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When bacteria are exposed to osmotic stress, some cells recover and grow, while others die or are unculturable. This leads to a
viable count growth curve where the cell number decreases before the onset of the exponential growth phase. From such curves,
it is impossible to estimate what proportion of the initial cells generates the growth because it leads to an ill-conditioned numeri-
cal problem. Here, we applied a combination of experimental and statistical methods, based on optical density measurements, to
infer both the probability of growth and the maximum specific growth rate of the culture. We quantified the growth potential of
a bacterial population as a quantity composed from the probability of growth and the “suitability” of the growing subpopulation
to the new environment. We found that, for all three laboratory media studied, the probability of growth decreased while the
“work to be done” by the growing subpopulation (defined as the negative logarithm of their suitability parameter) increased
with NaCl concentration. The results suggest that the effect of medium on the probability of growth could be described by a sim-
ple shift parameter, a differential NaCl concentration that can be accounted for by the change in the medium composition. Fi-
nally, we highlighted the need for further understanding of the effect of the osmoprotectant glycine betaine on metabolism.

In food microbiology studies, the maximum specific growth rate
of a bacterial population in a given static environment is rou-

tinely estimated by (mostly empirical) predictive models based on
viable-count measurements (1) (www.combase.cc). These models
take key environmental factors, such as temperature, pH, and wa-
ter activity, as the explanatory variables. Their relative accuracy is
between 5 and 10% if the prediction is made in the interpolation
region of the data used to develop the model and if the effect of
only one environmental factor is considered while the other fac-
tors are close to optimal (2).

The maximum specific growth rate, �, is an autonomous pa-
rameter; i.e., it is independent of the history of the cells and de-
pends only on the growth conditions. Compared to the growth
rate, the lag period has been studied little, although its exact and
quantitative characterization is vital to understand the ability of
microbes to survive and proliferate under a wide range of condi-
tions (3), and modeling the adaptation to environmental stress
especially remains a challenge in food microbiology studies (4).
Another parameter, which characterizes the adaptation of bacteria
to environmental stress, is the probability of growth. It is usually
modeled under static conditions, either independently of the
growth rate (5, 6) or as part of a set of models describing the effect
of environmental factors on various response parameters within a
space where growth is possible (7–9). No attempt has yet been
made to include probability of growth in kinetic models describ-
ing the temporal variation of bacterial cell concentration under
stress conditions.

Under osmotic stress, bacteria divide into two subpopulations:
one adapts and grows exponentially, while the other does not pro-
liferate (10). This may be because the cells die or are in a persistent
state (3) or are viable but nonculturable (10). In this case, the
viable count growth curve exhibits a decrease after inoculation,
described as the phoenix phenomenon (11). When trying to esti-
mate the fraction of the initial cells, p0, that produces the expo-
nentially growing lineage, the numerical task leads to an ill-con-
ditioned problem (10).

It has been demonstrated that, theoretically, an approach

based on a quantification of the physiological state of the growing
cell population, defined by the expression �0 � exp(���) (�
being the population lag time), is a quantity compatible with
probability concepts (12). This is because �0, a number between 0
and 1, represents the fraction of the initial cell population, x0, that
could have produced the observed exponential phase, had the cells
grown from the �0x0 level at the specific rate � without a lag
period. This lends itself to introducing the growth potential of the
population as follows.

The overall lag of the population, �a, is defined as

�a � �(ln p0 � ln �0) ⁄ � (1)

This parameter is a delay in the onset of exponential growth. The
exponential growth phase can be described by the linear function

y(t) � y(0) � �(t � �a) (2)

where y(t) is the natural logarithm of the cell concentration,
meant for time t � �a (12). This concept was studied by K. Kout-
soumanis (13), too, using colony counts.

We applied a method based on optical density measurements
(14) for the parallel estimation of the main parameters above: the
probability of growth, p0, the maximum specific growth rate, �,
and the physiological state parameter of the growing subpopula-
tion. From these parameters, �a can be calculated. We utilized this
method to study the effect of the medium composition on the
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probability of growth of Salmonella enterica serovar Typhimu-
rium under osmotic stress.

MATERIALS AND METHODS
Strain. Salmonella enterica serovar Typhimurium strain SL1344 was
maintained in basic minimal medium (BMM) (10) with 40% glycerol or
in tryptone soy broth (TSB) with 40% glycerol, stored at �80°C. Before
each experiment, Salmonella was subcultured twice in BMM or TSB and
incubated at 37°C for 7 h and 17 h.

Growth conditions. The osmotic stress of three media, Luria-Bertani
medium (LB; 10 g liter�1 tryptone, 5 g liter�1 yeast extract, 10 g liter�1

NaCl), BMM, and BMM with glycine betaine (150 �M glycine betaine
[Sigma Chemical Co., United Kingdom] added as an osmoprotectant),
was increased by adding NaCl; LB with up to 55 g liter�1 NaCl added
(equivalent to 6.5% total NaCl), BMM with up to 35 g liter�1 NaCl added,
and BMM plus betaine with up to 55 g liter�1 NaCl added.

Growth curves. Cultures (17 h at 37°C) in TSB and BMM were diluted
and inoculated into 100 ml of prewarmed (37°C) growth medium, from
TSB to LB and from BMM to BMM both with and without glycine betaine.
Sampling was carried out at appropriate intervals up to 15 days according
to the growth conditions. The growth curves were measured by plate
counts on tryptone soy agar (TSA) (CM0131; Oxoid). The experiments
were repeated, and the results reported are averages for replicate samples.

Bioscreen experiments. Salmonella Typhimurium SL1344 was grown
from frozen stock in BMM or TSB plus 40% glycerol for 7 h at 37°C. An
inoculum of 25 �l was placed in 10 ml fresh BMM or TSB and incubated
at 37°C for 17 h. Based on plate counts of test cultures in TSB or BMM
incubated at 37°C for 17 h, a dilution series was devised to ultimately give
a concentration of 1 cell in 50 �l. For the Bioscreen experiments, cultures
were diluted in the test media, e.g., BMM plus NaCl and glycine betaine or
LB plus NaCl, by serial 10-fold dilutions, and then these were further
diluted 1 in 2 and, for the highest 10-fold dilution, up to 1 in 64. Wells of
a pair of Bioscreen plates (100 wells on each plate) were then filled with 50
�l diluted cells and 350 �l test medium. Each well of the first plate was
inoculated with a target concentration of 1 cell per well. This was obtained
by a series of binary dilutions. On the other plate, 50 wells were inoculated
with ca. 2 cells, 25 wells with 4 cells, 12 with 8 cells, and 5 with 16 cells.
These cultures were suitable for studying the stochastic birth/death pro-
cess of single (or at least few) cells. The remaining 8 wells of this second
plate represented population kinetics: they were inoculated with ca 32, 64,
320, 640, 3,200, 6,400, 32,000, and 64,000 cells. Plates were incubated in
the Bioscreen at 37°C for up to 10 days. The number of cells inoculated
into each well was estimated from plate counts of the highest 10-fold
dilution.

Estimation of the probability of growth for a single cell (p0). The
total number of cells, �a, inoculated in the 100 wells of the first microtiter
plate, was estimated by plate counts. The aim was to obtain ca. 1-cell/well
via dilutions, so we made sure that �a was around 100. The relative stan-
dard deviation (RSD) of the plate count method is usually ca. 10 to 15%
(1). As shown in Table A1, our plate count accuracy was 10% or less, so we
took RSD2[�a] to be 	0.01.

After incubation in the Bioscreen, the number of negative wells (i.e.,
where no growth was detected) was recorded. Negative wells could appear
only if the number of initial cells or the probability of growth was low. The
number of cells in a well follows the Poisson distribution with the param-
eter � � �a/n. The expected total number of growing cells on the plate is

n ln
n

w0
, where w0 is the number of negative wells (where no growth was

observed). This formula is meaningful only for 0 
 w0 
 n.
An estimator for the probability of growth of a single cell is

p0̂ � min�n ln
n

w0

�a
, 1� (3)

The method of C. Dupont and J. C. Augustin (15) was based on the same

formula. Note that, at our �a 	100-cell/plate target concentration, p0̂ 	 1
holds only if w0 � n/e, where e equals exp(1) 	 2.718. Therefore, we
included only experiments where 37 
 w0 
 n � 100.

In Appendix, we provide a formula for the RSD2 of the numerator of
p0̂. Using the result that the RSD2 of the ratio of independent variables can
be estimated by the sum of the RSD2 values of the numerator and denom-
inator (16), the accuracy of the above p0̂ statistic can be approximated by

RSD(p0̂) � �0.01 �

1

w0
�

1

n

(ln n � ln w0)2 (4)

The error bars on Fig. 1 are calculated from the above estimation. A
simulation study was also carried out to show that this is an accurate
estimation of the expected relative error of p0̂ (see Fig. A1).

Estimation of the maximum specific growth rate, �, and the physi-
ological state, �0, from OD detection time data. From an optical density
(OD) curve of growth in a well, let Tdet denote the time necessary to reach
a detection level, which we set as an ODdet of 0.25. The Tdet detection times
were estimated for wells with high inocula. The maximum specific growth
rate was estimated by the negative reciprocal of the differential quotient

�
1

�
�

dTdet

d ln(inoc)
(5)

using only the last 8 wells where the expected number of inoculated cells
was more than 30 (14). The physiological state of the growing subpopu-
lation, �0, was determined by averaging the transformed Tdet values of the
other 192 wells, as in reference 14.

RESULTS
Primary model: growth response parameters obtained from
Bioscreen experiments. Table 1 shows the probability of growth
for single cells of Salmonella, the physiological state, and the max-

FIG 1 Effect of NaCl concentration on the probability of growth of Salmo-
nella single cells. Data were obtained by Bioscreen based on equation 3. Error
bars based on equation 4 are also shown for the results in BMM. The measured
probabilities were fitted by weighted logistic regression. An F test showed that
the maximum slopes could be considered identical in the three media; there-
fore, the s0 parameter (the NaCl percentage where the probability of growth is
0.5) characterizes the effect of the medium composition on the probability of
growth: s0 � 6.1% in LB, 4.3% in BMM with glycine betaine (BMM_b), and
2.7% in BMM. The solid lines show the fit with the same maximum slope for
the three media.
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imum specific growth rate of the growing subpopulation under
various conditions in the three media. All three parameters de-
crease with NaCl concentration.

Secondary models: modeling the effect of NaCl and medium
on the response parameters. To compare the effect of the growth
medium on p0, the data were fitted by weighted logistic regression
as a function of s, the NaCl concentration, where the weights were
derived from the above error estimation for p0̂:

p0̂ � (1 � ea·[s�s0])�1 (6)

Here, a is a coefficient characterizing the maximum slope of the sigmoid
curvedescribing theeffectofNaClvariationontheprobabilityofgrowth
(Fig. 1), and s0 is the salt concentration where that probability is 0.5. An F
test showed that the rate parameter a could be assumed to be the same in
the different media (P � 0.56); therefore, it was a reasonable simplifica-
tionthatthethreemodelsfortheprobabilityofgrowthshoulddifferfrom
each other only by a zs shift in NaCl. The best fit for the parameter a was
2.7, while the s0 parameters were estimated as 6.1% in LB, 4.3% in BMM
with glycine betaine, and 2.7% in BMM without osmoprotectant.

A similar effect of the medium could be observed with the growth
rate. Figure 2 shows the logarithm of the specific growth rates mea-
sured by Bioscreen as a function of NaCl in the three media. The data
were fitted by linear regression. An F test showed that the three slopes
could be considered identical (P � 0.12); therefore, only the intercept
with the NaCl axis, s1, should depend on the medium. The common
slope (b) of �0.478 and the intercept values of 4.3% in LB, 1.6% in
BMM with glycine betaine, and 0.04% in BMM characterize the three
responses. The shift in percent NaCl caused by the media is denoted
by zs in the figures. Between BMM and BMM with glycine betaine,
this shift turned out to be the same as with the model for the proba-
bility of growth.

Finally, the h0 � �ln(�0) values (17) were plotted against
�ln(p0) as shown in Fig. 3. Only a slight positive correlation
could be shown between them (P � 0.1), so h0 was taken as a
constant, namely, the average of its estimates (3.85) from the
primary models.

Comparison of the response parameters obtained in the Bio-
screen and by plate counts. From the secondary models described
above, growth curves were generated assuming that the growing
subpopulation grows according to the model of Baranyi and Rob-
erts (17) and that the nongrowing one follows linear death kinet-
ics. The maximum population density was considered a constant,
5 � 108 CFU ml�1 in all cases. The predictions, based on Bioscreen
data, were compared to growth curves generated by plate counts.

TABLE 1 Estimations of growth response parameters obtained from
Bioscreen experiments at different NaCl concentrations in three
different media

Medium s (%) p0
a �0

b ln � (h�1)c

LB 4.0 1.00 0.0468 1.100
5.0 0.98 0.0185 0.740
5.5 0.88 0.0165 0.590
6.5 0.20 0.0013 0.330

BMM � betaine 3.0 0.93 0.0418 0.474
3.5 0.98 0.0365 0.384
4.0 0.69 0.3208 0.350
4.5 0.35 0.0187 0.270

BMM 2.0 0.89 0.0199 0.445
2.5 0.34 0.0342 0.290
3.0 0.60 0.0036 0.232
3.5 0.03 NDd 0.200
4.0 0.01 ND 0.140

a Physiological state of the growing subpopulation (17).
b Probability of growth.
c Natural log of the specific growth rate.
d ND, not determined. The physiological state could not be evaluated in these
conditions because there were not enough data due to the low probability of growth.

FIG 2 Effect of NaCl concentration on the natural logarithm of the specific
growth rate (�) of Salmonella. Data were obtained by Bioscreen based on
equation 5. The measured maximum specific growth rates were fitted by linear
regression. An F test showed that the slopes could be considered identical in the
three media; therefore, the intercept with the NaCl axis, s1, characterizes the
effect of the medium composition on the growth rate: s1 � 4.3% in LB, 1.6% in
BMM with glycine betaine (BMM_b), and 0.04% in BMM. The broken line
shows the fitted line if the measured ln(�) values for BMM with glycine betaine
had been fitted independently of the other data. The solid lines show the fit
with the same slope for the three media.

FIG 3 No strong correlation could be shown between the work-to-be-done
parameter, h0 � �ln(�0), and the negative logarithm of the modeled proba-
bility of growth, �ln(p0), so h0 was taken as a constant, the average of its
estimates, independently of the medium. BMM_b, BMM with glycine betaine.
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The results are shown in Fig. 4. The predictions were mostly in
agreement with the plate count measurements except for the 2.5%
NaCl concentration in BMM, where the lag time predicted was
longer than that measured by plate count. The plate count was
almost identical for 3 and 3.5% NaCl, though the Bioscreen results
predicted ca. 20% less growth. At high salt concentrations, 5 and
5.25% NaCl in BMM with glycine betaine, we could not generate
Bioscreen data, presumably due to the very small probability of
growth. Therefore, the prediction at 5.25% NaCl is an extrapola-
tion and, not surprisingly, differs from the data measured by plate
counts (Fig. 4d).

DISCUSSION
Growth rate determined in the Bioscreen and by plate count.
The measurement of bacterial kinetics by optical density has been
widely studied. To estimate the specific growth rate by our method

using Bioscreen data, an important condition is that the detection
level be reached in the exponential phase and that the OD curves
from different inocula be parallel. In this case, the method is ro-
bust, as shown by references 14, 18, and 19. Our validation data
corroborate these findings; as shown in Fig. 5, there is no signifi-
cant difference in the specific growth rate determined by viable
counts and that determined by the Bioscreen, when the cells grow
in BMM and in LB. However, with glycine betaine added to BMM,
there is a systematic bias of more than 20%.

We observed the same difference (20) between the specific
growth rate estimations, when Escherichia coli was grown under
osmotic stress with and without glycine betaine or choline in the
minimal medium. In a previous publication (20), we showed that
the metabolic response of E. coli to osmotic stress in the presence
of these osmoprotectants switched at a threshold NaCl concentra-

FIG 4 Comparison of the growth curves predicted from the Bioscreen data (continuous lines) with growth curves measured by plate counts in BMM (a), LB (b),
and BMM with glycine betaine (BMM_b) (c) and extrapolation of the Bioscreen results in BMM with glycine betaine (d). The continuous lines represent the
respective predicted curves of the growing subpopulation.
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tion where the growth yield was optimum. With Salmonella, in the
presence of glycine betaine, we found an optimum growth yield at
the NaCl concentration where the probability of growth decreases
(between 3.9 and 4.5% NaCl; data not shown).

The mechanism by which osmoprotectants work is not clear.
Glycine betaine, for example, is believed to be metabolically inac-
tive, but our results suggest that its interaction with metabolism
may go beyond just restoring some of the turgor of the cell by
replacing water (21, 22). Figure 5 suggests that the presence of
glycine betaine in minimal medium had a protective effect com-
pensating for a zs value of 1.6%, compared to minimal medium on
its own in the Bioscreen, while it was about 2% under the same
conditions when Salmonella was cultured in 100-ml vessels. Since
the switch we observed with E. coli was from aerobic to fermenta-
tive pathways and the only parameter that may differ in the viable
count and in the Bioscreen experiments is oxygen availability, it is
reasonable to hypothesize that glycine betaine is also linked to
respiration.

The work-to-be-done parameter and osmotic stress. As
proven by (12), the observed overall lag time of the whole popu-
lation (i.e., the delay to the onset of exponential growth) is

�a � �g �
� ln(p0)

�
(7)

where p0 is the fraction of the initial cells whose lineages produce
exponential growth, �g is the lag time of the growing subpopula-
tion, and �a denotes the overall lag time (see also equations 1 and
2). S. J. Pirt (23) called �a “apparent lag.” Instead of replicate
experiments, as described by Dupont and Augustin (15), the error
of the p0̂ statistic was estimated by equation 4, whose accuracy is
shown in Fig. A1. It is an open question whether the overall vari-
ability shown in Fig. 1 can be largely explained by the measure-
ment method or whether biological heterogeneity also signifi-
cantly contributes to it.

The procedure elaborated in reference 14 was valid for an en-
vironment where all cells grew (p0 � 1), based on the mathemat-
ically proved theorem that, under certain homogeneity condi-
tions, the average, �0, is independent of the inoculum. This
parameter is convenient to quantify the physiological state, a kind
of quantification of how suitable the growing cells are to the envi-
ronment.

The expression 
0 � �0 · p0 is a parameter quantifying the
growth potential of the population. The natural logarithm of its
first component, h0 � �ln(�0), has been used by several authors
to quantify the “work to be done” by the growing cells. The second
part takes into account that in fact only a fraction of the initial cell
population is producing the exponential growth.

The h0 work-to-be-done parameter has been shown to be in-
dependent of the growth conditions if the cells are pretreated in a
systematic way for stresses like temperature (24) but to increase
with osmotic stress (10, 25). Figure 3 suggests that both h0 and
�ln(p0) increase, so both �0 and p0 decrease with stress, but the
correlation was weak (P � 0.1), and for the sake of simplicity, h0

was taken as a constant in the predictions. More data would be
necessary for a decisive analysis.

Effect of growth medium on the growth response parame-
ters. A quantification of bias is often used to compare the effect of
the growth medium on the growth rate (8, 26). Here, we observed
a systematic bias between the different media, although it de-
pended on the measurement method; it was not the same when
measured in the Bioscreen as when measured by plate count. A
similar systematic shift could be observed for the probability of
growth between the different media. In fact, this may be reformu-
lated, based on a generalized z value concept, proposed by Pin et
al. (27), as follows: in terms of probability of growth, the addition
of glycine betaine to minimal medium is equivalent, at least in the
studied region of NaCl, to a zs value of �1.6% NaCl, or a change
from minimal medium to LB corresponds to a zs value of �3.5%
NaCl. In terms of growth rate, the zs values as measured in the
Bioscreen would be �1.6% and �4.2% NaCl, respectively. These
concepts could help to develop useful interpretations for the food
industry, where NaCl, a widely used preservative, needs to be re-
duced because of health issues.

Conclusions. In this study, we have shown that the introduced
quantification of the growth potential of a bacterial culture, con-
sisting of the proportion of the growing subpopulation (identified
by the probability of growth for a single cell) and the suitability of
these growing cells, is measurable by optical density experiments,
in parallel with the specific growth rate of the population. These
experiments lead to a robust description of the effect of rich and
minimal media, with and without osmoprotectant, on the proba-
bility of growth of Salmonella under osmotic stress. A simple shift
parameter of the added NaCl concentration answered the ques-
tion of what amount of NaCl can be accounted for by adding an
osmoprotectant. We also highlighted a gap in our biological un-
derstanding of the mechanism by which the osmoprotectant gly-
cine betaine works, a typical area where systems biology ap-
proaches should be integrated in predictive modeling in food (28,
29).

It is important to see that, unlike the time to division for a
single cell, the growth potential of an inoculated cell can be in-
ferred retrospectively only, from the time when its isogenic de-
scendants are growing exponentially. It can be envisaged as an
environment- and history-dependent parameter encoded in the

FIG 5 Comparison between the natural logarithm of the specific growth rates
obtained from viable-count experiments and those from Bioscreen using dif-
ferent media. Glycine betaine is a less efficient osmoprotectant in the wells of
the microtiter plate than in broth.
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biochemical network of that initial single cell. The situation is
similar to the specific growth rate that can be observed at the
population level only; it is in fact a parameter derivable from the
probability distribution of single-cell generation times.

The quantification, measurement, and modeling of growth po-
tential of food-borne pathogens have special importance in quan-
titative microbial risk assessment, to which we hope to contribute
with the present study.

APPENDIX
It can be readily seen that the number of growing cells follow the Poisson
distribution with the �p0 mean value, where � is the average number of
initial cells in a well and p0 is the probability of growth for a cell.

The number of negative wells on a plate, w0, can be conceived as the
number of failures in a Bernoulli experiment of n trials, with individual
probabilities of e��p0. For the variance of their ratio,

Var �w0

n � �
e��p0(1 � e��p0)

n
(A1)

From the first-order approximation of the natural log function around
e��p0:

Var �ln
n

w0
� � Var �ln

w0

n � � e2�p0 Var �w0

n � �
e�p0 � 1

n
(A2)

RSD2 �ln
w0

n � �
(e�p0 � 1) ⁄ (�p0)

n�p0
(A3)

Using � · p0 	 ln n � ln w0, a practical approximation can be derived:

RSD2 �ln
w0

n � �

1

w0
�

1

n

(ln n � ln w0)2 (A4)

Table A1 shows that the accuracy of our plate count measurements is
generally around or less than 10%; therefore, for our statistic

p0̂ � min �n ln
n

w0

�a
, 1� (A5)

an accuracy estimation can be obtained as

RSD2 �p0̂	 � 0.01 �

1

w0
�

1

n

(ln n � ln w0)2 (A6)

This estimation was validated by a simulation study (Fig. A1).
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