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Abstract

The shortage of donor islets is a significant obstacle for widespread clinical

application of pancreatic islet transplantation. To investigate whether adipose

tissue-derived mesenchymal stem cells (ADSCs) induce expansion of transplanted

islets, we performed co-transplantation experiments in a mouse model.

Streptozotosin (STZ)-induced diabetic mice transplanted with 50 syngeneic islets

remained hyperglycemic. However, hyperglycemia was ameliorated gradually

when 50 islets were co-transplanted with ADSCs but not separately grafted into

the contralateral kidney. Insulin and proinsulin contents of 120-day grafts

containing 50 islets co-transplanted with ADSCs were significantly increased

compared with those of 50 isolated islets. The Ki67-positive ratios in islets of the
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naïve pancreas, at 30 and 120 days grafts were 0.23%, 2.12%, and 1.52%,

respectively. Ki67-positive cells were predominantly Pdx1þ and insulinþ cells.

These results demonstrate that co-transplantation with ADSCs induces

proliferation of transplanted islets in mice, suggesting a potential solution for the

low efficiency of islet transplantation.

Keywords: Endocrinology, Stem cell research

1. Introduction

Islet transplantation supplements insulin from transplanted b-cells. The clinical out-

comes of islet transplantation have been improved by the development of isolation

protocols and immunosuppressive medications after transplantation (Barton et al.,

2012; Bellin et al., 2012; Matsumoto et al., 2004; McCall and Shapiro, 2012;

Shapiro et al., 2000, 2006). However, to achieve long term insulin independency,

recipients require sequential transplants, and the shortage of donor islets is an

obstacle for the clinical application of islet transplantation. To overcome this prob-

lem, we need novel procedures to enhance the engraftment of islets and expand

transplanted islet cells.

Mesenchymal stem cells (MSCs) in adult tissues, such as bone marrow and adipose

tissues, have multipotency to differentiate into osteoblasts, adipocytes, and chondro-

cytes (Pittenger et al., 1999). In fact, bone marrow or adipose tissue-derived BMCs

can differentiate into steroidogenic cells by forced expression of the transcription

factor (SF-1) (Gondo et al., 2004, 2008; Tanaka et al., 2007). In addition, MSCs

secrete cytokines and growth factors, and have immunosuppressive and cytoprotec-

tive effects. It has been reported that co-transplantation of MSCs avoids rejection of

allogenic islets by immunosuppressive effects (Berman et al., 2010; Ding et al.,

2009; Solari et al., 2009). Moreover, MSCs produce vascular endothelial growth fac-

tor and promote revascularization of transplanted islets (Cao et al., 2016; Figliuzzi

et al., 2009; Ito et al., 2010; Oh et al., 2013; Rackham et al., 2011). Thus, MSCs

are also promising feeder or supportive cells in cell transplantation therapy.

Adipose tissue-derived mesenchymal stem cells (ADSCs) have many of the same

cell surface markers as bone marrow-derived MSCs (Zuk et al., 2002). The charac-

teristics of ADSCs are almost the same as those of bone marrow-derived MSCs in

terms of multipotency, ex vivo expansion, and possible cryopreservation. ADSCs

have several advantages, less inversion, and higher availability than bone marrow-

derived MSCs (Zuk et al., 2002).

Several previous studies have demonstrated that co-transplantation with MSCs pre-

vents early graft loss by promoting angiogenesis (Eberhard et al., 2010; Figliuzzi

et al., 2009; Ito et al., 2010; Johansson et al., 2008; Oh et al., 2013; Rackham
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et al., 2011) and exerting anti-inflammation effects associated with increased regu-

latory T-cells (Berman et al., 2010; Ding et al., 2009; Solari et al., 2009). In addition,

anti-apoptotic effects of MSCs on grafted islets have been reported (Borg et al.,

2014; Scuteri et al., 2014). Importantly, MSCs have been suggested to differentiate

toward insulin-producing cells in vitro (Chandra et al., 2009; Timper et al., 2006).

The microRNA miR-375, which is abundant in pancreatic b-cells, has been recently

shown to promote insulin production from ADSC-derived islet like-clusters in vitro

(Piran et al., 2017). However, in previous reports concerning islet cell transplanta-

tion experiments in vivo (Berman et al., 2010; Ding et al., 2009; Eberhard et al.,

2010; Figliuzzi et al., 2009; Ito et al., 2010; Johansson et al., 2008; Oh et al.,

2013; Rackham et al., 2011; Solari et al., 2009), an essential issue has remained un-

clear: whether grafted islet cells proliferate in the presence of MSCs or MSCs them-

selves differentiate into islet cells and proliferate.

In this study, we examined the effects of ADSCs on transplanted islets and demon-

strated that co-transplantation with ADSCs not only enhances the engraftment of is-

lets but also induces the expansion of transplanted islet cells.
2. Materials and methods

2.1. Mice

All experiments were performed in compliance with the relevant laws and institu-

tional guidelines, and were approved by the Animal Care and Use Committee of Fu-

kuoka University. Male C57BL/6 mice and mouse insulin I promoter (MIP)-green

fluorescent protein (GFP) transgenic mice expressing GFP under the control of

the MIP (Hara et al., 2003) were purchased from Charles River Japan and Jackson

Laboratory, respectively. Mice were maintained under specific pathogen-free condi-

tions and used for experiments at 8e16 weeks of age.
2.2. ADSCs

ADSCs were prepared from C57BL/6 subcutaneous fat as described previously

(Gondo et al., 2008) and cultured for 2 weeks in alpha-minimum essential medium

containing 20% horse serum and 1% antibiotic antimycotic (Gibco) in a 5% CO2

incubator at 37 �C. After four times passage of the culture, the adherent cells

were used as ADSCs. For characterization of ADSCs, cell surface markers were

analyzed by a flow cytometer using a Mouse Multipotent Mesenchymal Stromal

Cell Marker Antibody Panel (R&D systems, Inc., MN). To test their capability for

osteoblastic differentiation, ADSCs were cultured under a previously described con-

dition (Gondo et al., 2004) and then stained with an anti-osteopontin antibody (R&D

systems, Inc.). Induction of adipogenesis followed by Oil-Red O staining was per-

formed using an Adipogenesis Assay Kit (Cayman Chemical Company, MI).
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2.3. Islet isolation and transplantation

Islets of C57BL/6 mice were isolated (Okeda et al., 1979; Sutton et al., 1986) and

cultured overnight. ADSCs were peeled off from culture dish using TrypleExpress

(Gibco), and counted. Before transplantation, hand-picked islets (average size was

150 mm) and ADSCs were mixed in a 1.5 ml tube and centrifuged for 5 min at

1,200�g, and the precipitants were suspended in a small volume of medium. Islets

with or without ADSCs were transplanted under the kidney capsule of streptozo-

tocin (STZ)-induced diabetic mice injected with 180 mg/kg STZ (Sigma Aldrich)

at 3 days before transplantation. We used C57BL/6 male for the recipients. After

transplantation, their body weight and non-fasting blood glucose concentration

were measured twice a week, and the recipients were not supplemented with exog-

enous insulin. At 30 or 120 days after transplantation, the left kidney bearing the

grafts was removed and the morphology and hormone contents were examined.

Hyperglycemia was defined as >400 mg/dL blood glucose. When <200 mg/dL

was detected twice consecutively, the blood glucose level was considered as

normalized.
2.4. Intraperitoneal glucose tolerance test (ipGTT)

Mice were fasted for 15 h before the ipGTT and then intraperitoneally injected with 1

g/kg glucose. After the injection, the blood glucose levels and plasma insulin con-

centrations were measured at 0, 30 and 120 min. Plasma insulin was measured by

an Ultra Sensitive Mouse Insulin ELISA kit (Morinaga Institute of Biological Sci-

ence, Inc., Yokohama, Japan).
2.5. Hormone content measurements

Extracts of the kidney bearing the grafted islets and isolated islets were prepared as

described previously (Ueki et al., 1995). Insulin and pro-insulin contents were

measured with a Mouse Insulin ELISA Kit (Morinaga Institute of Biological Sci-

ence, Inc.) and Rat/mouse proinsulin ELISA (Mercodia Developing Diagnostics,

Uppsala, Sweden), respectively.
2.6. Morphological analysis

The graft-bearing kidney and isolated islets were fixed in 10% formaldehyde or 4%

paraformaldehyde, processed, and embedded in paraffin. Sections were stained with

eosin and nuclei were counterstained with hematoxylin. Immunohistochemical

staining was performed using the antibodies listed in Table 1. For electron micro-

scopic observation, grafted and isolated islets were fixed and observed as described

previously (Nagai et al., 1995).
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Table 1. Antibodies for immunostaining.

Gene name Supplier/catalogue number

Insulin Dako/A0564

Glucagon Thermo/PA1-37768

Somatostatin abcam/ab103790

PP abcam/ab103790

Ki67 abcam/ab66155

Pdx1 abcam/ab47383, DSHB/F6A11-6

Ngn3 abcam/ab38548

GFP abcam/ab6556, ab13970

Pax4 ThermoFisher/PA1-108

Nkx6.1 DSHB/F55A10-c
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2.7. RT-PCR

Total RNA isolated from the graft-bearing kidney or pancreas was reverse tran-

scribed by a QuantiTect Reverse Transcription Kit (Qiagen). PCR was performed

using KOD-FX (Toyobo) at 95 �C for 10 min, 95 �C for 10 sec, and 60 �C for 20

sec (40 cycles). GFP primers were 50-CAACAGCCACAACGTCTATATCACC-
30 and 50-ATGTTGTGGCGGATCTTGAAG-30, insulin primers were 50-TCAAG-
CAGCACCTTTGTGGTT-30 and 50-TCCACCCAGCTCCAGTTGT-30, and b-actin
primers were 50-CATCCGTAAAGACCTCTATGCCAAC-30 and 50-ATGGAGC-
CACCGATCCACA-30.
2.8. Statistics

All data are expressed as means � standard error of the mean (SEM) and were ob-

tained from at least three individual experiments. Statistical comparisons were per-

formed using the Student’s t-test, One-way ANOVA and Two-way ANOVA

(GraphPad Prism). P-values of less than 0.05 were considered as statistically

significant.
3. Results

3.1. Co-transplantation of 50 islets and ADSCs into diabetic mice
leads to normoglycemia

We first transplanted syngeneic islets alone under the kidney capsule of diabetic

mice induced by the iv injection of STZ (180 mg/kg) at 3 days before transplanta-

tion. Recipient mice without islet transplantation remained hyperglycemic

(Fig. 1A). Hyperglycemia of mice received with 200 islets was ameliorated by 2
on.2018.e00632
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Fig. 1. Recipients co-transplanted with 50 islets and ADSCs become normoglycemic in an ADSC dose-

dependent manner. Hyperglycemia was induced by STZ injection, followed by monitoring non-fasting

blood glucose levels (n ¼ 8) (A). Non-fasting blood glucose levels of diabetic recipient mice transplanted

with 200 (n ¼ 8), 100 (n ¼ 7), or 50 (n ¼ 9) syngeneic islets were monitored (B,C). A total of 50 islets

were co-transplanted with 1�105 (n ¼ 3), 5�105 (n ¼ 14), or 1�106 (n ¼ 4) (EeG). Blood glucose

levels of mice transplanted with 50 islets and 5�105 ADSCs into left and right kidneys, respectively

(n ¼ 6) (H). Asterisk indicates removal of the kidney bearing the graft after normalization of blood

glucose levels.
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weeks after transplantation (n ¼ 8), and removal of the kidney bearing the graft

promptly made recipient mice hyperglycemic again (Fig. 1B). A total of five out

of seven recipients transplanted with 100 islets became normoglycemic, and two re-

cipients remained hyperglycemic (Fig. 1C). All recipients transplanted with 50 islets

remained hyperglycemic (n ¼ 9) (Fig. 1D). Therefore, we used 50 islets in the

following experiments to examine the effects of ADSCs.
on.2018.e00632
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ADSCs obtained from subcutaneous white adipose tissue had a spindle shape and

differentiated into mature adipocytes and osteoblasts (Fig. 2AeC). They were pos-

itive for Sca-1, CD106, CD29, and CD44 but negative for CD45, CD11b, and CD31

(Fig. 2D). To examine the effect of co-transplantation with ADSCs, we combined 50

islets with 1�105, 5�105 or 1�106 ADSCs and transplanted them into STZ-induced

hyperglycemic mice. Recipients co-transplanted with 1�105 ADSCs remained hy-

perglycemic (n ¼ 3) (Fig. 1E). In contrast, recipients co-transplanted with 5�105

or 1�106 ADSCs gradually became normoglycemic by 30 days after transplantation

in a cell number-dependent manner (Fig. 1F and G). They became hyperglycemic

again after removal of the kidney bearing the graft at 120 days after transplantation.

We transplanted 1�106 ADSCs alone into STZ-induced hyperglycemic mice, but

the recipients remained hyperglycemic (data not shown). When islets and ADSCs

were respectively transplanted into left and right kidneys, the recipients remained

hyperglycemic (Fig. 1H), indicating that the effect ADSCs was not systemic but

local. These data clearly demonstrate that ADSCs enhance engraftment of trans-

planted islets, resulting in normoglycemic recipients.
Fig. 2. Characteristics of ADSCs. ADSCs observed with a phase-contrast microscopy (A). Bar repre-

sents 100 mm. Oil-Red O-stained ADSCs after adipogenic differentiation (B). Bar represents 50 mm.

After osteogenic differentiation, ADSCs were immnostained with anti-osteopontin antibody (C). Bar

represent 100 mm. Expression patterns of cell surface markers of ADSCs were analyzed by flowcytom-

etry (D). Blue line and red line show isotype control and surface marker, respectively.
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To confirm insulin secretion from the grafted islets in response to blood glucose

levels, we performed an ipGTT before and after the removal of the transplanted islets

at 120 days after transplantation. Most of mice transplanted 50 islets alone were dead

within 30 days because of hyperglycemia, and we performed ipGTT using naïve

mice as control. As a result, blood glucose levels of grafted animals at 30 and 120

min significantly increased compared to naïve mice. However, AUC was not signif-

icantly different between naive and grafted animals. Those results suggested that

glucose tolerance of grafted animals was partially recovered, before nephrectomy.

After nephrectomy, the glucose tolerance of co-transplanted mice was significantly

lower than that of naive mice (Fig. 3A and B). Before nephrectomy, the plasma in-

sulin level of co-transplanted mice was clearly detectable in response to glucose in-

jection, whereas it became undetectable after nephrectomy (Fig. 3C). These data

demonstrated that exogenous insulin from the grafted islets controlled recipient

blood glucose levels in response to the increase of glucose.
3.2. Increases of insulin granules and hormone contents

Macroscopically, the grafted islets were seen in adipose-like tissue under the kidney

capsule with neovascularization at 120 days after transplantation (Fig. 4A). Micro-

scopically, the grafted islets were surrounded by fibroblast-like cells with adipose

tissue (Fig. 4B). Immunohistochemical analyses revealed that islet cells were posi-

tive for insulin, glucagon, somatostatin, and pancreatic polypeptide (PP)

(Fig. 4CeF). Of note, a-cells in transplanted islets were distributed inside of the
Fig. 3. Intraperitoneal glucose tolerance test (ipGTT) before and after removal of the graft-bearing kid-

ney of mice transplanted with 50 islets and 5�105 ADSCs. Open circles, naïve mice (n ¼ 4); black cir-

cles, 120-day normoglycemic mice co-transplanted with islets and ADSCs before removal of the graft-

bearing kidney (n ¼ 4); open squares, 5 days after removal of the kidney. AeC show blood glucose

levels, the area under the curve, and plasma insulin, respectively. Values are expressed as the mean �
SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 vs. naïve, yP < 0.05, yyP < 0.01,

yyyP < 0.001 vs. before nephrectomy.
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Fig. 4. Macroscopic images of the graft and immunohistochemical staining for insulin, glucagon, somato-

statin, and PP. At 120 days after co-transplantation of 50 islets and ADSCs, the graft was observed macro-

scopically. Dotted lined area and arrow heads indicate kidney and graft islets, respectively (A). Section of

the graft stained with hematoxylin and eosin (B), and serial sections immunostained with antibodies against

insulin (C), glucagon (D), somatostatin (E), and PP (F). Bars represent 50 mm in BeF. Electronmicrograph

of isolated islets (G) or a b-cell in the graft islet at 120 days after co-transplantation (H), Bars represent 1mm.
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islets, which is dissimilar to the peripheral localization of a-cells that are observed in

pancreatic islets of naïve mouse (Fig. 4D).

Next, to examine the cellular structure of b-cells, we performed electron microscopic

observations. Compared with isolated islets, the number of insulin granules in the

graft was increased dramatically, and the rough endoplasmic reticulum was devel-

oped in b-cells (Fig. 4G and H). In the grafted b-cells, insulin granules were densely

observed, suggesting an increase of insulin production from each b-cell. Then, we

measured the insulin and pro-insulin contents of the grafted islets for comparison

with isolated islets. The insulin contents of 50 isolated and grafted islets were

8.66 � 0.62 mg and 12.1 � 0.80 mg, respectively (P ¼ 0.0060) (Fig. 5A). Pro-

insulin contents of 50 isolated and grafted islets were 12.7 � 2.59 ng and 25.8 �
3.07 ng, respectively (P ¼ 0.0097) (Fig. 5B), indicating that the hormone contents

of grafted islets were increased significantly. Next, we examined whether such in-

creases of hormone contents in the graft occurred in normoglycemic recipients,

we transplanted 50 islets with ADSCs into the normoglycemic mice and compared

their hormone contents with those of hyperglycemic recipients. Insulin contents of

the grafts in hyperglycemic and normoglycemic recipients were 11.6 � 0.84 mg

and 7.31 � 1.23 mg, respectively (P ¼ 0.0277) (Fig. 5C). The increase of hormone

contents by co-transplantation with ADSCs was not seen in the grafts of
Fig. 5. Insulin and pro-insulin contents of grafted islets. Peptide hormones were extracted from isolated

islets, the kidney bearing the graft at 120 days post-transplantation, and the recipient pancreas, and in-

sulin contents were measured (A). Pro-insulin contents of isolated islets and the kidney bearing the graft

(B). To examine the effects of recipient blood glucose levels on the hormone contents of grafts, at 120

days after transplantation, insulin contents of the graft co-transplanted with 50 islets and ADSCs into

normoglycemic recipient mice [STZ (�)] and STZ-induced diabetic mice [STZ (þ)] were compared

(C). Values are expressed as the mean � SEM. *P < 0.05.
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normoglycemic recipient mice, suggesting that blood glucose levels of recipients

might be a possible factor in the increase of hormone contents.

We hypothesized that the increase of hormone contents was caused by the expansion

of transplanted islet cells. To confirm this hypothesis, we performed immunostaining

with anti-insulin and anti-Ki67 (proliferation marker) antibodies. In pancreatic islets,

Ki67-positive cells were rarely detected (Fig. 6B), whereas several Ki67-positive

cells were detected in the grafted islets, and most of them were positive for insulin
Fig. 6. Ki67- and insulin-positive cells in grafted islets and the Ki67-positive ratio. Grafted and pancre-

atic islets were double stained with anti-insulin and -Ki67 antibodies, and their nuclei were counter-

stained with DAPI (A, B). Bars represent 100 mm and 50 mm in A and B, respectively. Numbers of

Ki67- and DAPI-positive cells in islets of the pancreas of naïve mouse (n ¼ 7) and grafted islets at

30 days (n ¼ 3) or 120 days (n ¼ 3) after transplantation were counted, and the Ki67-positive ratio

was calculated (C). Arrowheads show Ki67-positive cells. Values are expressed as the mean � SEM.

Bars represent 100 mm and 50 mm in A and B. *P < 0.05 vs. naïve pancreatic islets. ns, not significant.
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(Fig. 6A). We counted the Ki67-positive cells in the graft islets and calculated the

ratio of Ki67-positive cells to DAPI-positive cells in the islets. As a result, the

Ki67-positive ratio in pancreatic islets, grafted islets at 30 days post-

transplantation and graft islets at 120 days post-transplantation were 0.47 �
0.13% (n ¼ 6), 2.02 � 0.72% (n ¼ 3), and 0.90 � 0.22% (n ¼ 3), respectively

(Fig. 6C). Ki67-positive cells in grafted islets with ADSCs post 30 days were signif-

icantly increased compared with those in pancreatic islets (P ¼ 0.0119).

Because most Ki67-positive cells were also positive for insulin, we next performed

double immunostaining using anti-Pdx1, -glucagon, -somatostatin and -PP anti-

bodies to assess which endocrine cells were positive for Ki67 in the grafted islets.

The double staining revealed that most Ki67-positive cells were also positive for

Pdx1. Several Ki67-positive cells were weakly positive for Nkx6.1 (Sander et al.,

2000), and double positive cells for glucagon, somatostatin, or PP were not detected

(Fig. 7). We also performed immunostaining for the progenitor marker Ngn3

(Gradwohl et al., 2000; Gu et al., 2002) and Ngn3 downstream transcriptional factor

Pax4 (Sosa-Pineda et al., 1997), but neither Ngn3- or Pax4-positive cells were not

detected in the graft islets (Fig. 7). Those data suggested that the Ki67-positive cells
Fig. 7. Ki67-positive cells express Pdx1. A, Grafts at 30 days after co-transplantation were double stained
for Ki67 and Pdx1, glucagon, somatostatin, or PP. Nuclei were counterstained with DAPI. Bars represent

50 mm. Arrowheads show Ki67-positive cells. At 30 days after transplantation of 50 islets and ADSCs, the

graft sections were immunostained with antibodies against Ngn3 (A), Pax4 (B), and Nkx6.1 (C). Arrow-

heads indicate positive cells. Bars represent 50 mm and 20 mm in B and C, and D, respectively.
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were derived from b-cells and co-transplantation with ADSCs did not induce b-cell

neogenesis but induced proliferation of b-cells in the graft.
3.3. b-cells are derived from donor islets

Several groups have reported that MSCs can differentiate into insulin-producing

cells (Chandra et al., 2009; Piran et al., 2017; Timper et al., 2006). To examine

the possibility of b-cell differentiation from ADSCs or recipient cells, we co-

transplanted wild-type islets with ADSCs derived from MIP-GFP transgenic mice.
Fig. 8. b-cells in the graft are derived from grafted islets. (A, upper) MIP-GFP islets and wild-type ADSCs

were transplanted intowild-type recipientmice.At 120 days after transplantation, graft sectionswere stained

with an anti-GFP antibody, and GFP-positive cells were detected in the graft. (A, middle) Wild-type islets

and ADSCs derived from MIP-GFP mice were co-transplanted. GFP-positive cells were not detected. (A,

lower) Recipient mice wereMIP-GFP. GFP-positive cells were not detected in the grafted islets. Bars repre-

sent 20 mm. (B) Total RNA was isolated from the kidney containing the graft, and GFP expression levels

were examined by RT-PCR. GFPwas not detected in the graft consisting of co-transplanted wild-type islets

and MIP-GFP ADSCs. Full image of agarose electrophoresis is shown in Supplementary Fig. 1.
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Post 120 days of transplantation, GFP expression levels in the grafts were examined

by immunostaining and RT-PCR. As a result, expression of GFP was not detected in

both protein and mRNA levels (Fig. 8, Supplementary Fig. 1). When we trans-

planted wild-type islets and wild-type ADSCs into diabetic MIP-GFP mice, GFP-

positive cells were not detected. These data clearly indicated that the b-cells were

derived from the donor islets.
4. Discussion

In this study, we clearly demonstrated that diabetic recipient mice transplanted with

50 islets alone remained hyperglycemia, although diabetic recipients transplanted 50

islets and ADSCs gradually became normoglycemic, suggesting that ADSCs pro-

mote engraftment of transplanted islets. The enhancing effect of ADSCs on grafted

islet cell function was not systemic but local since the contralateral transplantation of

ADSCs was ineffective.

In the graft islets transplanted with ADSCs, the number of insulin granules was

increased dramatically, and insulin and proinsulin contents of the graft were

increased, suggesting that b-cell function was promoted by co-transplantation of

ADSCs. In addition, the result of immunostaining, the ratio of Ki67-positive cells

in the grafted islets at 30 days after transplantation was significantly higher than

that of islets in the pancreas of naïve mouse. Most Ki67-positive cells were positive

for insulin and Pdx1. These data suggested that co-transplantation with ADSCs

induced b-cell replication. Moreover, the proliferated b-cells were found to be

derived from the donor islets but not from co-transplanted ADSCs or recipients based

on the finding with use of MIP-GFP Tg mice. Taken together, we showed that

ADSCs enhance the proliferation of islet cells in grafted tissue by co-transplantation.

During the first 30 days after co-transplantation, recipient mice were still in the

hyperglycemic state, but they gradually became normoglycemic from 45 days after

transplantation. The Ki67-positive ratio of grafted islets at 30 days was significantly

increased compared with that of pancreatic islets. Conversely, at 120 days, when the

recipient became normoglycemic, the Ki67-positive ratio of the grafted islets was

not different from that of pancreatic islets. Moreover, when we co-transplanted islets

and ADSCs into non-diabetic normoglycemic recipient, there was no increase in in-

sulin content of the grafts compared with 50 donor islets. These findings suggest that

the hyperglycemic condition may be essential not only for promoting b-cell function

but also for b-cell replication produced by co-transplantation of ADSCs. Indeed, it

has been demonstrated that differentiated b-cell could be redifferentiated by stimu-

lation with high glucose level in the medium for 2 days during which the expression

of insulin, Pdx-1 and MafA significantly increased over time (Russ et al., 2011). In

addition, hyperglycemia has been also reported to stimulate an increase in b-cell

number (Otonkoski et al., 1994; Zhang et al., 2016).
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The mechanism of pancreatic b-cell regeneration remains unclear and has been contro-

versial. In general, b-cell regeneration was thought to be mediated by both b-cell neo-

genesis and the proliferation of existing b-cells (Gu et al., 1995). b-cell neogenesis is

new b-cell formation from other cells such as acinar and ductal compartments as sug-

gested by experiments of injury-induced regeneration in the pancreas (Westphalen

et al., 2016).Although the actual propensity for acinar cells to contribute to the endocrine

lineage is limited, acinar cells poses intrinsic plasticity that directs them toward a b-cell-

like phenotype by the introduction of three genes, Pdx-1, Ngn3, and MafA (Zhou et al.,

2008). Acinar cells can be converted to ??-like and a-like cells by overexpression of

Ngn3 and Ngn3 plus MafA, respectively (Li et al., 2014). However, studies employing

50e70% pancreatomy have demonstrated that b-cells regenerate almost exclusively by

self-duplication of existing b-cells and not through neogenesis (Meier et al., 2008; Nir

et al., 2007). Recently, functional heterogeneity of b-cells and the presence of a popula-

tion of proliferative andmatureb-cells have been reported (Bader et al., 2016).Our study

clearly indicated that, at least in transplantation experiments, b-cells were derived from

donor islets but neither from co-transplanted ADSCs nor from recipients.

It has been reported that proliferation of b-cells can be induced under physiological

conditions and by several stimuli (Dor et al., 2004). Insulin, insulin-like growth

factor-1, interleukin (IL)-6, serotonin, incretins, hepatocyte growth factor (HGF)

(Alvarez-Perez et al., 2014; Mellado-Gil et al., 2011), platelet-derived growth factor

(PDGF) (Chen et al., 2011), and microRNAs are reported to enhance b-cell prolifer-

ation (Filios and Shalev, 2015). Among them, MSCs secrete IL-6, HGF, and PDGF,

although we did not examine the roles of these factors in our experiments. The extra-

cellular matrix (ECM) provided by ADSCs might be important for graft islets. ECM,

integrin b1 (Diaferia et al., 2013), connective tissue growth factor (Riley et al., 2015),

and tissue inhibitor of metalloproteinases-1 (Kono et al., 2014) have been reported to

be related to b-cell proliferation and suppress apoptosis of graft islets.

Interestingly, in the co-transplantation experiment, the localization pattern of a-cells

was dissimilar to that of pancreatic islets. The possibility that proliferation of a-cells

caused different localization patterns of a-cells appears to be unlikely because we

did not find double staining of Ki67 and glucagon or somatostatin. At least in our

experiments, the proliferation of the grafted islets appears to be restricted to b-cells

only. Trans-differentiation of a- or d-cells into b-cells (Chera et al., 2014) may be

another possibility, but it is very difficult to examine this possibility by in vivo trans-

plantation experiments. Further studies are needed to clarify how b-cells expand by

co-transplantation with ADSCs.

In this study, we used mouse inguinal subcutaneous white adipose tissue as a source

of MSCs. Considering clinical islet transplantation, the preparation of stem cells

from adipose tissue is more suitable than from bone marrow because adipose tissue

is easy to access with better recovery of cells (Gondo et al., 2008). However, it is of
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note that ADSC-stimulated expansion of the co-transplanted islet was observed in

STZ-induced and syngeneic conditions and thus, the simple application of our sys-

tem to autoimmune diabetes may not be possible.
5. Conclusions

We examined the effects of ADSCs on transplanted islets and demonstrated that co-

transplantation with ADSCs not only enhances engraftment of islets but also induces

b-cell expansion of transplanted islet cells in a syngeneic mice transplantation model.
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