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Abstract

Summary: We present GeoBoost2, a natural language-processing pipeline for extracting the location of infected
hosts for enriching metadata in nucleotide sequences repositories like National Center of Biotechnology
Information’s GenBank for downstream analysis including phylogeography and genomic epidemiology. The
increasing number of pathogen sequences requires complementary information extraction methods for focused re-
search, including surveillance within countries and between borders. In this article, we describe the enhancements
from our earlier release including improvement in end-to-end extraction performance and speed, availability of a
fully functional web-interface and state-of-the-art methods for location extraction using deep learning.

Availability and implementation: Application is freely available on the web at https://zodo.asu.edu/geoboost2.
Source code, usage examples and annotated data for GeoBoost2 is freely available at https://github.com/ZooPhy/
geoboost2.

Contact: matthew.scotch@asu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular sequences play a vital role in conducting phylogenetic,
phylogeographic and epidemiological studies to understand the dy-
namic nature of evolution and migration of pathogens across coun-
tries and continents. The National Center of Biotechnology
Information (NCBI) maintains GenBank (Benson et al., 2018),
which is one of the largest comprehensive databases of nucleotide
sequences available to the public. As of July 2020, GenBank con-
tains 217 million entries (NCBI, 2020a) with over 3 million viral
sequences reported in the latest release notes (NCBI, 2020b). The
availability of such a database supports research in various domains
of public health, particularly infectious diseases such as Ebola, Zika
and most recently SARS-CoV-2 (Dudas et al., 2017; Lai et al., 2020;
Pybus et al., 2012). However, the quality of geographic metadata
about the location of infected hosts (LOIH) that is readily available
at the individual record level may be insufficient for studies con-
ducted at the state/province levels within the country (Scotch et al.,
2011; Tahsin et al., 2014). The presence of detailed geographic
metadata is crucial not just for epidemiological studies, but also in
retrospective genomic studies by the wider scientific community.

Geographic metadata about the infected host is not required
when submitting a sequence to GenBank. The database offers a
Features table which includes both mandatory and optional quali-
fiers (Benson et al., 2018; INSDC, 2019). Geographic metadata is
amongst the optional qualifiers including lat_lon for the approxi-
mate coordinates, and country for named locations. Among the over
3 million viral sequences available (NCBI, 2020b), only about 1%
of the records contained the infected host’s coordinates in the lat_-
lon field and only 26% contained host information more specific
than a country in the country field. Such unavailability of detailed
metadata in GenBank creates barriers for phylogeographic and gen-
omic epidemiology at a local level. Researchers are then required to
manually analyze other metadata fields in the record and/or review
any associated PubMed articles. If no additional metadata is found,
then the researcher might decide to exclude these records from the
study altogether, reducing the sample size of the study and potential-
ly introducing bias.

GeoBoost2 provides a framework to automate this manual ex-
traction process where the individual metadata fields are analyzed
with the objective of extracting the LOIH from associated records.
GeoBoost2 improves over its predecessor GeoBoost (Tahsin et al.,
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2016, 2018) in extraction performance by over 35% when eval-
uated on two corpora using advanced data mining methods on the
linked PubMed articles to enrich the geospatial metadata. Overall,
GeoBoost2 achieved 90% accuracy in resolving the LOIH in
GenBank metadata and 57% accuracy in resolving LOIH extraction
from associated PubMed articles. To the best of our knowledge,
GeoBoost and GeoBoost2 are the only systems that using natural
language-processing (NLP) techniques to extract LOIH from articles
cited in GenBank accessions. In Supplementary Information, we de-
scribe in detail our methods and evaluation of GeoBoost2. We also
provide a screenshot of the current version of the interface (Fig. 1).

GeoBoost2 includes:

1. A state-of-the-art deep-learning NLP algorithm trained on

manually annotated geographic location mentions in PubMed

Central Open Access articles (Magge et al., 2018, 2019). All

geographic location mentions are disambiguated and resolved to

a unique identifier in GeoNames (2020a,b), a database contain-

ing 12 million locations across the globe.

2. A Python 3.7 framework implementation (replacing a Java-based

framework) for continuous improvement with deep-learning and

machine-learning methods for information extraction.

3. A Web-based interface with a map view that accepts as input

any GenBank accessions (not limited to viruses) and provides

features to export results. In addition to accepting GenBank ac-

cession IDs, the tool can also accept PubMed IDs or raw text

captured from an article for mining geographic locations.

4. An application programming interface (API) for use of the

results in downstream applications. In addition to mining

PubMed articles directly linked in the GenBank accessions,

GeoBoost2 also mines geographic locations from additional

PubMed articles and their respective Supplementary Information

that have cited the GenBank accessions in their studies. All data

retrieval functionalities in the tool rely on APIs provided by

NCBI, ensuring the latest available information.

Results from GeoBoost2 can be used for Bayesian discrete phylo-
geography on ZooPhy (Scotch et al., 2010, 2019b; ZooPhy, 2020).
Here, the probabilities for potential LOIH generated by GeoBoost2
can be used as sampling uncertainties (Scotch et al., 2019a) for the

taxa in phylogeographic studies implemented using BEAST (Suchard
et al., 2018).

We plan to extend our information extraction and normalization
efforts to additional optional qualifiers such as collection_date, host
and isolation_source. We also plan to validate the performance of
the tool on other pathogens such as bacteria and parasites.

With the growing concern over emerging and re-emerging patho-
gens, a publicly available, free tool like GeoBoost2 will facilitate
public health surveillance and genomic epidemiology.
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Fig. 1. Screenshot from the GeoBoost2 website. In this example, the user enters

GenBank accession IDs for Zika virus and designates sufficiency level in terms of ad-

ministrative divisions (GeoNames, 2020a), such as ADM1 for states/provinces,

ADM2 for county and maximum number of possible locations to be displayed per

record for the search. Upon submission of the request, GeoBoost2 extracts locations

from GenBank record metadata. For each record where the sufficiency level is not

met, GeoBoost2 checks associated PubMed abstracts/open access articles. The sys-

tem then displays all possible locations it extracted with details available on hover

over the pins on the map. The user can then export the data in csv, tsv or json for-

mats. For record KU497555 (Calvet et al., 2016), only the country information was

available in the metadata but a finer location; in this case, the state of Paraiba was

found in one of the linked papers
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