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Abstract: The neurotoxicity of bilirubin has been extensively reported in numerous studies. However,
the association between bilirubin and male fertility has not yet been studied. The main goal of
this study was to investigate the association between serum total bilirubin and sperm quality in
an adult population. In this cross-sectional study, 9057 participants who attended the MJ health
examination (2010–2016) were enrolled. Sperm specimens were collected by masturbation, and
sperm quality was analyzed in accordance with the WHO criteria. Serum total bilirubin levels were
measured by an automatic biochemical profile analyzer. Thereafter, the associations between serum
total bilirubin and sperm quality were determined by a multivariable linear regression. Serum
total bilirubin was inversely associated with sperm concentration and normal morphology with β

values of −13.82 (95% CI: −26.99, −0.64) and −18.38 (95% CI: −30.46, −6.29) after adjusting for
covariables. The highest levels of serum total bilirubin were significantly associated with sperm
concentration and normal morphology with β values of −14.15 (95% CI: −28.36, 0.06) and −21.15
(95% CI: −33.99, −8.30). Our study highlighted the potential impact of serum bilirubin on sperm
quality in a male population. Additional longitudinal research is necessary to explore these findings
and underlying mechanisms.

Keywords: serum bilirubin; sperm quality; adult population

1. Introduction

Bilirubin, a tetrapyrrolic pigment and albumin-bound reversible compound, is found
in plasma [1]. It is a derivative of heme catabolism, which is released by hemoglobin and
cytochromes [2]. Serum bilirubin levels represent the condition of the heme turnover rate,
canalicular excretion, and hepatic uptake and conjugation [3]. Numerous studies have
reported that hyperbilirubinemia may potentially lead to irreversible neurological damage
by accumulating bilirubin in the central nervous system [4–6]. Unbound bilirubin induces
a variety of cellular and molecular events that result in neurotoxicity [7,8].

Mounting studies have indicated that decreasing sperm quality is associated with
multiple systemic diseases. Emerging evidence has reported that obesity negatively impacts
male fertility and directly changes sperm function and molecular composition [9–11].
Metabolic syndrome, a cluster of medical conditions characterized by abdominal obesity,
dyslipidemia, hypertension, and high fasting glucose, is suggested to be associated with
alteration of spermatogenesis [12,13]. Reduced levels of serum testosterone and sperm
quality have been found in patients with nonalcoholic fatty liver disease (NAFLD) [14].
However, the relationship between bilirubin and male reproductive function has not yet
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been examined. The goal of the current study was to investigate the relationship between
serum total bilirubin and sperm quality in an adult population from Taiwan.

2. Methods
2.1. Study Design and Participants

The MJ Health Center is a membership-oriented private institute with four health
check-up clinics in Taiwan, the MJ Health Management Institution. The center provides
periodic health examinations to its members. A series of tests such as blood, urine, anthro-
pometric measurements, physical examination, and medical history are included in this
large health research database.

In this study, we excluded those who had missing data on serum total bilirubin, sperm
quality analysis, and demographic characteristic data. A total of 9057 eligible participants
who attended one or more health examinations from 2010 to 2016 were included in the anal-
ysis. Personal identifiers were removed when data were released for the research. Informed
consent documents were provided for participants to sign and let them make the decision
to volunteer for the study. Ethics approval was approved by the Institutional Review Board
(IRB) of the Tri-Service General Hospital and the MJ Health Management Institution.

2.2. Sperm Quality Analysis

Participants contributed their semen samples by masturbation after they had abstained
for at least 3 days. Samples were stored in sterile containers that liquefied at 37 ◦C for
20 min and were sent to the laboratory for analysis [15]. Four parameters of sperm quality,
including sperm concentration, total motility, progressive motility, and normal morphology,
were recorded. A microcell counting chamber and a phase contrast microscope were
used to assess sperm concentration. Sperm motility was classified as total motility and
progressive motility based on the WHO 2010 classification [16]. Two hundred sperm cells
were categorized into four different grades: A, B, C, or D. Total motility was defined as
A + B + C and progressive motility as A + B. According to the WHO criteria in 2010, a
normal sample was defined as if 4% (or 5th centile) or more of the observed sperm has
normal sperm morphology.

2.3. Serum Total Bilirubin Measurement

The levels of serum total bilirubin were measured by a timed end-point Diazo method,
using automatic biochemistry profiling (Beckman Synchron LX20 Beckman Coulter Inc.,
Fullerton, CA, USA). The analytical range and the reference range are 0.1~30 mg/dL and
0.2 to 1.3 mg/dL, respectively.

2.4. Covariates

A history of hypertension (HTN) and type II diabetes mellitus (DM) was obtained
from a self-reported questionnaire. A question “How many packs do you smoke per
day?” was used to determine the cigarette smoking status of participants. Systolic blood
pressure (SBP) was measured by a standard sphygmomanometer when the subjects sat
down. To collect the blood samples for analyzing laboratory data, including fasting plasma
glucose (FPG), aspartate aminotransferase (AST), total cholesterol (CHO), and C-reactive
protein (CRP), participants had to fast for at least 8 h, and these samples were measured by
standard procedures.

2.5. Statistical Analyses

Associations between serum total bilirubin and sperm quality were performed using
multivariable linear regression. The associations between various quartiles and the presence
of sperm quality were analyzed by logistic regression. These regressions were adjusted by
multivariable models, as follows. Model 1 was unadjusted. Model 2 included Model 1 and
age. Model 3 included Model 2, ALT, Cr, and CRP. Model 4 included Model 3, a history
of HTN, DM, and cigarette smoking. A significant difference was defined as a p-value of



Toxics 2022, 10, 295 3 of 7

≤0.05. Analyses in the current study were conducted using the Statistical Package for the
Social Sciences, version 18.0 (SPSS Inc., Chicago, IL, USA) for Windows.

3. Results
3.1. Characteristics of Participants in Serum Total Bilirubin Quartiles

The general characteristic information of the 9057 subjects is listed in Table 1. The
mean age of these quartiles was Q1: 32.33 ± 4.67, Q2: 32.35 ± 4.89, Q3: 32.01 ± 4.55,
and Q4: 32.01 ± 4.79 years. The concentrations of serum total bilirubin of these quartile
groups were 0.56 ± 0.10, 0.79 ± 0.06, 1.01 ± 0.07, and 1.50 ± 0.38, respectively. Participants
in the highest quartile had significantly lower levels of FPG, CHO, and CRP and higher
prevalence of cigarette smoking (p < 0.05). Sperm parameters, such as sperm concentration,
motility, progressive motility, and normal morphology, showed significant differences
across these quartiles (p < 0.05).

Table 1. Characteristics of participants in serum total bilirubin quartiles.

Variables Q1
(n = 2298)

Q2
(n = 2230)

Q3
(n = 2277)

Q4
(n = 2252) p-Value

Continuous variables, mean (SD)

Age (years) 32.33 (4.67) 32.35 (4.89) 32.01 (4.55) 32.01 (4.79) <0.05
Total bilirubin 0.56 (0.10) 0.79 (0.06) 1.01 (0.07) 1.50 (0.38) <0.05

SBP 119.35 (14.51) 120.76 (13.04) 120.72 (11.65) 118.81 (13.67) 0.74
FPG 98.52 (12.11) 98.29 (15.34) 97.59 (14.30) 96.60 (11.82) <0.05
AST 24.35 (11.53) 24.89 (11.51) 25.29 (17.24) 24.94 (18.46) 0.21
CHO 190.39 (34.52) 192.53 (35.37) 190.97 (38.00) 187.84 (32.82) <0.05

CRP (mg/dL) 0.28 (0.51) 0.20 (0.30) 0.20 (0.62) 0.18 (0.37) <0.05

Continuous variables, median (IQR)

Sperm concentration 49.78 (36.33) 53.48 (42.29) 55.46 (44.13) 53.94 (41.20) <0.05
Sperm total motility (%) 64.07 (16.16) 64.71 (16.65) 64.97 (15.67) 63.66 (16.71) <0.05

Sperm progressive motility (%) 45.49 (16.56) 46.42 (17.27) 46.53 (16.60) 45.29 (16.92) <0.05
Sperm normal morphology (%) 66.16 (16.69) 66.91 (16.44) 67.55 (15.83) 67.50 (16.86) <0.05

Category variables, (%)

HTN (%) 54 (2.4) 53 (2.4) 47 (2.1) 58 (2.8) 0.80
DM (%) 13 (0.6) 12 (0.5) 13 (0.6) 6 (0.3) 0.19

Cigarette smoking (%) 239 (40.9) 266 (50.2) 304 (52.6) 364 (58.4) <0.05

SD, standard deviation; SBP, systolic blood pressure; FPG, fasting plasma glucose; AST, aspartate aminotransferase;
CHO, cholesterol; CRP, C-reactive protein; HTN, hypertension; DM, type II diabetes mellitus.

3.2. Associations between Serum Total Bilirubin and Sperm Quality

Associations between serum total bilirubin and sperm quality are shown in Table 2.
Serum total bilirubin was significantly associated with decreased sperm motility and sperm
normal morphology with β of −13.82 (95%CI: −26.99, −0.64) and −18.38 (95%CI: −30.46,
−6.29). However, no significant difference was noted in the other sperm quality parameters.

3.3. Associations between Serum Total Bilirubin Quartiles and Sperm Quality

In Table 3, we divided serum total bilirubin into quartiles and analyzed the associations
between these quartiles and sperm quality. The highest quartile of serum total bilirubin
was inversely associated with sperm motility and sperm normal morphology with a β of
−14.15 (95%CI: −28.36, 0.06) and −21.15 (95%CI: −33.99, −8.30).
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Table 2. Association between serum total bilirubin and sperm quality.

Variables Model 1 a

β (95% CI)
p

Value
Model 2 a

β (95% CI)
p

Value
Model 3 a

β (95% CI)
p

Value
Model 4 a

β (95% CI)
p

Value

Sperm Concentration

Total
bilirubin

−6.40 (−35.10,
22.31) 0.66 1.44 (−26.60,

29.47) 0.92 3.50 (−25.58,
32.57) 0.81 3.02 (−27.80,

33.85) 0.84

Sperm Motility

Total
bilirubin

−7.41 (−20.68,
5.86) 0.27 −12.11 (−24.45,

0.23) <0.05 −12.13 (−24.74,
0.47) <0.05 −13.82 (−26.99,

−0.64) <0.05

Sperm Progressive Motility

Total
bilirubin

−8.28 (−22.25,
5.69) 0.24 −12.06 (−25.71,

1.60) 0.08 −10.91 (−25.21,
3.38) 0.13 −12.73 (−27.70,

2.24) 0.09

Sperm Normal Morphology

Total
bilirubin

−16.75 (−27.53,
−5.96) <0.05 −17.89 (−29.01,

−6.76) <0.05 −17.46 (−28.95,
−5.97) <0.05 −18.38 (−30.46,

−6.29) <0.05

a Adjusted covariates: Model 1: unadjusted. Model 2: Model 1 + age. Model 3: Model 2 + AST, CHO, CRP, FPG,
and SSL. Model 4: Model 3 + HTN, cigarette smoking.

Table 3. Association between quartiles of serum total bilirubin and sperm quality.

Variables Model 1 a

OR b (95% CI)
p

Value
Model 2 a

OR b (95% CI)
p

Value
Model 3 a

OR b (95% CI)
p

Value
Model 4 a

OR b (95% CI)
p

Value

Sperm Concentration

Q2 vs. Q1 7.13 (−25.46,
39.72) 0.66 7.78 (−23.25,

38.81) 0.62 11.55 (−20.55,
43.65) 0.47 11.98 (−20.98,

44.94) 0.47

Q3 vs. Q1 9.06 (−20.88,
39.00) 0.55 12.57 (−16.09,

41.24) 0.38 23.91 (−7.61,
55.43) 0.13 25.76 (−7.26,

58.77) 0.12

Q4 vs. Q1 −9.80 (−42.39,
22.79) 0.55 −2.14 (−33.87,

29.59) 0.89 −2.81 (−34.93,
29.30) 0.86 −4.18 (−37.26,

28.91) 0.80

Sperm Motility

Q2 vs. Q1 2.67 (−12.49,
17.83) 0.72 2.26 (−11.39,

15.91) 0.74 5.14 (−8.77,
19.05) 0.46 5.25 (−8.90,

19.40) 0.46

Q3 vs. Q1 0.74 (−13.19,
14.67) 0.92 −1.45 (−14.06,

11.16) 0.82 2.23 (−11.43,
15.89) 0.74 3.67 (−10.51,

17.84) 0.60

Q4 vs. Q1 −7.93 (−23.09,
7.23) 0.30 −12.72 (−26.68,

1.24) 0.07 −13.31 (−27.22,
0.61) 0.06 −14.15 (−28.36,

0.06) <0.05

Sperm Progressive Motility

Q2 vs. Q1 −5.53 (−21.64,
10.57) 0.49 −5.85 (−21.20,

9.50) 0.45 −3.67 (−20.01,
12.67) 0.65 −3.72 (−20.42,

12.98) 0.65

Q3 vs. Q1 −4.01 (−18.81,
10.78) 0.59 −5.73 (−19.91,

8.45) 0.42 −2.56 (−18.61,
13.49) 0.75 −0.99 (−17.72,

15.74) 0.91

Q4 vs. Q1 −9.83 (−25.94,
6.27) 0.23 −13.58 (−29.28,

2.11) 0.09 −13.22 (−29.57,
3.12) 0.11 −13.99 (−30.76,

2.77) 0.10

Sperm Normal Morphology

Q2 vs. Q1 −7.32 (−19.68,
5.05) 0.24 −7.40 (−19.84,

5.03) 0.24 −4.78 (−17.30,
7.75) 0.44 −5.04 (−17.84,

7.75) 0.43

Q3 vs. Q1 −3.81 (−15.17,
7.55) 0.50 −4.28 (−15.76,

7.21) 0.46 0.46 (−11.83,
12.76) 0.94 1.65 (−11.17,

14.46) 0.80

Q4 vs. Q1 −18.62 (−30.98,
−6.25) <0.05 −19.64 (−32.35,

−6.92) <0.05 −20.79 (−33.32,
−8.26) <0.05 −21.15 (−33.99,

−8.30) <0.05

a Adjusted covariates: Model 1: unadjusted, Model 2: Model 1 + age, Model 3: Model 2 + AST, CHO, CRP, FPG,
SSL, Model 4: Model 3 + HTN, cigarette smoking. β b was interpreted as change of sperm quality for each increase
in total bilirubin.
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4. Discussion

In this study, we highlighted the relationship between serum total bilirubin and sperm
quality in a cross-sectional study. Serum total bilirubin had an inverse association with
sperm motility and normal morphology. The highest quartile of serum total bilirubin was
associated with decreased sperm motility and normal morphology. To the best of our
knowledge, our study is the first to examine the association between serum total bilirubin
and sperm quality in a reproductive-age male adult population.

The impacts of unconjugated bilirubin (UCB) on neurotoxicity have been broadly studied,
and impairment of the cell membrane function, structure, and property are involved [17,18].
Generally, bilirubin is amphipathic but is lipophilic to cell membranes [19,20]. Apparently, it
is possible that bilirubin can cross the blood–brain barrier (BBB) and enter the brain [21].
Bilirubin toxicity to brain cells might involve several plausible features, including induction
of cell death, production of oxidative stress, and pro-inflammatory cytokines [22–24]. In
a review study, Brito et al. reported that UCB affected brain microvascular endothelial
cells, which play important roles in the maintenance of a functional BBB, and then caused
hyperbilirubinemia-induced brain damage [25]. The interaction between bilirubin and
spermatogenesis has not yet been reported in previous studies. The blood-testis barrier
(BTB) might be the plausible target that explains how serum total bilirubin impacts sperm
quality. Germ cell development is related to BTB because Sertoli cells can influence the
chemical composition of the luminal fluid by controlling the adluminal compartment [26].
BTB also prevents germ cells from blood-borne noxious agents and inhibits cytotoxic agents
into the seminiferous tubules [27]. Collectively, this barrier is the first line to protect the
reproductive circulation system from toxic molecules. It is possible that bilirubin might
lead to altered sperm quality by affecting BTB through several pathways.

The protective function of efflux transporters of Sertoli cells has been reported to
prevent germ cells from toxic exposure [28,29]. Multidrug resistance-related protein (MRP),
an efflux transporter that is detected mostly in Sertoli cells and Leydig cells of humans
and mice [30,31], is known to transport a wide range of hydrophilic anion conjugates,
hydrophobic xenobiotics, and natural compounds [32]. In a systemic review, MRP is
suggested to be an important transporter of bilirubin that mediates ATP-dependent cellular
export of bilirubin and has a protective effect against bilirubin-induced cytotoxicity [33].
The impact of bilirubin on spermatogenesis might be through this pathway.

Breast cancer resistance protein (BCRP) is an important efflux transporter that limits
substances in the brain [34,35]. Xu et al. demonstrated that UCB elevation impaired the
expression of BCRP at the BBB, which led to hepatic encephalopathy in vivo [36]. BCRP was
observed in Sertoli cells, which was consistent with its localization at the BTB [37]. Organic
anion-transporting polypeptides (OATPs) are influx pumps for a wild range of endogenous
xenobiotics and compounds [38]. Steeg et al. indicated that OATP transporters played
a crucial role in the uptake of unconjugated bile acids and drugs and hepatic reuptake
of conjugated bilirubin [39]. Previous studies have reported that some of these uptake
transporters are expressed only by spermatogonia, Sertoli cells, and BTB [40,41]. These
membrane transporters might explain the impact of bilirubin on impaired sperm quality.

There are still several limitations to the present study. First, the cross-sectional design
does not permit causal inference of the relationship between serum total bilirubin and
sperm quality. A cohort analysis is needed in further studies. Second, we excluded
individuals who might lead to selection bias and unsatisfactory generalization to avoid
the confounding effects of hepatobiliary disease and to minimize age misclassification.
Third, only one semen measurement was conducted for most participants, which limited
us from having a repeated measurement, which might lead to within-person variations
over time. Next, information on the participants’ medical history associated with bilirubin
metabolism, such as hepatitis and bile duct obstruction, was lacking from the database.
Last, laboratory data about potential confounding biomarkers, such as direct and indirect
bilirubin, were not available from the MJ dataset. These biomarkers may be involved in the
relationship between serum bilirubin and sperm quality by different mechanisms.
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5. Conclusions

In this cross-sectional study, we highlighted that serum total bilirubin was negatively
associated with sperm motility and normal morphology in an adult population. Although
the causality of serum bilirubin to sperm quality must be established in a further prospective
study, our finding provides epidemiological evidence for plausible interventional strategies
for developing public health messages for men considering fatherhood.
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