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Neurogenetics of developmental dyslexia: from genes to
behavior through brain neuroimaging and cognitive and
sensorial mechanisms
S Mascheretti1,5, A De Luca2,3,5, V Trezzi1, D Peruzzo2, A Nordio2,3, C Marino1,4 and F Arrigoni2

Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite
of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful
characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the
development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed
results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching
disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex
neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain
abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate
genes to the brain structure and function. A limited number of studies has already pursued the imaging–genetics integration in DD.
However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and
data processing. Here, we propose an interdisciplinary, multilevel, imaging–genetic approach to disentangle the pathways from
genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with
specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging–genetic studies must gain
momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of ‘biologically at-risk’
children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific
remediation approach.
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INTRODUCTION
Reading is a cognitive skill unique to humans and crucial for living
in the modern society. To be a successful reader, one must rapidly
integrate a vast circuit of brain areas with both great accuracy and
remarkable speed. This ‘reading circuit’ is composed of neural
systems that support language as well as visual and orthographic
processes, working memory, attention, motor functions and
higher-level comprehension and cognition.1 Nevertheless, for
about 5 to 12% of the population, learning to read is extremely
difficult.2 These individuals are affected by a complex neuro-
developmental disorder called developmental dyslexia (DD),
which represents the most common learning disability among
school-aged children and across languages. DD is a lifelong
impairment2 characterized by impaired reading acquisition in
spite of adequate neurological and sensorial conditions, educa-
tional opportunities and normal intelligence.3 This difficulty in
reading is often associated with undesirable outcomes for children
as well as with social impact and economic burden.2

Although the field is immature, the role of genetics in DD is
rapidly growing and much has been learned regarding the
possible downstream effects of DD risk genes on the brain

structure, function and circuitry. Similarly, cognitive and psycho-
physic studies have provided initial evidence about the usefulness
of testing well-identified cognitive and sensorial deficits asso-
ciated with and causative of DD to pursue the biological and
genetic components of this disorder. Following the increasing
findings provided by molecular genetic, cognitive and imaging–
genetic studies of DD, this review aims to propose an
interdisciplinary, multilevel, imaging–genetic approach to disen-
tangle the pathways from genes to behavior. An interdisciplinary
integration of particular cognitive/sensorial, selective genetic, and
imaging data, will provide a critically important bridge for
‘connecting the dots’ between genes, cells, circuits, neurocogni-
tion, functional impairment and personalized treatment selection,
and will pave the way for new candidate gene–candidate
phenotype imaging association studies.4

GENETICS OF DD
Following earlier descriptions of strong familial aggregation of the
disorder,5 substantial heritability typical of a complex trait has
been reported6 with estimates across DD and DD-related
quantitative phenotypes ranging from 0.18 to 0.72.7 Since the
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early 1980s, at least nine DD risk loci termed DYX1–DYX9 on eight
different chromosomes have been mapped (that is, 1p36-p34,
2p16-p15, 3p12-q13, 6p22 and 6q13-16.2, 11p15.5, 15q21.3,
18p11.2 and Xq27.3) and the involvement of several genes
spanning these regions in the etiology of DD has been reported
(that is, DYX1C1, DCDC2, KIAA0319, C2ORF3, MRPL19, ROBO1,
FAM176A, NRSN1, KIAA0319L and FMR1).8–13 Apart from these DYX
loci, other genes implicated in other disorders, before being
examined for DD, have also been associated with reading (dis)
ability, that is, FOXP2, CNTNAP2, DOCK4 and GTF2I on chromosome
7,14–17 GRIN2B and SLC2A3 on chromosome 12,18–20 ATP2C2 and
CMIP on chromosome 16,15,21 PCNT, DIP2A, S100B and PRMT2 on
chromosome 21.21–23 Recent genome-wide association and
sequencing studies further strengthened the role of previously
identified DD-candidate genes22,24,25 and identified novel associa-
tions with markers spanning new chromosomal regions.12,22,24,26–30

Among all these genes, nine DD-candidate genes have been
replicated in at least one independent sample: DYX1C1, DCDC2,
KIAA0319, C2ORF3, MRPL19, ROBO1, GRIN2B, FOXP2 and
CNTNAP2.8–12,18,20,,31 Interestingly, initial evidence has been
provided of the presence of putative functional genetic variants
influencing the expression of some of the above-described DD-
candidate genes. A functional effect of two single-nucleotide
polymorphisms (SNPs) in DYX1C1, rs3743205 (-3G→A) and
rs57809907 (1249C→ T), has been hypothesized on the basis of
bioinformatics predictions.32 In particular, the -3G→A SNP is
located in the binding sequence of the transcription factors Elk-1,
HSTF and TFII-I, and affects the Kozak sequence, which has a major
role in the translation process. The coding 1249C→ T-SNP
truncates the protein and thus likely disrupts its functionality.32

These two DYX1C1 variants have been associated with DD and
DD-related phenotypes,32–34 although opposite patterns of
effects35–42 and negative findings43 have also been observed. A
three-SNP risk haplotype spanning across TTRAP, THEM2 and
KIAA0319 genes, has been described, that is, rs4504469, rs2038137
and rs2143340.44 This risk haplotype is associated with 40% lower
levels of the expression, splicing or transcript stability of any of the
KIAA0319, TTRAP or THEM2 genes as compared with the non-risk
haplotype.44 Furthermore, it has been shown to associate with DD
in three independent clinical samples,44–47 as well as in two large
unselected samples.48,49 Further characterization of KIAA0319 has
led to the identification of a marker in the risk haplotype, that is,
rs9461045, found to be strongly associated with DD and to
influence gene expression, possibly due to the alteration of the
binding site to transcriptional silencer OCT-1 by luciferase-based
assays.47 Interestingly, a 168-base pair purine-rich region in the
intron 2 of the DCDC2 gene harboring a highly polymorphic, short-
tandem repeat (BV677278) has been reported.50 This non-coding
region might serve as a regulatory node as it contains 131 putative
transcription factor binding sites, is rather conserved across
species and has the capacity of enhancing activity, as BV677278
changes the reporter gene expression from the DCDC2 promoter
in an allele-specific manner.51 Although more work is needed to
confirm it, Powers et al.52 recently identified the BV677278-
binding protein as the transcription factor ETV6, confirmed
BV677278 as a regulatory element and proposed ‘regulatory
element associated with dyslexia 1’ (READ1) as a new name. As
such, READ1 could substantially act as a modifier of DCDC2 gene
expression. A naturally occurring deletion in intron 2 of the DCDC2
gene (hereafter, DCDC2d), encompassing READ1, has been
associated with DD and DD-related phenotypes,34,37,46,50,53,54

although negative findings have also been reported.41,55 In
accordance with works showing that cognitive traits can be useful
in the search for the susceptibility genes of neurodevelopmental
disorders,56 two recent psychophysical studies showed that
DCDC2d specifically influences the inter-individual variation in
motion perception both in children with DD57,58 and in normal
readers.58 Finally, one of the most informative reports of a specific

loss of CNTNAP2 function has come from a study of an old-order
Amish population in which 13 probands were found to carry the
same homozygous point mutation within CNTNAP2, that is,
3709delG.59 This change introduced a premature stop codon
(I1253X) predicted to produce a non-functional protein.59,60

Recent evidence has shown that DD-susceptibility genes affect
neuronal migration, neurite outgrowth, cortical morphogenesis
and ciliary structure and function.25,27,50,61–82 In particular, ROBO1
is known to be an axon guidance receptor regulating the connec-
tions between brain hemispheres.25,61–63 The protein encoded by
DYX1C1 has been linked to neuronal migration, estrogen receptor
transport and cilia structure and functions.64–66,71,74,78,81 Animal
studies showed that in utero RNAi of DYX1C1 is related to deficits
in both RAP, spatial working memory performance, as well as
learning and memory performance.9,83 The expression pattern of
KIAA0319 in the developing neocortex is consistent with its
hypothesized role in neuronal migration, and recent bioinfor-
matics analysis has suggested its involvement in ciliary
functions.69,70,72,75,79,80,84 The embryonic RNAi of KIAA0319 expres-
sion results in RAP and spatial learning deficits.9,85 The DCDC2
gene encodes a protein with two DCX domains which are
essential for neurite outgrowth and neuronal migration and it is
involved in ciliary functions.27,50,67,81,86 DCDC2 knockout mice
show impairments in visuospatial memory, visual discrimination
and long-term memory, auditory processing, working memory
and reference memory.9,87,88 Similarly, animal studies have shown
that the Glun2b subunit is required for neuronal pattern formation
in general and for channel function and formation of dendritic
spines in hippocampal pyramidal cells in particular.68,89–91

Recently, DCDC2 knockout mice were shown to have increased
excitability and decreased temporal precision in action potential
firing,92 as well as increased functional excitator connectivity
between layer 4 lateral connections in the somatosensory
neocortex93 mediated by subunit Grin2B. Focused functional
investigations of cellular and mouse models uncovered connec-
tions between FOXP2 and neurite outgrowth.73,77FOXP2 was first
implicated in a family segregating a severe form of dyspraxia of
speech, designated the KE family.94,95 Since its original identifica-
tion, many studies reported that rare variants disrupting one copy
of FOXP2 cause language-based learning (dis)abilities-related
impairment.31 Mice carrying mutant Foxp2 exhibit abnormal
ultrasonic vocalizations as well as other disorders including
developmental delay, deficits in motor-skill learning and impair-
ments in auditory–motor association learning.96–101 FOXP2
encodes a forkhead domain transcription factor expressed in
several brain structures102 and modulates the DNA transcription at
numerous loci throughout the genome. CNTNAP2 is one of its
gene targets103 and it has recently been implicated in a broad
range of phenotypes including autism spectrum disorder, schizo-
phrenia, intellectual disability, DD and language impairment.104

CNTNAP2 encodes a cell-surface neurexin protein, that is, CASPR2,
implicated in neuronal connectivity at the cellular and network
level, interneuron development/function, synaptic organization
and activity and migration of neurons in the developing brain.104

Recently, a genetic knockout of the rodent homolog Cntnap2 has
been associated with poor social interactions, behavioral perse-
veration and reduced vocalizations, as well as with delayed
learning and cross-modal integration.105,106 In contrast, little is
known about the C2ORF3 and MRPL19 candidate genes. C2ORF3
protein is suggested to have a potential function in ribosomal RNA
(rRNA) processing,107 and, as for MRPL19, is highly expressed in all
areas of fetal and adult brain.108Furthermore, their expression was
strongly correlated with DYX1C1, ROBO1, DCDC2 and KIAA0319
across different brain regions.108 All these findings depict DD as a
disorder at the mild end of the spectrum of a number of pathways
producing developmental disturbances in neuronal positioning
and axonal outgrowth,109 consistent with the neuroanatomical
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findings of focal architectonic dysplasia and neuronal ectopias in
the brains of people with DD.110

IMAGING IN DD
Postmortem studies in DD patients showed reduced left–right
asymmetry of the planum temporale,111 as well as neuronal
ectopias and architectonic dysplasias in the left perisylvian
regions.110 More recently, magnetic resonance imaging (MRI) has
been extensively used to investigate both morphological,
structural and functional brain abnormalities in DD patients
(Figure 1). Being noninvasive and allowing in vivo studies, MRI is
a unique and valuable tool for disentangling tissue modifications
and functional (re)organization in developmental disorders
like DD. Among different MRI-based techniques, voxel-based
morphometry (VBM) is used to quantify gray and white matter
(GM and WM, respectively) volumes, while diffusion tensor
imaging (DTI), which probes water diffusivity in the micron scale,
detects alterations in WM structure and indirectly in the
architecture of fiber pathways. Finally, functional MRI (fMRI)
investigates brain activations during cognitive and sensory tasks,
and when at rest.

VBM analysis
By applying VBM, altered GM density has been identified in several
areas, that is, in the left temporal and parietal regions,112–119

bilaterally in the fusiform gyrus, lingual gyrus, temporo-parieto-
occipital junction, frontal lobe, planum temporale, inferior
temporal cortex, caudate, thalamus and cerebellum,115,118–126

and in the right parietal lobe.123,125 Moreover, VBM analysis has
revealed altered WM density in the bilateral temporal and frontal
lobes, in the left cuneus and arcuate fasciculus, and in the right
precuneus and cerebellum.113,116–119,122,124,125

DTI analysis
Alterations of WM structure have been found in bilateral tracts
within the frontal, temporal, occipital and parietal lobes,124,127–129

in the superior longitudinal fasciculus,130,131 in the left superior
corona radiata, in the left centrum semiovale,132 in the left inferior
frontal gyrus and temporo-parietal WM,133 in the left middle and
inferior temporal gyri113 and in the left arcuate fasciculus.113,134

Moreover, several studies have reported significant differences in
the corpus callosum.135,136

fMRI analysis
fMRI has had an important role in understanding the pathophy-
siology of DD by analyzing the brain areas activated while
performing specific tasks. The brain activations associated with the
reading process have been extensively analyzed using fMRI, as
well as other reading-related functions, such as phonological
processing, integration of letters and speech, visual perception
and attention, working memory and acoustic stimuli.137,138

Depending on the task performed during fMRI, several altered
activation patterns have been reported.
With reading-related tasks, altered activations were found in the

DD subjects in the left hemispheric temporo-parietal regions
(Brodman’s areas (BAs) 20, 21, 37, superior and middle temporal
gyrus, operculum, supplementary motor area), and in the bilateral
frontal and occipital areas (BAs 44 and 45, inferior and middle
frontal gyrus, visual areas and extrastriate cortex).139–148

Subjects with DD showed abnormal activity during phonologi-
cal tasks in the left hemispheric temporal areas (Rolandic
operculum, middle and superior temporal gyrus, fusiform gyrus,
planum temporale and Wernicke’s area), in bilateral parietal
(superior and inferior parietal gyrus, BA40), frontal (BAs 44 and 45,
middle and inferior frontal gyrus, precentral gyrus, superior medial

gyrus and prefrontal cortex), occipital cortex (middle and superior
occipital gyrus, lingual gyrus, calcarine sulcus, BAs 18 and 19,
striate cortex), cerebellum, and right hemispheric subcortical
structures (putamen, basal ganglia).149–161

During semantic tasks, diffuse activations have been reported in
DD subjects in the left hemispheric temporal (BA22, fusiform
gyrus, parahippocampal gyrus and middle and superior temporal
gyrus) and occipital (V5/MT), as well as bilateral parietal (inferior
parietal lobule, supramarginal gyrus), frontal (BAs 44 and 45,
precentral gyrus, superior frontal gyrus) cortex, cerebellum and
subcortical structures.162

Children with DD showed altered activations during auditory
tasks in the right temporal areas (middle and superior temporal
gyrus, BAs 41 and 42, Heschl gyrus, superior temporal cortex),
anterior insular cortex, cingulate cortex, thalamus and cerebellum,
in the left occipital (cuneus) and parietal (inferior parietal region,
supramarginal gyrus, angular gyrus) regions and in bilateral frontal
areas (supplementary motor area, inferior and middle frontal
gyrus, precentral gyrus, inferior frontal sulcus, prefrontal
cortex).152,153,163–169

Working memory-related tasks elicited altered activations in the
bilateral parietal (superior parietal cortex, inferior parietal lobule)
and frontal (BA46, prefrontal cortex, inferior frontal gyrus) areas in
children with DD.170–173

The reduced activation of the primary visual cortex, extrastriatal
areas and the V5/MT area during fMRI using visual stimuli,174–176

as well as increased right frontal activation in areas 44 and 45 (ref.
152) have been consistently reported in subjects with DD. Visual
spatial tasks elicited altered activation in the right temporal
(temporal pole, fusiform gyrus, temporal gyrus, motor/premotor
cortex) and frontal (precentral gyrus, frontal gyrus) areas, and in
bilateral parietal (intraparietal sulcus, inferior and superior parietal
lobes, precuneus), occipital (cuneus, BAs 17–19), subcortical
structures (putamen, basal ganglia), anterior cingulate and
cerebellum.157,166,177,178

Altered activations in bilateral temporal (inferior temporal
cortex), parietal, frontal (middle frontal cortex), occipital (striate
and extrastriate visual cortex) and cingulate cortex have been
reported during attentional tasks in children with DD.179–181

Interestingly, the fMRI activation patterns in response to tasks
requiring the processing of several demands (visuospatial,
orthographic, phonologic and semantic) showed that subjects
with DD tend to process using the visuospatial areas instead of the
normal language processing areas.150,169

Results of imaging studies on pre-reading children at risk for DD
are in agreement with results found for children with DD,182–185

suggesting that neural alterations in DD predate reading onset,
reflect the differential developmental trajectory of reading brain
networks and may serve as early biomarkers of risk for DD.
Given the heterogeneity of imaging modalities and findings, it is

difficult to summarize MR results into a unifying perspective
(Figure 1). According to previous findings showing a consistent
link between reading and both subcortical structures and cortical
systems, structural techniques (VBM and DTI) identify temporo-
parietal and, partially, middle frontal areas as the targets of
cerebral derangement that may occur in DD, whereas more
anterior and occipital areas seem to be less frequently involved. It
is even harder to sum up the findings derived from functional MR
studies. In broad terms, a pattern of cerebral hypoactivation seem
to prevail over hyperactivity during task-based fMRI. Circuits
involving temporo-basal, parietal and frontal lobes are more
frequently impaired, without a clear lateralization between the left
and right hemispheres.
The details about the study design and results are reported in

Supplementary Information 1 and 2.
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IMAGING–GENETICS IN DD
Taken together, these findings show how neuroimaging and
genetic research have substantially enhanced understanding of
the mechanisms underlying atypical reading development.
Despite the successful characterization of DD-susceptibility genes,
we are far from achieving a comprehensive understanding of the

pathways underlying the development of DD.186 By focusing
mainly on clinical phenotypes, the molecular genetics approach
has yielded mixed results,187 including negative findings for the
DD-candidate genes.42,188–190 This could be ascribed to at least
three possible sources: (1) as complex traits are substantially
polygenic, with each variant having a small effect, larger sample

Figure 1. Rows show the findings obtained with structural and functional MR techniques in DD subjects. The size and the color of the spheres
reflect the amount of papers reporting differences in the specified area. Longitudinal fascicoli and arcuate fasciculus are shown as edges. fMRI
findings are not divided by task. Task specific findings are available in Supplementary Tables 1 and 2. DD, developmental dyslexia;
fMRI, functional magnetic resonance imaging. Figure was created with ExploreDTI (http://exploredti.com). DTI, diffusion tensor imaging;
VBM, voxel-based morphometry.
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sizes are needed,191 (2) the pathway from genes to phenotypes is
not straightforward (see for example, ‘the missing heritability
problem’)192 and can be influenced by incomplete linkage
disequilibrium between causal variants and genotyped SNPs,193

environmental, gene-by-gene and gene-by-environment
effects,2,186 (3) it is unlikely that a single model connects all the
DD-candidate genes and their corresponding proteins at the
molecular level, therefore several etiological cascades involved in
neuronal migration and neurite outgrowth contributing to DD
likely exist.194

An alternative approach is to focus on the phenotypes thought
to reflect lower-level processes, hypothesizing that individual
differences in the areas responsible for reading acquisition might
be important end points, better reflective of the underlying
biology and more tractable to genetic mapping than behavioral
phenotypes.56,195 In addition, the brain is the most complex of all
organs, and behavior is not merely the sum of the phenotypic
output of complex interactions within and between endogenous
and exogenous environments during development. Therefore,
more optimally reduced measures of functioning (hereafter,
intermediate phenotypes—IPs) should be more useful than
behavioral ‘macros’ in studies pursuing the biological and genetic
components of neurodevelopmental disorders.196 Genetic deter-
mination of an IP will likely be less complex than determination of
the related behavioral/clinical phenotype, as the latter incorpo-
rates multiple neural systems and is influenced by multiple genes
and environmental etiologic variables.186 Even if concerns have
been raised about how to interpret the relationship between IPs
and psychiatric disorders,197 such use of IPs has had a crucial role
in improving the knowledge of the gene to phenotype gap in
other neurodevelopmental disorders (for example, schizophrenia
—SKZ, autism spectrum disorder).195

Imaging data provide a viable IP for complex neurobehavioral
disorders like DD, reducing the inherent complexity of brain
functioning and of the intricate clinical outcome of these
disorders.56,196–198 Performing joint genetic and neuroimaging
studies in humans, where the association between genotypes and
brain phenotypes can be tested, is an emerging strategy to link
DD-candidate genes to brain structure and function. To date,
imaging–genetic studies, including both structural and functional
imaging, have focused on at least one of the above-described DD-
candidate genes and on the proposed functional variants
spanning them (Table 1).17,199–215 Although some of the studies
involving DD-candidate genes have been carried out on popula-
tions other than DD (that is, healthy subjects, SKZ), they have
been taken into consideration for the purpose of this review, that
is, to propose an interdisciplinary, multilevel, imaging–genetic
approach to disentangle the pathways from genes to behavior, by
focusing on selective, functional genetic variants and particular,
well-defined cognitive/sensorial phenotypes. Structural MRI stu-
dies have shown that in subjects with SKZ and controls, DYX1C1
and KIAA0319 genes are significantly correlated with the inferior
and superior cerebellar networks,201 with WM volume in the left
temporo-parietal region,203,204 and with cortical thickness in the
left orbitofrontal region in typically developing children.208 A pilot
resting-state fMRI study failed to find a significant link between
DYX1C1 markers and functional connectivity of language-related
regions in both subjects with SKZ and healthy controls.202

Functional MRI studies showed associations between KIAA0319
and asymmetry in functional activation of the superior temporal
sulcus,205 and the inter-individual variability in activation of
reading-related regions of interest (that is, the right and left
anterior inferior parietal lobe)199 during reading-related tasks in
two independent samples of subjects with DD and normal
readers. Moreover, KIAA0319 was found to influence functional
connectivity in language-related regions (that is, a left Broca-
superior/inferior parietal network, a left Wernicke-fronto-occipital
network and a bilateral Wernicke-fronto-parietal network) in bothTa
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subjects with SKZ and healthy controls.202 In healthy adults, an
allelic variation in the DCDC2 gene has been associated with
individual differences in cortical thickness,204 and in fiber tracts,
which are commonly found altered in neuroimaging studies of
reading and DD (that is, the connection of the left medial
temporal gyrus with the angular and supramarginal gyri, the
superior longitudinal fasciculus and the corpus callosum).203

Interestingly, in a sample of subjects with SKZ and controls,
DCDC2 was found to be associated with distributed cortical
structural abnormalities in language-related superior prefrontal,
temporal and occipital networks,201 and with inter-individual
variations in functional connectivity in a Broca-medial parietal
network.202 Furthermore, in healthy adults, DCDC2d has been
associated with altered GM volumes in reading/language-related
brain regions especially in the left hemisphere,200 and with both
common and unique alterations of WM fiber tracts in subjects
with DD.207 In an fMRI study, Cope et al.199 found significant
associations between DCDC2-READ1 and brain activations in the
left antero-inferior parietal lobe and in the right lateral occipital
temporal gyrus during reading tasks, and a nominally significant
association between DCDC2d and activation in the left antero-
inferior parietal lobule. Further imaging–genetic studies investi-
gated the effects of C2Orf3/MRPL19 and GRIN2B genes upon
neuroanatomical structures. By using VBM, Scerri et al.206 revealed
that WM volume in the bilaterally posterior part of the corpus
callosum and the cingulum varied depending on one variant in
the C2Orf3/MRPL19 region. Finally, in healthy individuals, GRIN2B
correlated negatively with dorsolateral prefrontal cortex activity
during a working-memory-related task.209 Imaging–genetics of
FOXP2 and CNTNAP2 has implicated common genetic variants
spanning these genes. Multiple imaging studies of the KE family
have found both structural and functional alterations in subjects
with dyspraxia of speech and the mutant FOXP2.216–219 Even if no
evidence for effects of FOXP2 on variability in brain structures in a
sample of 41300 people from the general population have been
recently reported,210 common variants spanning this gene were
associated with altered levels of activation in temporo-parietal and
inferior frontal brain areas during both reading and speech
listening tasks in DD samples.17,205 CNTNAP2 has been associated
with structural brain connectivity and brain activation in BA7,
BA44 and BA21 during a language processing task in healthy
individuals.211,212 Moreover, it has been significantly associated
with FA in the uncinate fasciculus of subjects with SKZ,213 with
reduction of GM and WM volume and lower FA in the cerebellum,
fusiform gyrus, occipital and frontal cortices,214 and with modula-
tion in functional frontal lobar connectivity215 in subjects with a
diagnosis of autism spectrum disorder.

LIMITATIONS OF CURRENT IMAGING–GENETIC STUDIES
Clearly, neuroimaging is playing a fundamental part in disen-
tangling the role of genetic variants in the etiology of complex
cognitive functions like reading. However, the complexity of the
‘reading circuit’ is still far from being completely understood, as
revealed by the heterogeneous and sometimes conflicting results
of brain MRI studies.
Study design and data processing are important factors

increasing complexity and heterogeneity in neuroimaging
research. The inclusion of subjects with an unknown genetic
profile will likely enhance inter-subject variability, as different DD
genes may cause different deficits in different, particular cognitive
and sensorial phenotypes (see ‘Genetics of DD’ paragraph).
Nevertheless, even if some imaging–genetic studies of DD have
been proposed,17,199–215 the number of these works is still too low
to draw definitive conclusions about the role of each DD-
candidate gene.
Moreover, it is interesting to note some technical evidence

that might limit the integration of these results. Of the 19

aforementioned imaging–genetic studies, 10 have used
1.5T scanners,199,203–206 eight were performed with 3T
scanners200–202,205,207–209,215 and one acquired with a 4T
scanner.211 Two of them used similar acquisition protocols and
performed VBM to investigate GM,200,201 but their results were
only partially overlapping. These different findings may be owing
to the different disorders included in the studies (that is, DD and
SKZ) and/or to the different analysis pipelines (linear regression
versus independent component analysis). Genetic data can be
integrated with every parametric map derived from MRI, whether
a simple measure of volume, a microstructure-related metric or a
measure of chemical properties. Three of the aforementioned
studies integrated genetic data in the VBM analysis of WM volume
as an attempt to reveal genetically related alterations, limiting the
analysis of DTI data to the detection of the major fiber bundles
included in altered WM areas.203,204,206 Nevertheless, DTI analysis
can provide parameters that are more specific to WM micro-
structure than VBM,220 including fractional anisotropy (FA) and
measures of diffusivity along different spatial axes. These maps
can be analyzed similarly to VBM, but may provide additional
characterization of the genetic effect at the microstructural level.
To date, only three studies have used DTI-derived maps to detect
voxel-based WM modifications related to DD-candidate
genes.207,208,214 One of the studies213 computed FA maps and
tried to perform region-of-interest-based analysis of covariance
regression with the SNPs of CNTNAP2; however, only one
genotype was a significant predictor of FA in the uncinate
fasciculus after Bonferroni correction, despite the relatively high
number of subjects included in the study (n= 125). Further studies
with rigorous advanced diffusion MRI protocols (that is, high-field
magnets, multiple directions and b-values) and populations with a
specific genetic characterization are therefore needed. Moreover,
more complex diffusion-based techniques, such as NODDI
(Neurite Orientation Dispersion and Density Imaging), have
recently provided more specific metrics of GM and WM in several
applications.221–223 The application of NODDI or other affine
techniques might be beneficial to the study of DD, providing
additional disentanglement of the connections between genetic
variations and structural alterations.
Similar considerations apply to fMRI, where the choices of

stimuli and the analysis pipeline are fundamental. To date,
functional imaging–genetic studies of DD have investigated the
effects of DD-candidate genes only during reading tasks,199,205,209

irrespective of the deficits each DD gene is likely to produce (see
‘Genetics of DD’ paragraph). Moreover, while task-based fMRI
might help investigate the effects of DD-candidate genes on
specific brain functions through correlation analysis or linear
regressions, resting-state fMRI might offer a more reproducible/
reliable approach to the investigation of genetic effects on brain
functionality. It is worth noticing that while imaging–genetic
studies are at their early stages in DD, they are more popular in
the context of other diseaes.224–227 For example, the ADNI
(Alzheimer’s Disease Neuroimaging Initiative)228 has performed
MRI and positron emission tomography acquisitions with genetic
profiling in more than 1000 subjects over time. Along with genetic
profiling, the success of the initiative is strongly supported by the
standardization of multicentric acquisition protocol and proces-
sing methods, all factors that are unfortunately still lacking in
imaging–genetic studies on DD.

TOWARD A NEW APPROACH
As aforementioned, learning to read requires the accurate, fast
and timely integration of different neural systems supporting
different cognitive and sensorial processes. Molecular genetic
studies have consistently identified DD-candidate genes and
provided initial evidence of the presence of putative functional
genetic variants influencing gene expression. Recent findings in
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both animal and humans studies support the role of specific
genetic variants on the different cognitive and sensorial processes
underlying reading acquisition. Similarly, neuroimaging data can
be considered IPs to genetics in identifying the causes of DD.198

New studies must therefore gain momentum to understand the
function of neuronal migration genes and their relationships with
specific cognitive and sensorial vulnerability, and to establish links
between such susceptibility variants and neuroanatomical phe-
notypes. Following a probabilistic and multifactorial etiological
model of reading acquisition, the emergence of DD is rooted at
multiple levels, and may reflect the global failure of interacting
mechanisms, each with degrees of impairment that vary across
children.2,186,229–232 It is therefore reasonable to predict a low
specificity and high heterogeneity of imaging findings, especially
when dealing with small sample sizes. Furthermore, according to
this model, the fundamental role of genetics in the selection of
homogeneous DD subtypes population suitable for imaging
investigation appears reasonable. The integration of specific
cognitive/sensorial, selective genetic and imaging data can lead
to the identification of regions with gene- and cognitive/sensorial-
specific effects (that is, only a risk genetic variant alters structure/
function in this region tapping specific cognitive/sensorial
mechanisms) or with universal effects (that is, all/many-risk gene
function in this region). Identifying the dots connecting putative
functional genetic variants, neuroanatomical structures and
functions, and reading-related cognitive/sensorial pathways, will
be important areas for imaging–genetics research in the future
and will pave the way for new candidate gene–candidate
phenotype imaging association studies.4 However, some have
argued that neuroimaging studies reporting effects of candidate
genes are also at risk for false-positive effects due to small sample
sizes, and questions about the statistical power of imaging
techniques may be risen.233,234 Some possible strategies could be
used to overcome such variability. First, accordingly to what is
proposed in this review, an alternative way to avoid false positives
is to focus on selective variants with known molecular function
and to take into account the increment in effect sizes enabled by
careful selection of phenotypes.235,236 By narrowing the search
space to genes that are likely to have a role—and whose functions
have more chance of being understood—the power of the study
is directly increased, as is its practical value for neuroscience and
medicine.235 The identification of what constitutes a phenotype is
crucial as the identification of the phenotype itself. Going beyond
classical association studies, where heterogeneous patient groups
selected by clinical symptoms are compared with controls, is
crucial to identify reliable biomarkers and to guide the diagnosis
of neurodevelopmental disorders.4 More specific, elementary,
straightforward IPs may help to interpret the results of genetic
studies of psychiatric diseases,233 increasing the statistical power
in smaller sample size.236 Recent studies on relatively small
samples show that using IPs can be very useful for researching
susceptibility genes in DD26,237,238 and for explaining their effects
on the phenotypic variance.35,57,58 Second, there is a growing
perception of reproducibility as a fundamental building block in
science. Some have argued that small individual studies—when
replicated—may lead to useful observations to address the impact
of genetic variation on a neural system that is abnormal in a given
illness, despite the problem of false-positive findings. An
alternative strategy is to recruit large data sets through multi-
center studies. Many neuroimaging consortia have been recently
established (for example, the ADNI, the functional Brain Imaging
Research Network, the Mind Clinical Imaging Consortium, the
Enhancing NeuroImaging Genetics through Meta-Analysis con-
sortium, the Pediatric Imaging Neurocognition Genetics study) to
expand the promise of imaging–genetic studies and to detect
factors that affect the brain that could hardly be detected by
single site studies.12,235 However, as some limitations apply (for
example, it is difficult to aggregate data from cohorts that are

heterogeneous in terms of duration of illness and demographics,
spoken languages, ethnic differences in allele frequency), novel,
harmonized data analysis and meta-analysis protocols checking
for the effects of possible confounders, are crucial to the success
of these projects.235,239 Third, it would help to develop an
interdisciplinary multilevel approach aimed at defining MRI
protocols heavily guided by genetics and cognitive findings. The
best outcomes result from cooperation within a multidisciplinary
team to address the different levels of investigation underlying
such complex neurodevelopmental disorders.240,241 Nonetheless,
addressing the statistical power problem in imaging studies is
nontrivial. We depicted DD as a heterogeneous disease, and the
MRI findings also reported the same to date (Figure 1). Generally
speaking, the estimation of the minimum sample size required to
highlight structural or functional imaging alteration is prohibitive.
One may argue that some areas, that have been reported more
consistently in literature, are more consistently altered and thus
require a smaller sample size to be detected. The problem is
worsened by the variability introduced by MRI techniques and
methods as the multiple comparisons correction, that greatly
limits the comparability of results across studies. New candidate
gene–candidate phenotype imaging association studies should
integrate investigations of the effects of selective genetic variants
upon neuroanatomical pathways underlying the specific reading-
related cognitive and sensorial processes each gene is supposed
to target by applying the most sensitive and robust neuroimaging
techniques. Future hypothesis-driven imaging–genetic studies
should therefore take advantage of recent genetic findings in
both animal and human studies to focus their attention on
innovative interdisciplinary analyses of well-defined, specific
cognitive and sensorial, imaging and selective genetic data. In
this way, the effect of a known genetic diversity, naturally
occurring among human populations, is studied by brain imaging
to determine whether one of its forms can cause a difference in
the level of such cognitive/sensorial phenotypes and hence could
make people more vulnerable to neurodevelopmental disorders.4

A fruitful outcome is particularly possible when fMRI is used to
examine the neurobiological effect of a well-validated gene. If DD-
candidate genetic variants are selectively associated with inter-
individual variation in one of the reading-related processes at
brain level, children carrying these genetic variants would be
considered as ‘biologically at-risk’. Early identification of these
children would be crucial to defining adequate and well-timed
prevention strategies.197,242 Furthermore, candidate gene–
candidate phenotype might be fundamental to understanding
the relationship between traditional diagnostic categories
and the new classifications of mental disorders based on
dimensions of observable behavior and neurobiological
measures.186,187,195,196,198 Neuroimaging may provide evidence
for or against existing theories, or provide unique and sensitive
insight unexplained solely by behavioral measures.198 Although
producing interesting results, the hypothesis-driven approach of
imaging genetics represents a way for validation/replication
studies of selective genes and do not reveal other genetic
contributors to the overall neurobehavioral reading deficits nor
the imaging phenotype changes associated with DD.4,12,31 By
implementing a ‘gene hunting’ strategy,4 hypothesis-free
approach, similar to those commonly seen in human genetics
such as genome-wide association studies and new DNA sequen-
cing technologies, could detect common variants with small effect
sizes and could reveal new genes and pathways, rare and de novo
variants, that contribute to alterations in brain imaging pheno-
types, and how they contribute to the ultimate neurobehavioral
phenotypes.12,31,235 However, the question that arises from
imaging–genetics as a hypothesis-free field is how to use and
analyze such large and diverse datasets. Data reduction or
hypothesis-free processing methods, such as parallel independent
component analysis,201,202 multivariate pattern analysis,227
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endophenotype ranking value,243 polygenic risk score,244 as well
as new analytical methods to collapse and/or integrate a variety of
data types into relevant risk models (for example, support vector
machine analysis) are potentially needed.

CONCLUSION
This review aimed to highlight the promising imaging–genetics
approach as a way to unravel new insights behind the
pathophysiology of reading (dis)ability. As the presence of
putative functional genetic variants influencing the expression of
some of the DD-candidate genes has been provided and as
genetic associations with specific, well-defined cognitive/sensorial
mechanisms have been reported, current knowledge of genetics
of DD could help target imaging more selectively. The integration
of particular cognitive/sensorial, selective genetic and imaging
data, as well as the implementation of candidate gene–candidate
phenotype imaging association studies would result in a better
consideration of what constitutes a phenotype. Clearly, such an
approach is essentially interdisciplinary given the multiple levels
of analysis simultaneously achieved. Even if there are weaknesses
despite strengths in this perspective, such hypothesis-driven
approach in imaging–genetics as a field would lead to the
optimization of criteria to diagnose DD and to the early
identification of ‘biologically at-risk’ children. This means the
definition of adequate and well-timed prevention strategies and
the implementation of novel, specific and evidence-based
remediation approach training specifically the reading-related
cognitive/sensorial impairment. These insights will aid in the
earlier detection of children with DD and aid their overall
academic and remediation potential. Naturally, these develop-
ments should be considered in parallel with the advance made by
the hypothesis-free approach that will aid in the identification of
new mechanisms (genetic and imaging) that contribute to reading
deficits in DD.
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