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Physical flow effects can dictate plankton
population dynamics
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Oceanic flows do not necessarily mix planktonic species. Differences in indi-
vidual organisms’ physical and hydrodynamic properties can cause changes
in drift normal to the mean flow, leading to segregation between species.
This physically driven heterogeneity may have important consequences
at the scale of population dynamics. Here, we describe how one form of
physical forcing, circulating flows with different inertia effects between
phytoplankton and zooplankton, can dramatically alter excitable plankton
bloom dynamics. This may impact our understanding of the initiation and
development of harmful algal blooms (HABs), which have significant
negative ecological and socio-economic consequences. We study this
system in detail, providing spatio-temporal dynamics for particular
scenarios and summarizing large-scale behaviour via spatially averaged
bifurcation diagrams. The key message is that, across a large range of
parameter values, fluid flow can induce plankton blooms and mean-field
population dynamics that are distinct from those predicted for well-mixed
systems. The implications for oceanic population dynamic studies are
manifest: we argue that the formation of HABs will depend strongly on
the physical and biological state of the ecosystem, and that local increases
in zooplankton heterogeneity are likely to precede phytoplankton blooms.
1. Introduction
It is commonplace to assume that the principal effect of fluid flow on an oceanic
ecosystem is to mix biological populations and the nutrients that they rely on.
Indeed, such mechanisms lie at the heart of our understanding of annual cycles
in primary productivity, whereby seasonal interactions between an upper
photic mixed layer and deeper nutrient-rich waters can cause rapid increases
in algal biomass over a few weeks [1]. It is natural, then, to question whether
oceanic flows have significant effects upon the population dynamics, either
quantitatively or qualitatively, particularly in the absence of gradients in nutri-
ent or light or detailed behavioural responses. Is it reasonable to assume that
fluid circulation ensures an essentially well-mixed environment over a range
of ecologically meaningful length and time scales?

While there is much work on individual zooplankton–phytoplankton inter-
actions in shear flows [2,3] and many observations of plankton heterogeneity
associated with large-scale currents [4], there is little consensus about the
impact of general flows on population dynamics. A traditional view is that
flows and associated effects should either wholly mix the biology or separate
the biology into distinct well-mixed patches (e.g. in circulating flow structures),
each with a full complement of interacting species [5]. However, simulation evi-
dence [6] suggests that turbulence can actively drive small-scale patchiness for
motile phytoplankton and experimental evidence in Palma Bay in the Balearic
Islands finds a causative relation between plankton size structure and slowly vary-
ing annual flow features [7]. Here, we show that physical effects can disaggregate
foodweb components and that this effective segregation can in principle dictate
large-scale ecological dynamics.
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Figure 1. Sketch illustrating inertial drift (red arrows) of zooplankton (black) out of eddies, allowing phytoplankton (green) within the eddies to escape grazing
control by zooplankton. The responsive radius of each zooplankton is illustrated by a dashed circle. Flow streamlines are given by black lines and arrows.
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Planktonic organisms have different physical character-
istics from the fluid in which they are found. For example,
they have different densities, sizes and shapes [8]. As a
result, different species will experience different drift relative
to the surrounding fluid (figure 1); particle trajectories will
not match streamlines of fluid flow; and inertia and sedimen-
tation drive potentially complex trajectories [9,10]. The
magnitude of these effects has to be carefully assessed, but
it is clear that even a small amount of drift perpendicular
to streamlines in regions of high shear can lead to very
large dispersion in the direction of the flow (the well-
known Taylor dispersion [11]). Non-swimming organisms
do not simply follow fluid flow streamlines; depending on
their relative density and shape they can accumulate or
spend more time in regions of high shear or vorticity [12]
or in flow regions collinear with gravity [13] that naturally
arise in marine flows.

If predator and prey species have different densities, or
differences in size and shape, then these variable inertial
characteristics will lead to them being transported differently
by the flow. This can, in principle, have ecological conse-
quences. For example, Reigada et al. [12] demonstrated that
spatial segregation of predators and prey driven by inertial
effects in synthetic turbulence can allow a local prey popu-
lation to grow in a relatively unconstrained manner. The
predator population responds at the fringes of the burgeoning
prey population; the local predator population increases,
the original inertial flux is countered by a diffusive flux and,
eventually, the predators consume a large part of the prey
population. In this way, the requirement present in many
existing mathematical descriptions of bloom phenomena (for
example, [14]) for a large external perturbation to kick-start
the system away from dynamic equilibrium is superfluous.

Here, we build on Reigada et al. [12] and investigate
the effects of inertia on advected excitable phytoplankton–
zooplankton dynamics for a simple two-dimensional cellular
flow. This flow is chosen because it incorporates streamline
curvature, and can represent an array of eddies, while the
relevant flow magnitude and length and time scales can be
transparently controlled. We, systematically, investigate a
range of physical flow scales and ecological parameters.
Further to this, we explore the spatially averaged bifurcation
structure from regions of parameter space that impart non-
bloom dynamics through to regions with ecologically realistic
stationary or oscillatory bloom behaviour. We discover that
small amounts of inertia can not only kick-start algal bloom
formation in a circulating flow, but that as a consequence
they can drastically alter phytoplankton–zooplankton inter-
actions and thus mean population dynamics. Our results
suggest that studies of phytoplankton–zooplankton dynamics
that assume that turbulence simply mixes species in small
regions may not tell the whole story.

In contrast to seasonal ocean-scale cycles in productivity,
harmful algal blooms (HABs) occur on a smaller spatial
scale and are difficult to predict. Nevertheless, these major
biological events lead directly to extensive ecological and
socio-economic damage on a global scale. They occur when
local algal populations undergo a period of rapid growth,
causing toxic or damaging effects to surrounding ecosystems.
HABs have been shown to have widespread health impacts
on fish and shellfish [15], marine mammals [16], birds [17]
and humans [18]. HAB events are happening more often
and in more places than ever before [19], and they particu-
larly endanger small communities in the developing world
that depend on a healthy catch of seafood to sustain the
local population.

With HABs having such increasing negative impacts on
public health and the worldwide economy, it is of growing
importance that we discover and fully understand the
mechanisms by which they may be triggered. Here, we
argue that the temporal and spatial scales associated with
simple oceanic flow features, combined with realistic physio-
logical differences between phytoplankton and zooplankton,
are likely to be important drivers of HAB dynamics.
2. Methods
We follow Reigada et al. [12] in constructing a model for the
trajectories of plankton species subject to inertial effects.
Font-Muñoz et al. [7] provide experimental evidence that
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size structure is directly affected by kilometre-scale flow struc-
tures over a yearly cycle in a real-world coastal system. They
conclude that inertial effects alone can account for the observed
heterogeneity.

For a spherical particle at position Xwith velocity V in a non-
stationary fluid velocity field U(X, t), the equation of motion for
the particle determined by Maxey & Riley [9] is given by

mp
dV
dt

¼ mf
DU(X)
Dt

þ 6pah(U(X)�V)

�mf

2
dV
dt

� dU(X)
dt

� �

� 6pa2h
ðt
�1

d(V�U(X))=dt

(pn(t� t))1=2
dt, (2:1)

where mp is the particle mass and mf is the mass of fluid dis-
placed by the particle, η and ν are the dynamic and kinematic
viscosity of the surrounding fluid, respectively, and a is the
radius of the particle. Terms on the right-hand side account for
the Bernoulli force from the undisturbed flow, the Stokes viscous
drag, an added mass effect and the Basset history force (see [9]
for details). It is clear that consideration of Kolmogorov scales
may become important for larger plankton in the open ocean,
and the strict validity of equation (2.1) is open to question in
this range (see [20]). However, we avoid these complexities and
exploit the leading-order drift of particles across streamlines in
larger rotating flows. The main aim in our study is to provide
a simple model of species segregation due to an inertial effect
in a well-defined flow. Reducing the size of the plankton will
reduce the rate of drift, but will not change the qualitative
dynamics.

We simplify significantly by making approximations proposed
by Taylor [21], Auton et al. [22] and Druzhinin & Ostrovsky [23]
(see [10]) to equation (2.1), which yields an equation for velocity
that depends only upon the position of the particles. This enables
us to define an effective (non-dimensional) particle velocity field

V(r) ¼ U(r)þ R� 1
A

[U(r) � r]U(r)þO(A�2), (2:2)

where U(r) is the ambient fluid velocity field, R = 3mf/(2mp +mf) is
the (non-dimensional) Bernoulli number describing a ratio of
masses, and A = 12πaη/(2mp +mf) is the reciprocal of the character-
istic viscous drag time of the particle. The Stokes number St is
given by a ratio of 1/A and the characteristic flow time scale,
such that St ¼ u0=l0A, where u0 and l0 are flow velocity and
length scales, respectively. (To derive (2.2), St is considered
small, the approximate form of (2.1) is integrated and exponential
transients are neglected.) Note that Font-Muñoz et al. [7] contains a
typographical error on the left-hand side of their governing
equation (2.1), but the simulation results remain accurate (I
Tuval 2019, private communication).

Following Reigada et al. [10], the divergence of (2.2) can be
written in terms of the magnitude of the local strain-rate S and
vorticity Ω of the original flow U. Hence,

r �V ¼ R� 1
A

2S2 � jVj2
2

 !
: (2:3)

Therefore, particles move across streamlines and tend to
aggregate in regions of negative divergence. If the organism is
more dense than the fluid, (R < 1), then accumulation is expected
in regions where S2 >|Ω|2/4, meaning there is high strain and
low vorticity, while less dense organisms, (R > 1), accumulate in
regions of low strain and high vorticity (inside eddies). Neutrally
buoyant particles (R = 1) are passively advected by the ambient
flow and do not accumulate in any particular region (unless
other terms in (2.1) are retained). Equation (2.2) provides the
leading-order effect of inertia in a relatively simple Eulerian
flow field.
The above approach is of real practical use as it allows us to
consider population dynamics with a spatially continuous
description across large length scales of interest (approx.
100 m). Note that in moving from a description describing
individual organisms to a continuum, we must consider length
scales much larger than the distance between organisms.

To achieve this, we construct a system of reaction–advection–
diffusion equations of the form

@P
@t

¼ �r � (VPP�DPrP)þ fP(P, Z) (2:4)

and
@Z
@t

¼ �r � (VZZ�DZrZ)þ fZ(P, Z), (2:5)

where VP and VZ are the effective velocity fields for the phyto-
plankton and zooplankton, respectively, and DP and DZ are the
diffusivity coefficients. Typically, we set DP and DZ equal as
effective eddy diffusivity is likely to be significantly larger than
that due to swimming.

The choice of excitable plankton dynamics is inspired by the
general Truscott & Brindley [14] model of plankton blooms in a
well-mixed system. The model considers two interacting trophic
levels, phytoplankton (P) and zooplankton (Z). It consists of two
nonlinear ordinary differential equations for P and Z. The model
exhibits excitable dynamics: small perturbations return to the
non-trivial steady state whereas larger perturbations can instigate
a large excursion around phase space over an extended period,
corresponding to a bloom. We therefore use the reaction terms
fP(P, Z ) and fZ(P, Z ) from the Truscott & Brindley [14] model,
such that

fP(P, Z) ¼ rP 1� P
K

� �
� RmZ

P2

k2 þ P2 (2:6)

and

fZ(P, Z) ¼ eRmZ
P2

k2 þ P2 � mZ, (2:7)

where r is the maximum growth rate of phytoplankton, K is
the phytoplankton carrying capacity, Rm is the maximum specific
predation rate, κ is the half-saturation constant, ε is the efficiency
of the zooplankton and μ is the linear death rate of the
zooplankton.

There are three steady states of the system: a trivial equili-
brium at the origin, zooplankton extinction at (P, Z ) = (K, 0)
and a coexistence state at

(P, Z) ¼ k

z
,
rke
mz

1� k

Kz

� �� �
, (2:8)

where z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(eRm=m� 1

p
), meaning that coexistence is not

possible unless εRm > μ. At ζ = κ/K, the coexistence state collides
with the zooplankton extinction state and the system undergoes
a transcritical bifurcation. The trivial equilibrium is a saddle
point of the dynamical system, while the zooplankton extinction
point is a stable node when ζ < κ/K and a saddle point
otherwise.

Following Truscott & Brindley [14], we find that the points at
which Hopf bifurcations occur for the coexistence equilibrium
are determined by the solutions to the cubic equation

Kz3 � Kzþ 2k ¼ 0: (2:9)

Descartes’ rule of signs tells us that there must be one negative
and two positive real roots. However, by definition, ζ cannot
be negative, and so there are two Hopf bifurcations. As ζ
increases from 0, the first bifurcation causes a stable limit cycle
to come into existence, and the second results in the coexistence
equilibrium regaining linear stability as a stable spiral.

The effective velocity fields Vξ, ξ = P, Z, are given by

Vj ¼ Uþ bj[U � r]U, (2:10)



Table 1. Ecological parameter values used in the simulations.

parameter description
simulation
values unit

r maximum

phytoplankton

growth rate

0.3 d−1

K phytoplankton

carrying capacity

108 μg N l−1

Rm maximum specific

predation rate

0.7 d−1

κ predation half-

saturation

constant

5.7 μg N l−1

ε biomass conversion

efficiency

0.05 —

μ zooplankton

mortality rate

0.001–0.035 d−1
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where βξ, ξ = P, Z, are Maxey–Riley coefficients, with βξ < 0 for
negatively buoyant particles and βξ > 0 for positively buoyant
particles.

Reigada et al. [12] used a turbulent stationary flow as a back-
ground flow. We shall instead employ a (stationary) cellular flow
[24]. This gives us some advantages as it allows us to have full
control over the length and flow speed scales of the eddies in
our model, meaning we can vary the maximum flow speed as
a bifurcation parameter. This enables us to perform a full bifurca-
tional study of the spatial averages of the two species with
respect to both physical and ecological processes, and leads to
a simplified one-dimensional system.

Here, we shall consider the simplest case where inertial
effects become relevant for two-dimensional flow in a horizontal
plane. However, for a vertical plane one must also include sedi-
mentation and the Lambert–Beer law for light attenuation and
thus growth dependent on light absorption by other organisms
above a given position in space. Hence, the ambient fluid vel-
ocity U = (U1, U2) is given by

U1 ¼ U0 sin
2px
L

� �
cos

2py
L

� �
(2:11)

and

U2 ¼ �U0 cos
2px
L

� �
sin

2py
L

� �
(2:12)

for (x, y) ∈ [0, L]2, where U0 is the maximum speed of the flow
and L is the diameter of a single circulatory cell, which can be
written in terms of the streamfunction ψ = (U0 L/2π)sin(2πx/
L)sin(2πy/L) and so satisfies incompressibility.

Typically, submesoscale eddiesofhorizontaldiameter0.1–10 km
(smaller than large mesoscale eddies, 10–200 km) and vertical
extent 0.01–1 km can persist in the ocean for days, with some
submesoscale coherent vortices even persisting for years [25].
Constrained regions can also contain circulating flows; Font-
Muñoz et al. [7] indicate in their study that they observed flow
features with length scales of the order of a kilometre that
were relatively stable and switched around annually.

Statistical measures of spatial features of the plankton are
necessary to be able to compare the different spatial distributions
resulting from various parameter values. We use a measure of
aggregation Πp defined as

P p ¼ 1� h pi2
h p2i , (2:13)

where 〈 · 〉 represents a spatial average. Πp ranges from 0 to 1− 1/
N2, where a value of 0 means there has been no aggregation (the
distribution is homogeneous), and a value of 1− 1/N2 means
that all the plankton have aggregated to a single point in the
grid, which has N2 mesh points.

We choose a realistic scenario where the phytoplankton are
assumed to be neutrally buoyant so that βP = 0, while the zoo-
plankton are taken to be negatively buoyant with βZ =−2.22
[12]. The size L of the (sub-mesoscale) eddies was taken to be
100m across, and the maximum flow speed U0 was varied as a
bifurcation parameter to investigate the response of the system
to increasing spatial segregation caused by the Maxey and
Riley term in equation (2.10). DP and DZ are set at a value of
DP =DZ = 1.6 m2 s−1, in line with estimates of marine turbulent
eddy diffusivity [26] for flow features of the order of a few kilo-
metres. We chose this value for the diffusivity rather than the
empirically derived value of 0.04 m2 s−1 suggested by Okubo
[26], so that we could make a direct comparison with the results
of Reigada et al. [12] as well as allowing rapid convergence of the
numerical scheme. We have repeated the simulations with diffu-
sivity DP =DZ = 0.04 m2 s−1, a reduction by a factor of 40. The
results are qualitatively unchanged, and the bifurcation value
for the flow parameter decreases by less than 10%. Importantly,
this points to our mechanism of bloom formation being even
more biophysically relevant than the results presented below.

Equations (2.4) and (2.5) were solved subject to periodic
boundary conditions using a staggered mesh solver for
the advection and diffusion components of the advection–
diffusion–reaction equation, with an explicit Euler method used
for the reaction terms. The numerical scheme was tested for con-
vergence by repeating the simulations using a variety of grid
spacing and time steps.

While the two-dimensional system provides archetypal
solutions for an array of eddies, it is possible that the coupling
between physical and ecological dynamics may be represented
well in just one dimension, with a concomitant reduction in
numerical complexity. Such a simplification would allow us to
examine whether the observed two-dimensional dynamics are
in any way attributed to the geometry associated with stagnation
points and heteroclinic connections (corners) or stream-wise
instabilities around the eddy. Axisymmetric eddies are an
option but also require consideration of stagnation points at
their outer boundaries if placed in a periodic array. Therefore,
we avoid these topological issues and develop a simple approach
to investigate the effect that drift into or out of an eddy has on the
population dynamics. We model the concentration of plankton
species across the diameter of a single eddy for a fixed value of
y = L/4, so that the x-component U1 of the background flow
given by (2.11) and (2.12) vanishes and the only remaining
contribution to the zooplankton effective particle flow field in
the x-direction comes from the Maxey and Riley drift term
bZ[U � r]U from (2.10). We can then calculate its x-component
V1Z for y = L/4 from (2.2). Recall that P is neutrally buoyant
and so experiences no drift. Hence, (2.5) becomes

@Z
@t

¼ � @

@x
V1ZZ�DZ

@Z
@x

� �
þ fZ(P, Z), (2:14)

with no-flux boundary conditions at x = 0 and L/2, and similarly
for ∂P/∂t in (2.4).

We use realistic values for the ecological parameters [14] and
they can be found in table 1. The zooplankton death rate μ was
chosen as a bifurcation parameter, taking values from 0.001 d−1

to 0.035 d−1. The first Hopf bifurcation occurs at μ = 0.0185 d−1

for the chosen parameter values, the transcritical bifurcation
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Figure 2. Large-scale blooms can be triggered via local flow effects. Spatio-temporal evolution of a plankton bloom triggered by spatial separation of predator and
prey populations due to flow. An initially homogeneous distribution of zooplankton (bottom row) becomes concentrated in regions of low vorticity. This allows the
phytoplankton population to escape grazing control in regions of high vorticity (top row), initiating a local bloom on an ecologically realistic time scale. (Online
version in colour.)

50 100 150 200
time (days)

0

0.2

0.4

0.6

0.8

1.0
·PÒ/max ·PÒ
·ZÒ/max ·PÒ
PP
PZ

(b)

(a)

(c)

(d )

Figure 3. Evolution of spatial aggregation and population dynamics driven by flow. Dynamics of mean population size (blue for P, red for Z ) and aggregation
(yellow for P, purple for Z ) of phytoplankton and zooplankton showing that the phytoplankton bloom occurs for a time of the order of weeks and is initiated shortly
after zooplankton aggregation reaches a maximum. (Online version in colour.)
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occurs at 0.0349 d−1, and so our range of values for μ ensures
that we capture all qualitative behaviours of the excitable
dynamical system.

In order to test the excitability of the system for different flow
speeds, U0, we use the ideas of Truscott [27] and slowly change
the value of r from an initial value r0. This acts as a perturbation
to the system and allows us to find the critical value of dr/dt that
results in the triggering of a bloom and leads to an excursion
around phase space indicative of the system undergoing an
excitation.
3. Results
All simulations were carried out using an initially homogeneous
phytoplankton and zooplankton distribution corresponding to
the ODE steady state (2.8), and iterated forward in time until
all transients had decayed (1000 days) and the system exhibited
stable limit cycle behaviour. The choice of t = 0 is arbitrary, and
corresponds to the time of minimum spatially averaged phyto-
plankton population in the limit cycle.

Figure 2 shows snapshots of the model’s typical spatial
output at four instants during the bloom cycle. At t = 0
days, the phytoplankton population P remains close to its
homogeneous steady state, but spatial structure is apparent
in the zooplankton population Z, with individuals advected
away from the centre of the eddies. At t = 66 days, Z is suffi-
ciently depleted within the eddies that P can increase in these
regions due to the local removal of grazing control; a local
bloom is initiated. By t = 117 days, the local P bloom has
reached its peak and spreads diffusively towards the edges
of the eddies. This gives Z an increased opportunity to
consume its prey in regions of lower vorticity, leading to
increased predator growth on the fringes of the circulations
and a decrease in P back towards its minimum.

Figure 3 is an alternative depiction of these dynamics,
detailing the temporal evolution of the mean population
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Figure 4. The Hopf bifurcation does not occur when inertial effects are too
small. A bifurcation diagram showing the minimum and maximum spatially
averaged phytoplankton density 〈P〉 for the two-dimensional system with
inertia parameter |βZ| varying from 0 to 3.5, fixed maximum flow speed
U0 = 3 m s−1 and zooplankton death rate μ = 0.012 d−1. (Online version
in colour.)
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size (normalized by maximum P population) and aggrega-
tion measures of the P and Z populations, ΠP and ΠZ,
respectively, over a bloom cycle. At around t = 50 days
zooplankton aggregation ΠZ reaches its maximum. As a con-
sequence, the P population undergoes a rapid increase on a
time scale of the order of days, indicating that the accumu-
lation of zooplankton towards the edges of eddies provides
enough space for the phytoplankton in the centre of the
eddies to escape local grazing pressure. This leads to a
decrease in P aggregation; phytoplankton spread diffusively
across the eddy, and a local minimum in ΠP is reached
soon after the maximum point of P at location (c). The
zooplankton are then able to eat prey on the edges of the
eddies and their population begins to rise before reaching a
maximum at location (d). The bloom persists for a time of
the order of months for the chosen parameter values.

Figure 4 provides a bifurcation diagram with the inertia
parameter βZ. Here, the flow speed U0 is set to 3 m s− 1, the
zooplankton death rate μ is fixed at 0:012 d�1 and the value
of the inertia parameter βZ is varied from −3.5 to 0. We
plot the absolute value |βZ| to allow a direct comparison
of the shape of the graph with those found in figure 5. The
diagram demonstrates that there are no stable limit cycles
for |βZ| below a value of approximately 1, at which a
Hopf bifurcation occurs. A region of oscillatory solutions
exists for|βZ| greater than this value but less than approxi-
mately 3. Beyond this value the spatially averaged
inhomogeneous zooplankton population settles instead to a
larger steady-state solution, which increases with the inertia
parameter. These results allow us to establish a causal
relationship between inertia and the initiation of oscillatory
blooms in our model. It should, however, be noted that simi-
lar instabilities (in different physical regimes) can be induced
in the absence of inertial effects, for example by a stretching
flow with positive divergence [28] or through the interaction
of Hopf and Turing mechanisms [29].

The bifurcation diagrams in figure 5 show that flow-
induced blooms are a phenomenon which persists across a
wide range of parameter values, and also that the essential
features of the two-dimensional system (2.4), (2.5) are cap-
tured by the simpler model in one spatial dimension (2.14).
The figures show the steady state of the system, or the
maximum and minimum values of the oscillations in
spatially averaged population density for regimes exhibiting
oscillatory behaviour. As the flow magnitude U0 increases,
we see that there exists a critical background flow speed
above which an oscillatory domain of solutions (correspond-
ing to cyclic blooms) is initiated via a Hopf bifurcation. The
bifurcation point depends on both ecological and physical
parameters, and the figures show that larger zooplankton
death rates μ increase the likelihood that relatively small
amounts of flow may induce blooms. It is interesting to
note that all three of these μ values are beneath the Hopf
bifurcation point of the underlying excitable dynamical
system (m ¼ 0:0185 d�1), meaning that the physical flow
effects are influencing the large-scale dynamics in all cases.
Note that the critical flow speeds needed to induce oscil-
lations (for each value of μ) are very similar in the one- and
two-dimensional numerical models, indicating that the one-
dimensional approximation is able to capture the behaviour
of the full two-dimensional system for these parameter
values. For larger flow speeds (U0 > 3.5 m s−1), the behaviour
of the two systems starts to differ, with the one-dimensional
system indicating a persistent bloom while the transition is
more gradual in the spatially averaged output from the
two-dimensional system. This is due to two-dimensional
spatial effects, which can be understood by looking at the
dynamics in more detail as explained below.

Figure 6 depicts a two-parameter bifurcation diagram
of U0 against μ for both the one-dimensional and two-
dimensional systems. The lower (red) lines indicate the
critical parameter value pairs corresponding to the initiation
of oscillatory solutions, while the upper (yellow) lines indi-
cate parameter value pairs beyond which oscillations no
longer can be found in the solutions. In both systems,
region (A) is of a very similar shape and size, providing
more evidence that the one-dimensional approximation is
reasonable for small background flow speeds. However,
differences appear for larger values of μ and U0 with an
extra region of oscillatory solutions occurring in the two-
dimensional system for μ > 0.03. Figure 7a helps to explain
this extended oscillatory region, showing that the strict
dichotomy between stable equilibrium and stable limit
cycle regimes is not perfectly inherited from the non-spatial
and one-dimensional systems. Instead, there are parameter
choices containing additional small oscillatory modes at the
spatially averaged scale. Figure 7b shows that these oscil-
lations are caused by differences in local spatial dynamics.
We plot the mean phytoplankton concentration within a
small box inside an eddy (blue), and contrast this with the
mean concentration outside the eddy (red) for a region of
parameter space where secondary P−Z oscillations exist.
Interestingly, while the P population outside the eddy has a
regular oscillation and crashes approximately every 280
days, the population within the eddy crashes only every
other cycle; the eddy provides some protection from grazing.
These descriptions are valuable both in demonstrating the
general predictive utility of the one-dimensional model and
in illustrating the secondary local flow-induced structures
which may arise.

As a measure of excitability, in figure 8 we plot the critical
value of (1/r0)dr/dt required for a trajectory to take a large
excursion around mean P−Z phase space rather than return-
ing directly to the coexistence equilibrium point (2.8). This
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value is plotted against U0 with m ¼ 0:012d�1. The curve is
seen to meet the x-axis at around U0 = 1.98 m s−1, which cor-
responds to the lower Hopf bifurcation point in figure 5b.
Therefore, even if flow speeds are not sufficient to cause the
system to oscillate, an increase in flow speed can result in
enhanced bloom excitability in the presence of an auxiliary
environmental perturbation.
4. Discussion
We have shown that the inclusion of physical effects, such as
small differences in inertia or buoyancy between predators
and prey, can dramatically affect encounter rates between
planktonic species, and that these changes can have
consequences at ecological scales.

For illustration, the one-dimensional model indicates that the
cross-stream velocity of a copepod of radius a= 5 mm of density
ρp that is 10% more dense than water, ρf, in an eddy of radius
L/2 = 100 m with maximum flow velocity U0 = 1 m s−1 is
given by V ¼ �(2=9)((r f � r p)a

2U2
0p=hL) sin (4px=L) m s�1,

giving a maximum drift speed of 9 mm s−1. Even with a
mean drift speed of 1 mm s−1 the organisms will migrate to
the fringes of the eddy in a time of order 1 day. Over a time
scale of several days, segregation between species and thus
a significant reduction of grazing can occur. This has the
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effect of forcing trajectories in population dynamic phase
space. If the underlying system is excitable then large
excursions away from steady states are expected. Moreover,
population dynamics where phytoplankton–zooplankton
cycles are present (limit cycles or more complex attractors)
in fully mixed systems can be quenched by inertia-induced
drift (e.g. figure 5).

The numerical results show that blooms can be triggered
by increased circulation flow speeds leading to greater spatial
segregation between predator and prey. Hence, the flow itself
can not only induce plankton bloom formation but can
also qualitatively impact the population dynamics, shifting
oscillatory dynamics to steady states and vice versa.

One criticism of the current approach is that the population
dynamics depend only on local concentrations and not fluxes.
Clearly, higher contact rates may increase grazing of phyto-
plankton by zooplankton, an effect that could be considered
in future investigations, in line with Lewis et al. [30].
For mid-range flow speeds (typically, 1− 3 m s−1 with our
set of parameters), the inertial terms drive solutions away
from steady states into oscillatory bloom solutions. Essen-
tially, slightly dense zooplankton are gradually drawn out
of eddies where there is a relatively low mean phytoplankton
number density. The resultant reduction in grazing in the
centre of the circulation reduces the constraint on phyto-
plankton growth and they are observed to bloom. However,
large local gradients of phytoplankton concentration inevita-
bly drive diffusion down the gradients. The zooplankton
graze the phytoplankton at the edge of the eddies and
grow in number themselves, generating diffusive fluxes of
zooplankton that swamp inertial fluxes, and leading to con-
sumption and repression of the eddy-focused bloom down
to levels below the steady state. For the parameter ranges
explored, any non-negative predator death rate (below the
rate at which the coexistence equilibrium disappears) permits
oscillatory solutions for some range of flow speeds.

Sufficiently large flow speeds (typically U0 > 3 m s−1) lead
quickly to disaggregation of species, with a zone of overlap
between P and Z. Oscillatory dynamics are lost and phyto-
plankton are seen to reach high concentration in the centre of
eddies, bounded above by the carrying capacity K. The
observed mean phytoplankton concentration reflects the
increasing size of the zooplankton-absent zonewith flow speed.

The ecological model presented herein is a simple and
mathematically tractable way to capture the excitable
plankton dynamics between two trophic levels, predator
and prey. It is notable, however, that many HABs involve
mixotrophic species [31]. For example, the bloom-forming
dinoflagellate Noctiluca scintillans is a mixotrophic species
which both feeds on phytoplankton and exploits the photo-
synthetic ability of ingested Pedinomonas noctilucae living in
their vacuoles. Indeed, because the ingested microalgae
may themselves be toxigenic, this mixotrophic relationship
has been postulated as a mechanism which may increase
HAB toxicity [32]. For species whose flow-related biophysical
parameters are known, the methods of Hammer & Pitchford
[33] can be adapted to quantify the joint role of mixotrophy
and fluid motion in HAB formation, and will form a useful
subject of future work.
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The results in this paper are for a horizontal two-
dimensional flow, and demonstrate that the interaction
between physical and ecological systems gives rise to conse-
quences unaccounted for by either system on its own. The
model takes a simplified view of mixing by only including
effective eddy diffusivity as a means for cells to spread out
across the spatial domain, while the ability for cells to
accumulate due to the Maxey and Riley effects is the cause
of spatial segregation between predator and prey. However,
much mixing occurs in the vertical direction. In order to con-
sider the impact of vertical mixing one must also give careful
consideration to sedimentation, light dependence and phys-
ical effects at the upper and lower boundaries. Behrenfeld
& Boss [34] give a comprehensive overview of the effect of
nutrient and light availability on phytoplankton biomass
and how these change with mixed layer depth, building on
the seminal work of Sverdrup [1].

At leading order one might assume that sedimenting
organisms are spherical and that gravitational torques and
biased swimming motion can be neglected. However, this is
generally not the case. For instance, many plankton, such
as diatoms, are markedly elongated and this can have a
dramatic effect on sedimentation velocity [13]. Also, many
species are bottom heavy or subject to sedimentary torques
due to body asymmetry and swim in biased directions rela-
tive to gravity [6,35]. The growth of phytoplankton is very
much dependent on the light availability, and the phyto-
plankton may themselves be phototactic [36]; models could
include the well-known Lambert–Beer law for light attenu-
ation and thus growth, and may also incorporate upward
motion. Finally, there are different scenarios regarding the
lower boundary condition: no-flux and no-slip conditions
suggest a shallow sea whereas to model a mixed layer over-
lying deeper seas requires careful consideration of biomass
loss and nutrient upwelling events [37]. All of these aspects
merit further detailed study.
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