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Abstract

Motivation: Identifying rare subpopulations of cells is a critical step in order to extract knowledge from single-cell
expression data, especially when the available data is limited and rare subpopulations only contain a few cells. In
this paper, we present a data mining method to identify small subpopulations of cells that present highly specific ex-
pression profiles. This objective is formalized as a constrained optimization problem that jointly identifies a small
group of cells and a corresponding subset of specific genes. The proposed method extends the max-sum submatrix
problem to yield genes that are, for instance, highly expressed inside a small number of cells, but have a low expres-
sion in the remaining ones.

Results: We show through controlled experiments on scRNA-seq data that the MicroCellClust method achieves a
high F; score to identify rare subpopulations of artificially planted human T cells. The effectiveness of MicroCellClust
is confirmed as it reveals a subpopulation of CD4 T cells with a specific phenotype from breast cancer samples, and
a subpopulation linked to a specific stage in the cell cycle from breast cancer samples as well. Finally, three rare sub-
populations in mouse embryonic stem cells are also identified with MicroCellClust. These results illustrate the pro-
posed method outperforms typical alternatives at identifying small subsets of cells with highly specific expression
profiles.

Availabilityand implementation: The R and Scala implementation of MicroCellClust is freely available on GitHub, at
https://github.com/agerniers/MicroCellClust/ The data underlying this article are available on Zenodo, at https://dx.
doi.org/10.5281/zeno0do0.4580332.

Contact: alexander.gerniers@uclouvain.be

Supplementary information: Supplementary data are available at Bioinformatics online.

be reflected in their gene expression. The SC3 method has no trouble
to distinguish between both cell types when their relative proportion
is, by design here, 50/50. Yet, when the GARP+ Tregs only repre-

1 Introduction

Next-generation single-cell sequencing technologies, such as

scRNA-seq, provide an important source of data in nowadays med-
ical research. Indeed, cell tissues present a high heterogeneity, which
can be analyzed by means of single-cell data. Unsupervised cluster-
ing is a common task when analyzing scRNA-seq data. This consists
in grouping cells using their expression values to highlight subpopu-
lations in the cell tissue. Several techniques have been developed spe-
cifically toward this objective (Kiselev et al., 2019). They generally
tend to group cells in relatively large clusters, but therefore tend to
miss subpopulations which only amount for a small fraction of the
cells.Figure la—c exhibits such a behavior when running SC3
(Kiselev et al., 2017), a popular method designed for single-cell clus-
tering, on a collection of samples made of activated (GARP+) regu-
latory T cells and CD8 T cells from the same human patient. These
two types of lymphocytes have very distinct functions, which should

©The Author(s) 2021. Published by Oxford University Press.

sent a smaller fraction of the data (here 10%), SC3 clearly fails to
identify them as forming a separate and specific cluster.

An alternative and semi-automatic way to identify small sub-
populations of cells could rely on dimensionality reduction meth-
ods to represent these cells in a 2D-space. One could visually
inspect such representation to spot specific clusters. Figure 1 illus-
trates such an example with GARP+ Tregs (10%) and CD8 T
cells (90%) after using (d) PCA (Wold et al., 1987) or (e) t-SNE
(Maaten and Hinton, 2008), respectively a linear and a non-linear
dimensionality reduction method. Cluster separation is relatively
poor with PCA on this example, and it would be difficult to iden-
tify the GARP+ Treg subpopulation without any kind of supervi-
sion (the color code is only available for illustration purpose in
such a controlled experiment). The #-SNE produces more distinct
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Fig. 1. (a—c) SC3 correctly clusters the GARP+ Tregs (purple) separately from the CD8 T cells (turquoise) whenever their relative proportion is either 50/50% (a) or 25/75%
(b). SC3 fails to identity the GARP+ Tregs as a separate and specific cluster when their relative proportion is only 10% of the cells (c). The reported genes are the marker genes

identified by SC3 for each cluster. Expression values are log-normalized (log 1o (x + 0.1)).

(d, e) 2-D representation of GARP+ Tregs (purple, 10% of the data) versus CD8 T

cells (turquoise, 90%) from scRNA-seq data after dimensionality reduction. Cluster separation is poor with PCA (d). A better separability is observed with ¢-SNE (e) but this

method fails at identifying all GARP+ Tregs as forming a separate cluster

clusters here, but also fails to perfectly separate the GARP+ Tregs
from CD8 T cells.

The previous examples illustrate the need for dedicated methods,
beyond generic (bi)clustering methods (Xie et al., 2019), to identify
small and specific cell subpopulations from scRNA-seq data.
RaceID (Griin et al., 2015) and GiniClust (Jiang et al., 2016) are
two popular methods to address this question. They perform a com-
plete clustering of the data but specifically focus on the discovery of
small clusters.

The original RacelD first runs k-means to divide the dataset into
large clusters. Then, it identifies possible outliers inside each cluster
from the count variability of each gene among the cells in the cluster.
This variability is compared to a background model, computed over
all cells, that accounts for technical and biological noise. RacelD
considers a cell as an outlier if the count probability is below a pre-
defined threshold for a certain amount of genes. The outlier cells are
then grouped into small clusters based on expression correlation.
RaceID3 (Herman et al., 2018) provides several adaptations to the
original method to improve classification, including a univariate fea-
ture selection step before clustering.

GiniClust first performs a gene selection based on a Gini index
for rare cell type identification. The value of this index is high for a
gene that is differentially expressed in a small proportion of the
data. GiniClust identifies ‘high Gini genes’ that are differentially
expressed in a limited number of cells, and performs a clustering
based on these genes. GiniClust3 (Dong and Yuan, 2020) scales up
to large-scale datasets by replacing the clustering step by community
detection algorithms for large networks.

Both RacelD(3) and GiniClust(3) are univariate methods in the
sense that the gene expression analysis (either assessed through a
count probability or a Gini index) is performed gene by gene. Such
methods thus plainly ignore the possible dependence between differ-
ent gene expression values when looking for rare subpopulatons of
cells but rather consider each gene as playing an independent role.
These methods are therefore computationally efficient but are likely
to miss interesting patterns when a set of genes forms a specific ex-
pression altogether.

FiRE and scAIDE are two large-scale methods recently proposed.
FiRE (Jindal et al., 2018) assigns a rareness score to each cell after
selecting the 1000 most variable genes. It uses the sketching tech-
nique, which randomly projects cells to low-dimensional bit signa-
tures and groups similar one together. Multiple sketching runs are
aggregated to produce a rareness score. scAIDE (Xie et al., 2020)
first learns an autoencoder to embed the genes into 256 dimensions.
It then applies a random projection hashing based k-means algo-
rithm on the resulting data to identify rare cell types. These two
methods attempt to identify rare cells without associating them to
marker genes at the same time. Instead, they rely on a univariate fil-
ter, such as the Wilcoxon’s rank-sum test, applied a posteriori on
the spotted cells to discover marker genes.

We propose here MicroCellClust, a new method searching for
relevant expression patterns in a multivariate way. More specifical-
ly, MicroCellClust looks for a relevant subset of columns and of
rows in the data matrix storing the expression values for each cell
and each gene, respectively. A natural multivariate objective to be
optimized is the sum of expression values within the selected subma-
trix. This is exactly the max-sum submatrix problem which, despite
its NP-hard nature, has been shown to be effective to identify gene-
specific subgroups from expression data (Branders et al., 2019). As
such, it is not designed for rare subpopulation identification as the
maximization identifies large subgroups. MicroCellClust extends
this approach by refining the objective function to be optimized and
by adding useful constraints to specifically search for rare and highly
specific patterns of expressions within small subpopulations of cells.

Optimizing the sum of selected entries in the data matrix natur-
ally leads to select highly expressed genes in the selected cells, when-
ever the data matrix represent the original scRNA-seq count values
(or a log-normalized version of them). Considering the opposite of
these original values would lead to select cells with low expressed
genes after solving the same problem. Other data normalizations
can also lead to other interesting patterns (e.g. the genes departing
the most of the median expression values for each cell).
Nevertheless, we stick here for clarity to the original interpretation
with selected entries corresponding to jointly high expression values.
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This choice is also consistent with the nature of scRNA-seq data be-
cause of the dropout phenomenon (Ziegenhain et al., 2017) which
could lead to many false positives whenever one looks for low
expressed values.

2 The MicroCellClust method

A scRNA-seq dataset can be represented as an expression matrix
M € RI9%I€ with G the set of rows associated to the genes and C the
set of columns associated to the cells. The 7 entry of this matrix is
here assumed positive whenever the gene i is expressed in the cell j,
and negative otherwise. This requires to choose a threshold on the
raw expression values (i.e. normalized read counts) to specify a min-
imal expression level above which a gene is considered expressed,
and to scale the data accordingly. One typically considers a log-scal-
ing log10(x + 0.1), with x the raw expression value and 0.9 as ex-
pression threshold in this example. Negative values of such log-
normalized data represents genes that are negligibly expressed, or
not expressed at all.

The goal is to select a subset of genes I C G and a corresponding
subset of cells | C C, in other words, a bicluster (I, ]), representative
of a small subpopulation of, by default, highly expressed cells and
highly specific genes. This goal is formalized below as a constrained
optimization problem for which an optimal solution is denoted by

()
(r.j) = argmaxz <Zm,~, - K Z max{07mik}> (1)
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The objective function in Equation (1) is composed of two terms.
Maximizing the first term, i.e. >7,; 3, m; corresponds to the
max-sum submatrix problem (Branders et al., 2019). One searches
for a bicluster for which the sum of all the corresponding expression
values is maximal. The global sum criterion allows for variations
within the expression values, which is well suited to scRNA-seq data
since it is typically subject to technical and biological noise
(Todorov and Saeys, 2019). An unusually high expression of a gene
in a particular cell, e.g. due to transcriptional bursting, would have
little influence on the bicluster found since expression values are not
compared in a pairwise fashion. Moreover, the sum criterion allows
for some genes within the selected bicluster to be lowly, or even
negatively, expressed for some cells as long as their inclusion
increases the objective value globally, which is consistent with the
dropout phenomenon. In other words, the sum allows for exceptions
within the selected bicluster as only the global influence of the
selected cells and selected genes matters. Single-cell data is however
also often sparse in terms of expressed values. The parameter u (typ-
ically fixed to 10%), included in the additional constraint (2), con-
trols the proportion of negative values allowed in the solution.

As such, the max-sum objective does not guarantee the solution
to be highly specific. In other words, the genes selected within the
bicluster could also be highly expressed in other cells. The second
term prevents such situation by penalizing negatively the out-of-
cluster cells (k € C J) that would express the same genes positively
(hence the max{0,.} operation). The parameter x controls the rela-
tive influence of these two terms within the objective function. The
higher « the fewer genes will tend to be included in the solution.
Our results described in Section 3 suggest that selecting 10-30 genes
is often relevant from a biological viewpoint. We suggest k = 1—2‘0
and u=10% as default values. Our Supplementary Material
includes a detailed analysis of the influence of these parameters.

Figure 2a represents a toy example of scRNA-seq data made of
12 cells and 15 genes. The unconstrained max-sum submatrix solu-
tion (Fig. 2b) forms a relatively large bicluster with a low specificity.
It includes, for instance, the cells ¢; and ¢y, as they positively con-
tribute to the objective (the sum of the selected entries in their

such that <pu (2)

respective column is positive) despite many negative values and a
low similarity with the other selected cells. Figure 2c¢ represents the
MicroCellClust solution, with k=1 in the objective function (1)
under the constraint (2) with g = 10%. The three cells inside the
selected bicluster have a similar expression of their five selected
genes. These five genes are also specifically expressed in this biclus-
ter with only a few out-of-cluster expressions (red digits in one out-
of cluster cell, respectively for gs, go and g;5). Other genes, such as
g3, are no longer selected since their out-of-cluster positive expres-
sion implies a negative contribution to the objective function.

Problem (1), constrained according to (2), requires the expres-
sion matrix to be sparse. Indeed, many genes could be expressed in
nearly all cells. Such a situation would lead to an optimal solution
being a large bicluster that would no longer be specific to a small
population of cells. In the limit, all cells could be part of the selected
bicluster (] =C) and the second term of (1) would vanish.
MicroCellClust therefore filters out initially any gene expressed in
more than x% of the cells (typically 25%, which generally keeps
around 80% of the genes). This initial filtering is motivated by the
search of gene markers of specific subpopulations rather than gener-
ic markers of high expression throughout the cell population.

We propose a constraint programming solver implemented in R
and Scala to find an optimal solution to problem (1), (2). It is
inspired from the CPGC algorithm (Branders et al., 2018) used to
solve the max-sum submatrix problem. In particular, the notion of
implicit search space also applies to our constrained [see (2)] and
extended objective [see (1)]. A naive implementation would indeed
search explicitly all possible subsets of columns (cells) and of rows
(genes) and evaluate 297l potential biclusters. It turns out that
whenever one dimension is fixed (typically the cells), the optimal so-
lution along the other dimension (the genes) can be found in linear
time. Consequently, the actual search space size to consider is
o(|g| - 2.

Heuristics are used to evaluate at an early stage of the search
which combinations of cells are most likely to produce an optimal
solution. Specifically, the solver follows a breadth-first search strat-
egy: evaluate all possible biclusters of two cells, next biclusters of
three cells, etc. At each level, the solver selects the biclusters with
highest objective values to continue the search. Only supersets of the
set of cells they include are evaluated at the next level. This strategy
is well suited to problem (1), (2). Due to the high specificity of the
optimal bicluster, any subset of its cells is expected to form a prom-
ising solution the objective value of which is above average.
Empirical observations illustrate that the distribution of objective
values, at a given level of the search, roughly follows a power law,
which suggests to ignore the long tail of the distribution.

Comparative results between this strategy and an exhaustive
search show that such a heuristic search produces the same results
with an O(|C|*) complexity. This substantially shortens the comput-
ing time: less than 2 seconds for a dataset of 50 cells x 10 000 genes;
around 10min for 1000 cells (see details in Supplementary
Material). These results have been produced on MacBook Pro lap-
top (Mac OS 10.15.7; 2.7 GHz Intel Core i7 CPU; 16 GB RAM).

3 Results

We illustrate below the benefits of using MicroCellClust to identify
small and highly specific subpopulations of cells and their associated
marker genes from scRNA-seq data. The first results allow one to
compare MicroCellClust with the RacelD3, GiniClust and scAIDE
methods. Such a comparison is conducted in a controlled setting to
spot few GARP+ Tregs cells among CD8 T cells, as in our motivat-
ing example described in Section 1. GiniClust3 and FiRE are not ef-
fective to solve this task as commented below. A second controlled
experiment aims at spotting rare Jurkat cells among 293T cells from
human cell lines. In this case, the fraction of rare cells artificially
planted varies from .5% to 10%. The experiments are conducted on
datasets with up to 1000 cells which allows further comparisons
with methods specifically designed to deal with large-scale data such
as FiRE, GiniClust3 and scAIDE. Next, we report how
MicroCellClust highlights a small subpopulation with a specific
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Fig. 2. (a) A toy example of scRNA-seq data after log-normalization and rounding to integer values for clarity of this example. (b) The optimal solution to the (unconstrained)

max-sum submatrix problem. (c) The MicroCellClust solution with k=1 and u = 10%

phenotype inside CD4 T cells from breast tumor samples, as well as
a small subpopulation linked to cell cycle activity among activated
Tregs. Finally, we report how MicroCellClust identifies several rele-
vant subpopulations in mouse embryonic stem cells.

3.1 Identification of rare GARP+ Tregs among CD8 T

cells

The original data is composed of T lymphocytes extracted from a
human breast tumor, sorted by flow cytometry into CD8 T cells and
activated regulatory T cells and processed following the SmartSeq2
protocol (Picelli et al., 2014) (see details in Supplementary
Material). Raw  expression values are log-transformed
(log10(x + 0.1)), except for RaceID3 and Giniclust which require
raw expression data. We design a controlled dataset by sampling
uniformly at random five GARP+ Tregs (from the 96 available
ones) and 45 CD8 T cells (from the 83 available ones after quality
control). Such a random sampling is repeated independently 100
times and, for each run, the scRNA-seq data matrix contains 50 cells
and ~18 000 genes on average (MicroCellClust filters out ~2500
genes expressed in more than 25% of the cells). We assess to which
extent each method is able to identify as a separate and specific clus-
ter the small population of GARP+ Tregs (10% of the cells) among
the CD8 T cells. These two kinds of lymphocytes have very distinct
functions. Yet, clustering them from their expression values into sep-
arate and specific subpopulations is not necessarily straightforward,
as illustrated in Figure 1.

RaceID3 and GiniClust perform a full clustering of the data, for
which each cell is assigned to one cluster. In contrast,
MicroCellClust spots a specific subpopulation of cells leaving the
other cells not clustered. Yet, it is straightforward to run
MicroCellClust again on the remaining cells. Repeating this strategy
k times defines the top-k candidate subpopulations identified by
MicroCellClust (it turns out that considering the top-2 biclusters is
sufficient to find a Treg related cluster for every run, as illustrated
below). For all tested methods, the cluster with the highest propor-
tion of GARP+ Tregs is considered to be the solution found for a
specific run.

Table 1 reports the precision (=the proportion of cells included
in the solution which are actual Tregs) and recall (=the proportion
of the five Tregs to be found actually included in the solution) for
each method. Both metrics and their harmonic average, or F; score,
are averaged over the 100 independent runs. The first column (Nb.
C) indicates the number of runs for which the solution is composed
exclusively of Tregs (100% precision). The second (Nb. =) column
indicates the number of runs for which all five Tregs exactly form

Table 1. Identification results of rare GARP+ Tregs among CD8 T
cells, averaged over 100 independent runs

Method Nb.C Nb.= Precision Recall F;score
MicroCellClust top 1 71 45 0.79 0.74 0.76
MicroCellClust top 2 86 54 0.96 0.89 0.92
RacelD3 48 2 0.75 0.47 0.55
GiniClust 0 0.35 0.59 0.37
scAIDE 1 0 0.20 0.95 0.32

(Nb. C) reports the number of runs with 100% precision.
(Nb. =) reports the number of runs with 100% precision and recall.
Bold results indicate which method outperforms the others for each metric.

the solution (100% precision and recall). MicroCellClust clearly
outperforms the competing methods with a F; score equal to 76%,
and even equal to 92% when considering the top-2 strategy.
MicroCellClust top-2 also identifies perfectly the 5 GARP+ Tregs in
54 out of the 100 runs. This is much less the case with RaceID3 and
GiniClust which illustrates that these methods are far less efficient at
finding rare and specific subpopulations.

Figure 3a reports the bicluster found by MicroCellClust for a
representative run. The five Tregs are perfectly identified and the
selected subset of marker genes is informative. For instance, the
marker genes include IL2ZRA and FOXP3, which are clear indicators
of Treg cells and CCR8, which is specific to Tregs present in the
breast (Plitas et al., 2016).

Such a result is very rarely obtained with RaceID3. In most cases,
the Tregs are split into different clusters and/or end up being clus-
tered with CD8 T cells. The outlier detection procedure behaves
poorly here as RacelD3 often identifies only a subset of Tregs as out-
liers, resulting in mixed clusters. Figure 3b illustrates a good per-
formance run for RacelD3 that correctly identifies Treg related
genes, such as VDR, IL2RA, CD4, CCR8 and FOXP3, also present
in the MicroCellClust solution. However, two CD8 T cells are also
present in the solution found and the last three marker genes are
also highly expressed in many cells from the other clusters.

GiniClust performs poorly in this controlled experiment.
GiniClust [with the P-value cutoff of the Gini index tuned to 0.005
since the default cutoff (10~*) leads to select very few genes, none at
all for some run] identifies ~235 high Gini genes on average over 100
runs. Yet, it always fails at identifying exactly the five GARP+
Tregs. Figure 3c illustrates a best run, in relative terms, for
GiniClust. For this run, four out of five Tregs are correctly identified
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Fig. 3. Representative results of GARP+ Tregs identification within CD8 T cells. (a) Marker genes identified by MicroCellClust in a typical run where it identifies the five
GARP+ Tregs perfectly. (b) Marker genes for cluster 1 found by RaceID3 in a typical run. RaceID3 correctly identified Treg-associated genes, but also includes CD8 T cells in
the same cluster. The last 3 genes are also highly expressed in other cells. (c) High Gini genes identified by GiniClust for a representative run. Four out of five Tregs are correctly
identified in a separate cluster but the marker genes are not particularly expressed in this cluster

in a separate cluster but the marker genes are not particularly
expressed in this cluster. In other words, GiniClust fails at identify-
ing highly specific genes which would be together informative of the
identified cell clusters. This is most likely due to the univariate gene
selection performed in this method which contrasts drastically with
the MicroCellClust approach.

The methods for large-scale data are performing very poorly in
this experiment. scAIDE has a very low precision with the Tregs
assigned to large clusters of 25 cells on average. FiRE returns the
same score to each cell and is therefore useless for this data.
GiniClust3 finds only 1 candidate marker gene, no matter which
Gini cut-off is considered, and is therefore useless as well.

3.2 Identification of rare Jurkat cells among 293T cells
We further asses the performance of MicroCellClust while varying
data sizes (from 50 to 1000 cells) and rare cell proportions using a
dataset containing two human immortalized cell lines: 293T and
Jurkat cells (Zheng et al., 2017; Zheng et al., 2017). These two cell
types were mixed in vitro and a single-nucleotide variant has been
used to determine the lineage of each cell, resulting in a total of
1540 293T cells and 1694 Jurkat cells. We design a controlled ex-
periment by sampling at random rare populations of Jurkat cells
(from 0.5% to 10% of the data, with a minimum of 5 cells) and
abundant populations (up to 1000 cells) of 293T cells and ~15 000
genes. MicroCellClust uses ~9500 genes expressed in at most 25%
of the cells. For each combination, 10 independent runs are per-
formed. For this experiment, the x parameter of MicroCellClust has
been chosen as k = % which produces results with ~20 marker
genes, regardless of the size of the number of rare cells in the identi-
fied bicluster.

Table 2 reports the F; score of each method averaged over 10
runs. MicroCellClust achieves a high F; score (>90%) in each case
(the top-1 solution always produces a Jurkat related bicluster during
this experiment). This is not the case for the other methods. The
methods designed for large-scale datasets perform poorly whenever
the total number of cells is less or equal to 200. For larger datasets,
with at least 500 cells, they may perform well but their performance

Table 2. Identification results of rare Jurkat cells among 293T cells:
average F; score over 10 independent runs

Total size  Rarecells MCC RaceID3 FiRE GiniClust3 scAIDE
50 5 (10%) 0.99 0.71 0.00 0.00 0.74
100 10 (10%) 0.99 0.68 0.00 0.00 0.47
100 5 (5%) 0.97 0.72 0.16 0.00 0.18
200 20 (10%) 0.96 0.67 0.13 0.00 0.57
200 10 (5%) 0.95 0.59 0.41 0.00 0.16
200 5 (2.5%) 0.95 0.66 0.54 0.00 0.03
500 50 (10%) 0.93 0.46 0.78 0.99 0.99
500 25 (5%) 0.95 0.45 0.80 0.88 0.99
500 10 (2%) 0.95 0.51 0.56 0.01 0.83
500 5 (1%) 0.92 0.60 0.41 0.71 0.06
1000 100 (10%) 0.91 0.41 0.92 1.00 0.72
1000 50 (5%) 0.91 0.43 0.77 1.00 0.85
1000 20 (2%) 0.95 0.49 0.51 0.99 0.98
1000 10 (1%) 0.92 0.53 0.33 0.50 0.30
1000 5 (0.5%) 0.93 0.51 0.19 0.62 0.05

Note: MCC stands for MicroCellClust.
Bold results indicate which method outperforms the others for each
experiment.

significantly drops when the subpopulation to identify only contain
a few cells (5-10). These results illustrate that the performance of
MicroCellClust is stable with respect to the total number of cells. It
is clearly the best performing method to identify a particularly rare
subpopulation of cells.

3.3 Identification of a T regulatory related

subpopulation within CD4 T cells

We further illustrate the potential of MicroCellClust to highlight a
small subpopulation among cells of interest, by analyzing a set of
182 CD4 T cells from the breast sample under study in Section 3.1.
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Fig. 4. MicroCellClust identifies subpopulations in human breast cancer cells, namely (a) a subpopulation within CD4 T cells with marker genes related to GARP-Tregs, and
(b) a subpopulation withing GARP+ Tregs with marker genes related to cell division. (c¢) MicroCellClust identifies three subpopulations in mouse embryonic stem cells. In the
above plots, ‘0.0.c’ refers to out-of-cluster expression values and the other rows represent the identified biclusters. Full heatmaps are included in Supplementary Material

It contains 93 tumor and 89 healthy cells (after quality control) and
16 737 genes expressed in at most 25% of the cells. The objective is
to check whether any subpopulation with a specific function can be
identified among these CD4 T cells, and to link it to the immune re-
sponse against breast cancer. The healthy cells can serve here as a
control to see whether the identified subpopulation only contains
tumor cells, i.e. with a function specific to a tumor.

MicroCellClust identifies a cluster of 23 cells originating from
the tumor, characterized by the expression of Treg associated genes
such as FOXP3 and IL2RA (Fig. 4a). Interestingly, these cells were
not annotated as GARP+ Tregs by the flow cytometry sorting since
they did not express GARP. However, their gene expression clearly
indicate Treg-related functions. This is confirmed by a Gene
Ontology enrichment analysis (Ashburner et al., 2000; The Gene
Ontology Consortium, 2019) (see detailed results in Supplementary
Material). We conjecture that GARP is transiently expressed after
Treg activation, and that the identified cells might be related to the
GARP+ Tregs by being resting or not recently activated Tregs.
Indeed, five cells from the identified cluster appear to have the same
T cell receptor (TCR) sequences than GARP+ Tregs, which supports
our hypothesis. To sum up, MicroCellClust enables us to identify a
set of resting or not recently activated Tregs among CD4 T cells, a
subpopulation that had not been sorted out by flow cytometry.

MicroCellClust returns a bicluster with five marker genes when
using x = 0.5 ~ 19 and u = 10%, including FOXP3 which already

[C]

suggests a Treg related function. This relatively low number of
marker genes suggests to decrease x to 0.3, providing a solution
with 12 cells and 18 genes, including IL2RA which further supports
the Treg interpretation. Some cells express a significant proportion
of these marker genes but are not included in this bicluster. Such a
behavior can probably be explained by the presence of some drop-
outs in the scRNA-seq data, and the transient nature of Treg activa-
tion. This suggests to increase the p parameter to 30%. The
identified subpopulation is a posteriori validated by the fact that the
bicluster found includes five cells sharing a TCR sequence with a
GARP-+ Treg (see further details in Supplementary Material).

3.4 Identification of a cell-cycle related subpopulation in
tumor GARP+ Tregs

Our next example illustrates the use of MicroCellClust to search for
a potential subpopulation inside a set of GARP+ Tregs among
breast tumor samples from two different patients. The scRNA-seq
data represents here 168 cells and 13 772 genes expressed in at most
25% of the cells.

MicroCellClust with values k = 0.6 ~ % and p=10% identifies
a subpopulation of 21 cells which forms a specific cluster associated
to numerous cell division related genes (Fig. 4b). A GO enrichment
analysis indeed highlights cell division functions (see Supplementary
Material). Such an interpretation makes sense since GARP+ Tregs
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represent a population of recently activated Tregs, and T cell activa-
tion usually leads to cell proliferation. MicroCellClust thus reveals
the existence of dividing Tregs inside breast tumor tissues, an obser-
vation definitely worth further investigation.

On this data, the resulting bicluster is stable with respect to the x
parameter. When increasing «, the exact same cell subpopulation is
identified, while the number of genes decreases (33 for k= 0.6
down to 26 for k= 1) since out-of-cluster expression is more penal-
ized with a higher « (see further details in Supplementary Material).

3.5 Identification of rare subpopulations in mouse

embryonic stem cells

Our last case study shows the result of MicroCellClust on a dataset
of mouse embryonic stem cells 4 days after leukemia inhibitory fac-
tor withdrawal (Klein et al., 2015; Klein et al., 2015). It contains
683 cells and 19 749 genes expressed in at most 25% of the cells.
The top-k strategy, with x = 0.1 and u = 10%, is used to identify
three distinct subpopulations (Fig. 4c). The first bicluster is com-
posed of 5 cells and 18 marker genes, including genes from the
Zscan4 family and Testvl, which have been associated to 2 C-like
cells (Macfarlan et al., 2012). To evaluate the reproducibility of this
very small subpopulation (< 1% of the cells) when resampling data,
500 cells are drawn at random while forcing the five identified cells
to be included. This subpopulation is correctly identified again over
10 independent runs. Moreover, it is stable with respect to the
choice of x value, as the same bicluster is identified for x between
0.08 and 0.2.

The top-k strategy returns two additional subpopulations. The
first one contains 14 cells and 8 marker genes, among which primi-
tive endoderm markers Col4al, Col4a2 and Lamal. Finally, a sub-
population of 61 cells with three highly expressed marker genes is
identified, including maternally imprinted genes Rhox6 and Rhox9.
The 3 subpopulations identified by MicroCellClust on this dataset
have been identified in the original publication using additional
prior knowledge. This confirms the ability of MicroCellClust
to identify subpopulations with biologically relevant gene
combinations.

4 Conclusion

We propose MicroCellClust, a new data mining method to identify
small subpopulations of cells with specific gene expression.
MicroCellClust is a multivariate method that jointly looks for a
small group of cells and the corresponding marker genes.
MicroCellClust solves a combinatorial optimization problem specif-
ically tailored to this problem. We report several experiments illus-
trating the benefits of MicroCellClust to identify small and highly
specific biclusters from scRNA-seq data. The reported experiments
clearly show the higher precision and recall with MicroCellClust as
compared to existing methods, especially when the rare subpopula-
tion contains only a few cells. Moreover, MicroCellClust highlights
several subpopulations of interest in T cells extracted from breast
tumor samples, as well as in mouse embryonic stem cells. The rele-
vance of these subpopulations is discussed and biologically moti-
vated in each case.

The proposed optimization problem relies on two parameters: x
and p. The reported experiments suggest to choose k = % and u =
10% by default. These parameters may be further tuned in order to
refine the solution, typically based on the number of returned mark-
er genes. Opting for ~20 such genes is good rule of thumb in this re-
gard. In all our experiments, such a tuning has been easily
conducted without the need of any additional prior knowledge.

MicroCellClust has been assessed so far on scRNA-seq datasets
including thousands of cells and tens of thousands candidate marker
genes. This is motivated by the search for rare subpopulations in
data that is often limited in availability (e.g. intra-tumoral Tregs).
The O(|C]*) complexity of MicroCellClust easily scales to such data,
but would become less practical for a significantly larger number
cells. Scaling up MicroCellClust is part of our future research.

The method introduced here is motivated by the analysis of
scRNA-seq data, which is our primary objective in this work. Yet,
from a computational viewpoint, MicroCellClust could be seen as a
generic biclustering approach for finding rare patterns that could be
applied to alternative data sources.

MicroCellClust takes as input a single data matrix representing
all gene expression values for a population of cells typically coming
from a single biological sample. Using the same procedure one can
easily analyze the data coming from a few samples simply put to-
gether. A natural extension would consider the sample (or patient)
identity as a third dimension, beyond genes and cells. It would in-
deed be interesting to find specific subpopulations of cells and their
associated marker genes that would also be common across different
conditions or patients. Our future research work will adapt the opti-
mization problem introduced here to address this generalized
objective.
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