootstrap data set Y∗. Let i = 1, 2, . . . n.

2. Calculate the cluster-level TF proportion of pi
∗ as the

sum of all cluster TF cases divided by the number of
children examined in the cluster.

3. Calculate the bootstrap prevalence estimate p
(
Y∗) as

1
n

∑n
1pi

∗ (the mean of all n cluster-level proportions).
4. Repeat steps 1–4 a total of 4,096 times to generate an

estimate of the bootstrap distribution of Y∗.
5. VarCluster

(
p
)

is estimated as the variance of this bootstrap
distribution.

6. For each survey, ρ̂ is then estimated as

⎛
⎜⎝ Var

(
p̄
)

Cluster

p̄
(

1−p̄
)

N

⎞
⎟⎠− 1

(
m−1

) .

7. The variance of ρ̂ is estimated by replicating steps 1–6 a
total of 4,096 times.

In our analysis, bootstrap distributions approximated nor-
mal distributions, so 95% confidence intervals were cal-
culated as the 2.5th and 97.5th percentiles of all ordered
estimates for a given survey. The overall estimate for each
survey was the mean value of these estimates. Bootstrap esti-
mates were resampled 4,096 (212) times to obtain appropri-
ate precision. A total of 4,0962 replications were carried out
for each ρ̂ estimate. Estimation was carried out in RStudio
(RStudio, Inc., Boston, Massachusetts).

Meta-analysis

Next, we conducted a meta-analysis to obtain pooled
estimates of ρ across surveys. Pooled estimates were derived
using a random-effects model, with survey weights obtained
from the intrasurvey variance of each estimate (19, 20).
Natural log-transformed estimates were used to limit the
effects of heteroscedasticity. Heterogeneity across survey
estimates was investigated using the Q statistic, subgroup
analysis, and meta-regression analyses (21). Random-effects
meta-regression models were fitted to estimates using the
“metareg” command in STATA 14 (StataCorp LLC, College
Station, Texas). The standard error of each estimate was cal-
culated as the difference between the 97.5th and 2.5th centile
estimates divided by 3.92, assuming a normal distribution
of bootstrap estimates. Estimates of ρ are reported on the
original scale by exponentiating the pooled estimates from
the model. Design effect estimates at given covariate values
were estimated from pooled ρ estimates as 1+(

m−1
)
ρ, with

m set as 30 children per cluster. Forest plots were produced
in STATA 14.
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Analysis plan

We excluded surveys in which the TF prevalence estimate
was less than 2%, in the belief that below this level the
data would be too sparse to reliably estimate ρ. We used
univariate and multivariable meta-regression techniques
to investigate possible sources of heterogeneity between
estimates, using the following covariates: TF prevalence,
country, mean distance between clusters, mean number
of children examined per household, and mean number of
children examined per cluster. Covariates were defined using
data collected at the time of the survey. For each survey,
the average distance between clusters was estimated as
the difference between the respective Global Positioning
System (GPS) coordinates of each cluster and the centroid
GPS coordinates over all clusters, with estimates adjusted
for latitude to convert decimal degrees to kilometers. We
included this covariate to test the hypothesis that survey
areas that covered larger distances were more likely to
show a greater variance in TF estimates. We then conducted
secondary analyses using ρ estimates stratified by associated
covariates.

At the time of data collection, recorders entering data into
smartphones were required to submit a unique identity code.
This allowed the total number of data recorders to be defined
for each survey. Because recorders were paired with graders
performing clinical trachoma grading, we included this vari-
able to investigate trachoma grader precision or consistency
between graders in a given survey.

RESULTS

A total of 380 surveys from Ethiopia, Nigeria, and Mo-
zambique were made available by the respective health
ministries. We excluded 111 surveys because their TF preva-
lence was below the 2% threshold. We further excluded
another 8 surveys because they had an estimated ρ value less
than 0.0. Thus, 261 surveys were included in the analysis:
162 from Ethiopia, 44 from Mozambique, and 55 from
Nigeria (see Web Table 1, available at https://academic.oup.
com/aje). All included surveys used a 2-stage cluster sam-
ple survey design. All survey data were baseline trachoma
prevalence estimates, with none of the surveyed populations
having received previous mass azithromycin administration
or other specific interventions deployed to reduce active
trachoma prevalence by national elimination programs.

The TF prevalence in children aged 1–9 years was re-
ported in the surveys as the mean of all cluster-level propor-
tions. The median TF prevalence in children aged 1–9 years
over all surveys was 16.5% (interquartile range, 4.5–27.5;
range, 2.0–50.6). The breakdown of survey-level prevalence
by country is shown in Web Table 2.

Number of children examined per cluster

The mean number of children aged 1–9 years examined
per cluster was 36.6 in Ethiopia, 39.6 in Mozambique, and
69.1 in Nigeria. Full details of the breakdown of cluster sizes
by country are shown in Web Table 3.

Number of children examined per household

The number of children examined per household was con-
sidered in the analysis because larger households may have
an effect on trachoma transmission either through proximity
and interpersonal interaction as a direct risk factor or through
common exposures, such as the effect of poor community-
level access to sanitation (22). The mean number of children
aged 1–9 years examined per household was 2.0 in Ethiopia,
2.0 in Mozambique, and 3.1 in Nigeria (Web Table 4).

Initial meta-analysis

The meta-analysis included 261 estimates of ρ for the
clinical sign TF in children aged 1–9 years. The region-level
estimates across all surveys are shown in Figure 1. Estimates
ranged from 0.0002 (95% confidence interval (CI): 0.0000,
0.0008) in a survey in Kano State, Nigeria, to 0.368 (95% CI:
0.348, 0.388) in a survey in the Southern Nations, National-
ities, and People’s Region of Ethiopia. The overall pooled
estimate for all surveys was 0.051 (95% CI: 0.047, 0.056),
although there was a great deal of heterogeneity in ρ between
surveys (heterogeneity χ2 = 120,000; P < 0.0001).

The largest and least precise estimates were generally
from Ethiopia. The pooled ρ estimate was 0.100 (95% CI:
0.093, 0.108) in Ethiopia, 0.033 (95% CI: 0.027, 0.039) in
Mozambique, and 0.009 (95% CI: 0.007, 0.012) in Nigeria.
When stratified by TF prevalence (within groupings used for
making intervention decisions according to World Health
Organization recommendations (23)), the pooled estimates
were 0.015 (95% CI: 0.012, 0.020), 0.033 (95% CI: 0.026,
0.042), 0.081 (95% CI: 0.071, 0.092), and 0.111 (95% CI:
0.101, 0.124) for TF prevalences of <5.0%, 5.0%–9.9%,
10.0%–29.9%, and ≥30.0%, respectively.

The heterogeneity across country-specific estimates re-
mained even after stratification by TF prevalence. The re-
spective pooled ρ estimates for TF prevalences of <5.0%,
5.0%–9.9%, 10.0%–29.9%, and ≥30.0% were 0.042 (95%
CI: 0.029, 0.062), 0.103 (95% CI: 0.084, 0.127), 0.105 (95%
CI: 0.093, 0.119), and 0.114 (95% CI: 0.104, 0.126) in
Ethiopia and 0.007 (95% CI: 0.005, 0.009), 0.008 (95%
CI: 0.005, 0.014), 0.025 (95% CI: 0.015, 0.040), and 0.022
(95% CI: 0.020, 0.024) in Nigeria. In Mozambique, the
pooled estimates for TF prevalences of 5.0%, 5.0%–9.9%,
and 10.0%–29.9% were 0.022 (95% CI: 0.015, 0.032), 0.033
(95% CI: 0.024, 0.044), and 0.055 (95% CI: 0.044, 0.070),
respectively; no survey in Mozambique estimated a TF
prevalence of ≥30.0%.

In the univariate meta-regression analyses, a large pro-
portion of variability across all 261 ρ estimates could be
explained by country, TF prevalence, mean distance between
clusters, number of recorders used in the survey, number of
children examined per household, and number of children
examined per cluster (Table 1). A larger ρ estimate was
associated with a higher TF prevalence, a larger distance
between clusters, a larger number of recorders used in the
survey, a smaller number of children examined per house-
hold, and a smaller number of children examined per cluster.
Estimates were generally highest in Ethiopia and lowest in
Nigeria.
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Figure 1. Region-level summary forest plot of bootstrap estimates of the intracluster correlation coefficient for 261 standardized population-
based trachoma prevalence surveys carried out in Ethiopia, Mozambique, and Nigeria, Global Trachoma Mapping Project, 2012–2015. Bars,
95% confidence intervals (CIs). SNNPR, Southern Nations, Nationalities, and People’s Region.

The multivariable meta-regression analyses aimed to ex-
plain the heterogeneity between surveys, accounting for
survey-level differences in associated variables. The country
covariate was included in the model a priori. When con-
trolling for all variables in the model, only country, TF
prevalence category, and cluster size were associated with ρ
(P < 0.001), explaining 69.8% of the variability. Ethiopia
was independently associated with higher estimates (β =
2.39 (95% CI: 1.85, 3.07); P < 0.001), with no meaningful
difference between Mozambique and Nigeria (P = 0.934).
The “number of children examined per household” covariate
was not included in the final model because of collinearity
with the “number of children examined per cluster” covari-
ate. The “number of recorders used per survey” covariate
was not included because of collinearity with the coun-
try covariate (the Ethiopia and Nigeria surveys were per-
fectly collinear with number of recorders <5 and number of
recorders ≥20, respectively). The final multivariable model
accounted for 69.2% of the variance in estimates (Table 1).

DISCUSSION

In general, the intracluster correlation coefficient or the
design effect is poorly represented in the public health liter-

ature. Individual survey clustering estimates exist (24–27),
but we have found only 1 other paper that covered clustering
estimates derived from surveys carried out in multiple coun-
tries (28). We believe this to be the first time that estimates
of ρ from standardized infectious disease surveys conducted
internationally have been published together.

Surveys of a particular infectious disease are not always
standardized, and as a result it has not previously been
possible to amass large numbers of comparable pooled esti-
mates of ρ in a single analysis. We have therefore had an
opportunity to augment existing knowledge in a way that
was not possible for trachoma prior to the implementation
of the GTMP. We found marked heterogeneity in survey ρ
estimates, and we explored possible sources of that hetero-
geneity which may be of use in planning future work.

In 1996, the World Health Organization targeted trachoma
for elimination as a public health problem by the year 2020
(29). This was defined, in part, as an estimated TF prev-
alence in children aged 1–9 years of less than 5% in each
formerly endemic district. An important aspect of vali-
dating that this goal has been reached is confidence in the
method by which prevalence has been measured. Given
the marked effect that the ρ estimate has on sample-size
planning, it is crucial to have accurate estimates of its
value. We have shown that ρ decreases sharply at low TF
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Table 1. Results From Meta-Regression of the Intracluster Correlation Coefficient for the Clinical Sign “Trachomatous Inflammation—Follicular”
Among Children Aged 1–9 Years in 261 Population-Based Trachoma Prevalence Surveys, Ethiopia, Mozambique, and Nigeria, 2012–2015

Covariate
No. of

Surveys
Pooled ρ

Estimatea 95% CI
% of

Variance
Explainedb

βc,d 95% CI

Country 58.2

Ethiopia 162 0.100 0.077, 0.128 1.000 Referent

Mozambique 44 0.032 0.023, 0.045 0.471 0.348, 0.638

Nigeria 55 0.010 0.008, 0.012 0.789 0.273, 2.281

No. of children examined per cluster 44.7

15–29 36 0.097 0.071, 0.132 1.000 Referent

30–49 172 0.071 0.050, 0.100 0.882 0.658, 1.181

50–79 34 0.016 0.010, 0.024 0.518 0.332, 0.809

≥80 19 0.005 0.003, 0.008 0.212 0.096, 0.470

TFe prevalence, % 36.2

<5.0 56 0.015 0.011, 0.020 1.000 Referent

5.0–9.9 56 0.033 0.023, 0.048 1.638 1.230, 2.181

10.0–29.9 87 0.080 0.057, 0.114 2.392 1.816, 3.150

≥30.0 62 0.111 0.077, 0.162 2.493 1.810, 3.432

No. of recordersf 48.7

<5 53 0.009 0.007, 0.012 1.000 Referent

5–9 43 0.057 0.039, 0.083 2.335 0.834, 6.534

10–19 149 0.082 0.061, 0.109 2.740 0.945, 7.944

≥20 16 0.106 0.063, 0.178 2.727 0.891, 8.343

No. of children examined per household 30.1

1.0–1.9 105 0.081 0.066, 0.099 1.000 Referent

2.0–2.9 130 0.051 0.038, 0.067 0.786 0.627, 0.986

3.0–3.9 19 0.006 0.003, 0.010 0.721 0.387, 1.339

≥4.0 7 0.010 0.004, 0.023 1.710 0.677, 4.316

Quartile of distance between clustersg, km 13.8

1 65 0.023 0.017, 0.030 1.000 Referent

2 66 0.051 0.034, 0.076 0.974 0.734, 1.289

3 65 0.084 0.056, 0.127 1.059 0.785, 1.430

4 65 0.065 0.043, 0.098 0.963 0.700, 1.324

Abbreviations: CI, confidence interval; GPS, Global Positioning System; ICC, intracluster correlation coefficient; TF, trachomatous
inflammation—follicular.

a Pooled estimate of the ICC.
b Proportion of the variability between survey ICC estimates explained by each covariate on the natural logarithmic scale (P < 0.0001 for all

variables).
c Exponentiated meta-regression coefficient.
d Full meta-regression model adjusting for country, number of children examined per cluster, and prevalence of TF in children aged 1–9 years

(P < 0.0001). 69.2% of the variance in the ICC was explained by the full model.
e TF in children aged 1–9 years, the primary clinical sign associated with ocular Chlamydia trachomatis infection used to guide intervention

programs under current World Health Organization guidelines (23).
f Estimated as the number of unique recorder identification codes used in the survey.
g Estimated as the square root of the variance of the distance of survey clusters from the geometric center of the GPS coordinates of all survey

clusters, converted to kilometers and accounting for latitude.

prevalences, and so with the same absolute precision,
accurate estimates of TF can be made using smaller sample
sizes as the anticipated elimination endpoint approaches.

The converse of this statement is that for a given sample size,
with increasing TF prevalence, the precision of a given
estimate decreases. In trachoma elimination, the crucial TF
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thresholds are 5%, 10% and 30%: Where TF prevalence
is less than 5.0%, azithromycin mass drug administration
(MDA) is not indicated; where it is 5.0%–9.9%, a single
round of MDA is recommended before resurvey; where it is
10.0%–29.9%, 3 annual rounds of MDA are recommended
before resurvey; and where it is 30.0% or more, 5 annual
rounds of MDA are recommended before resurvey. The
required performance of a survey methodology for providing
estimates around these thresholds depends on the implica-
tions of erroneous categorization to the population involved.
Incorrect categorization may have significant implications
around the 10% threshold, for example, where the cost
difference between implementing 1 and 3 years of MDA and
the political effect of delaying repeat surveys may each be
substantial.

On univariate analysis, there was a suggestion that using
fewer data recorders in a given survey was associated with
greater concordance of cluster-level TF estimates, and so
decreased ρ. However, this variable was not retained in the
full multivariable model with the country variable included.
It is possible that there was not enough variability in recorder
numbers within countries to obtain accurate estimates inde-
pendent of the overall country variable. From the data, it
can be inferred that local logisticians used different field
team deployment strategies for completing large numbers of
surveys in a given area. One strategy was to use a single data
recorder (and, generally, a single accompanying trachoma
grader) for a whole survey, so that the individual worked
in all clusters in the evaluation unit: If 26 clusters were
required, the survey would take 26 team-days of fieldwork
for that recorder and his or her trachoma grader. This strategy
was used in the majority of surveys in Nigeria and Mozam-
bique. The strategy at the other extreme would be to send
26 data recorders (and their accompanying graders) to 1
cluster each, so that the survey could in theory be completed
in a single calendar day (still incorporating 26 team-days
of fieldwork). The strategy used in Ethiopia was closer to
this model. Intuitively, the trade-off between these strategies
is the trade-off between accuracy and precision. One team
might be inaccurate, but if so it might be reliably inaccurate
and therefore give precision to estimates (and concordance
between results). The mean of the cluster-level TF propor-
tions might not necessarily be close to the true population
estimate. On the other hand, multiple teams contributing to
a single survey could all be inaccurate, but the mean of the
cluster-level proportions derived from many hands might (or
might not) be closer to the true population-level estimate
of disease prevalence. Although the number of recorders
was not included in the final model in this analysis, it is
possible that this could be considered as a variable in future
analyses.

A limitation of this analysis in guiding future surveys is
that in the populations surveyed here, for districts in which
the TF prevalence was at least 5%, interventions against
active trachoma will have been deployed before impact
surveys are conducted, and the degree to which the pre-
intervention epidemiology of trachoma is representative of
its postintervention epidemiology is unclear, as the varying
interventions may have varying impacts on the epidemiology
of the underlying disease. Equally uncertain is whether these

data will be externally applicable in countries yet to com-
plete baseline trachoma mapping of suspected trachoma-
endemic districts.

Overall, we found large variation in ρ estimates between
surveys, and so we recommend that ρ estimates used for
planning future surveys be conservative. In other words,
overestimating the assumed value of ρ would be epidemi-
ologically prudent.

It is hoped that these data can be used to guide future
trachoma programs to aid elimination efforts. However, for
programmatic use, the design effect is a more commonly
cited parameter than ρ, as it is more intuitively useful for
program managers, being the factor by which a simple
random-sampling sample size should be multiplied to pro-
vide equivalent precision in a cluster random sample. Using
equation 1, our analyses suggest that when carrying out
surveys with more than 30 children examined per cluster,
a design effect greater than 2.6 should be used when a TF
prevalence close to 5% is expected, a design effect greater
than 3.6 should be used when a TF prevalence close to 10%
is expected, and a design effect greater than 5.0 should be
used when a TF prevalence close to 30% is expected.
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