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Abstract

While genetic studies of epilepsies can be performed in thousands of individuals, phenotyping remains a manual, non-scalable
task. A particular challenge is capturing the evolution of complex phenotypes with age. Here, we present a novel approach,
applying phenotypic similarity analysis to a total of 3251 patient-years of longitudinal electronic medical record data from a
previously reported cohort of 658 individuals with genetic epilepsies. After mapping clinical data to the Human Phenotype
Ontology, we determined the phenotypic similarity of individuals sharing each genetic etiology within each 3-month age interval
from birth up to a maximum age of 25 years. 140 of 600 (23%) of all 27 genes and 3-month age intervals with sufficient data for
calculation of phenotypic similarity were significantly higher than expect by chance. 11 of 27 genetic etiologies had significant
overall phenotypic similarity trajectories. These do not simply reflect strong statistical associations with single phenotypic
features but appear to emerge from complex clinical constellations of features that may not be strongly associated individually.
As an attempt to reconstruct the cognitive framework of syndrome recognition in clinical practice, longitudinal phenotypic
similarity analysis extends the traditional phenotyping approach by utilizing data from electronic medical records at a scale that is
far beyond the capabilities of manual phenotyping. Delineation of how the phenotypic homogeneity of genetic epilepsies varies
with age could improve the phenotypic classification of these disorders, the accuracy of prognostic counseling, and by providing
historical control data, the design and interpretation of precision clinical trials in rare diseases.

Introduction

Over the last decade, genetic discovery in the epilepsies has
been enabled by the ability to analyze genomic data in
thousands of individuals [1, 2]. A major bottleneck in
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translating genetic findings into clinical actions is the lim-
ited ability to interpret the relevance of genetic features to
the varied phenotypes encountered in clinic. In contrast to
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genomic data, analysis of detailed phenotypic information
remains a largely manual, non-scalable task. Consequently,
the resolution of large gene discovery studies is limited to
broad epilepsy types or syndromes rather than specific
phenotypic details [1, 2]. Conversely, the largest detailed
phenotypic studies include only a few hundred individuals,
typically focusing on a single etiology without harmonized
comparison with the phenotypic repertoire of genetic epi-
lepsies as a whole [3, 4].

Clinical phenotype data are increasingly available in
electronic medical records (EMR), which have become the
standard form of medical record [5]. However, the com-
plexity of clinical data makes harmonization critical for
computational analysis.

We have previously used phenotypic similarity analysis
to demonstrate that specific known genetic etiologies of
developmental and epileptic encephalopathies (DEE) are
associated with distinctively similar clinical features and to
identify AP2M1 as a novel cause [6, 7]. Phenotypic simi-
larity approaches mimic the human cognitive process of
recognizing shared clinical features that give rise to a dis-
tinguishable clinical syndrome. Each participant’s features
are mapped onto a common framework such as the Human
Phenotype Ontology (HPO) for harmonized comparison,
weighting rare clinical features more heavily than those that
were common in the cohort [8].

However, epilepsies are phenotypically dynamic, currently
defined by age-specific syndromes [9]. Assessing phenotypic
similarity without reference to age risks overlooking condi-
tions in which age-dependence is a critical component. For
example, the phenotypic similarity of KCNQ?2 did not reach
statistical significance in a cohort with DEE [7]. It may be that
it is the onset of symptoms in the neonatal period rather than
the particular clinical features themselves that clinically dis-
tinguishes KCNQ2-related epilepsies. While the HPO
includes ways to encode age-based features within broad
categories such as “neonatal onset” or “childhood onset”, a
more nuanced approach may be necessary to identify differ-
ences such as the later onset of Dravet syndrome when caused
by variants in PCDH19 rather than SCNIA [10]. Accordingly,
we have analyzed 3251 patient-years of EMR data from 658
patients with 101 distinct genetic etiologies to identify long-
itudinal footprints of gene-specific associations with single
phenotypic features as they evolve with age [11]. While
informative, associations with single phenotypic features do
not capture the overall gestalt of a syndrome. For example,
describing a strong association of STXBPI with infantile
spasms at 9 months is insufficient to describe the full clinical
picture of STXBPI-related disorders [3, 11].

Here, we combine phenotypic similarity analysis and
longitudinal EMR data mapping to identify the ages at which
individuals sharing the same genetic etiology become suffi-
ciently phenotypically homogeneous to be distinguished

within a large cohort with similar clinical features [11]. We
find that age-related similarity peaks and troughs emerge for
specific etiologies, indicating the ages at which the pheno-
typic constellations of individuals sharing an etiology are
particularly homogeneous or heterogeneous. Our approach
indicates how large-scale EMR data can be harnessed to
uncover the longitudinal phenotypes of genetic disorders,
generating evidence for refinement of phenotypic-molecular
disease classifications, improved genetic prognostication, and
the design and interpretation of clinical trials in rare diseases.

Materials (subjects) and methods
Ethics statement

Informed consent for participation was obtained from sub-
jects themselves or, where necessary, their parents. The
study was completed per protocol in accordance with the
Declaration of Helsinki with local approval by the Chil-
dren’s Hospital of Philadelphia (CHOP) Institutional
Review Board (IRB 15-12226).

The cohort’s genetic diagnoses, EMR usage, and
HPO annotation

Patient recruitment, EMR data extraction, and HPO anno-
tation were performed as described previously [11] and
summarized in the supplementary information. In brief,
clinical genetic diagnoses and EMR data were collected
from 658 individuals recruited from epilepsy and neuroge-
netic services at Children’s Hospital of Philadelphia. Of 101
genetic etiologies, 36 were identified in multiple individuals
(Fig. 1, Supplementary Table S1 and Fig. S2). We refer to
the time between an individual’s first and last entries in the
EMR as their “EMR usage” and binned this into 3-month
intervals for our primary analysis (and on a logarithmic time
scale for a supplementary analysis). Only 27 of the 36
etiologies found in multiple individuals were amenable to
meaningful age-specific phenotypic similarity analysis
because this requires a minimum of two individuals sharing
the etiology to have overlapping EMR usage. We extracted
Intelligent Medical Object (IMO) terms based on neurology
related ICD10 codes from the EMR. We used the Clinical
Text Analysis and Knowledge Extraction System
(cTAKES) natural language processing algorithm [12] and
manual mapping to create a dictionary translating IMO
terms into HPO terms (HPO release version 1.2; 2017-12-
12). We annotated individuals’ HPO terms to each 3-month
age interval, assuming that phenotypes present at successive
EMR encounters were present between, but not before the
first or beyond the most recent encounter. All applicable
conceptually broader HPO terms were added to each

SPRINGER NATURE



1692

D. Lewis-Smith et al.

KCNQ2 (n=8) -
SCN1A (n=29) @
GABRA3 (n=2) {
STXBP1 (n=22) {
SCN8A (n=6) |
CSTB(n=2) |
SCN2A (n=12) -
WDR45 (n=3) |
PRRT2 (n=4) 1
PURA (n=3) 1

Number of Individuals

SMC1A (n=2) |
PCDH19 (n=5)

-1
° 2

FRRSIL (n=2) -

KIF1A (n=2) |
TBC1D24 (n=2)| BB 2
DEPDCS5 (n=4) -

GRIN2B(n=2) |  ........
SLC2A1 (n=2) |
GNB1(n=2) |
szr2(n=2) | I S
KCNA2 (n=3) |
KCNT1 (n=6) |
GABRB3(n=2){ .....
SLC6AS (n=2) | exs SO = sxmons smese
CACNAT1A (n=4)|
DYNC1H1 (n=2)

Etiology

GRIN2AM=2 | L SO ¢ s 2

SYNGAP1 (n=2)]

KCNB1 (n=4) |
DNM1 (n=2) 1
MECP2 (n=2) |
IQSEC2 (n=6) -
NEXMIF (n=2) |
ATP1A3 (n=3) |

SLC6A1 (n=4) e ERX T B ee0®- - - ...

GRIN1 (n=5)

"""""" ®s5
@ 10

>15

15 20 25

Age (years)

Fig. 1 Genetic etiologies of epilepsy demonstrate distinct time-dependent distributions of encounters in the electronic medical records. For
each of the 36 genetic etiologies identified in two or more individuals in this cohort, the number of individuals contributing data to each 3-month interval
between birth and 25 years is shown. The total number of individuals with a particular genetic etiology is given in brackets after the gene symbol.

individual’s set of HPO terms for each particular age
interval, exploiting the semantic relationships of the HPO.

Assessment of semantic similarity between pairs of
individuals (sim)

The information content (IC) of an HPO term at age interval
t indicates its discriminatory value based on its frequency (f)
within the cohort with EMR usage at that age. We defined
this as IC, = —log, f.

The similarity (sim) of individuals P; and P, at age range
t was defined as the sum of the information content of their
set of shared HPO terms at that age [7]:

sim(Py, Py),= Z IC,(HPOp,inpy)

Determining the relative age-specific phenotypic
similarity of a genetic etiology

We created the “PhenSim score”, a measure of an etiology’s
overall phenotypic homogeneity compared to age-matched
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participants. At each age interval (¢), sim was determined for
all possible pairwise combinations of individuals con-
tributing EMR data to that age interval. Next, for each
genetic etiology (x) ascribed to two or more of these indi-
viduals, we identified those pairs in which both individuals
had etiology x (“‘gene-positive pairs”). We counted number
of gene-positive individuals (n,) and calculated the median
sim score of gene-positive pairs. Then we calculated the
median sim of each of 100,000 permutated groups (perm) of
n, individuals with EMR usage at this age. At each age ¢, we
defined the PhenSim score of x as the negative logarithm of
the rank of its median sim within this null distribution with
conservative handling of ties:

(count(median sim,(perm) > median sim,(x)))+1

PhenSim(x)==1og1 number of perm + 1

Greater PhenSim scores represent greater homogeneity of
an etiology relative to individuals under follow-up at the
same age. PhenSim scores are cross-sectional, agnostic to
individuals’ documented phenotypes prior to their most
recent clinical encounter. PhenSim allows for variation in
the number of individuals sharing an etiology with EMR
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usage at different ages, making PhenSim scores comparable
across etiologies and ages. Consequently, the longitudinal
trajectory of PhenSim of an etiology indicates how its
relative phenotypic homogeneity evolves with age. We
calculated each etiology’s cumulative PhenSim score as the
sum of its PhenSim score across all ages.

Interpretation of the significance of PhenSim scores

In order to interpret the significance of age- and gene-
specific PhenSim scores, we permutated the etiological
labels of all 658 participants 1,000,000 times for each
unique value of N,, where N, is the total number of indi-
viduals with etiology x in the cohort. We calculated the
PhenSim score of each of these permutated groups at all age
intervals, as above for the true etiologies, generating
empirical null distributions of PhenSim for each N, at each
age t and cumulative PhenSim scores across all ages.

The raw p value of the PhenSim score of etiology x at
age t is given by its conservative rank among those of the
permutated groups of size N,:

(count(PhenSim,(perm) > PhenSim,(x))) + 1
number of perm + 1

rawp — ValuePhenSim,(x) =

In addition to the phenotypic features of individuals, this
takes account of individuals’ patterns of EMR usage, and the
number of individuals with a particular etiology in the
cohort. We adjusted p values by Holm’s method for the 3600
hypotheses considered (36 etiologies present in multiple
individuals and 100 age intervals). For a supplementary post
hoc analysis we adjusted for only the 600 hypotheses we
could test with the data obtained from this cohort.

We assessed the evidence supporting a particularly
homogeneous longitudinal phenotype for each etiology
using the p value of its cuamulative PhenSim score (based on
its rank among cumulative PhenSim scores obtained from
the 1,000,000 permutated groups for each value of N,) with
Holm’s adjustment for the 36 etiologies.

Interpreting phenotypic similarity in light of
associations with single HPO terms

To investigate whether high phenotypic similarity at a
given age coincided with strong associations with single
HPO terms we revisited the age-specific associations of
each genetic etiology with single terms in this cohort [11].
We focused on etiologies and ages at which we could be
70% confident that we would detect strong associations.
The statistical power to detect an association between
each gene and a single phenotypic term using Fisher’s
exact test was calculated using the pwr.2p2n.test function
of the pwr package within the R Statistical Framework,
which was used for all analyses. We selected an odds ratio

of 2 as the minimum effect size and a threshold sig-
nificance level of 0.01 (without adjusting for multiple
comparisons because HPO annotations describing the
same feature at different levels of precision are highly
correlated) to define a strong association between an
etiology and a single HPO term of sufficient size and
confidence to be potentially useful for distinguishing
disorders in clinical practice.

Results

Genetic etiologies show unique patterns of EMR
usage

EMR usage demonstrated patterns of medical interaction
associated with each genetic etiology, often reflecting
their known onset and trajectories (Fig. 1 and Supple-
mentary Table S1). EMR usage of PRRT2 mirrored the
infantile onset and resolution of the epilepsy in early
childhood [13-15], and of SCNIA and STXBPI was sus-
tained from infancy through childhood reflecting the
chronicity of their related disorders [3, 16—19]. KCNQ2
and SCN2A had both a concentration of EMR usage in the
infantile period reflecting self-limited early onset epi-
lepsies and a tail extending through childhood, reflecting
DEE [4, 20, 21]. EMR usage was lower in individuals
with a molecular diagnosis than those without (Median
2.6 vs 4.3 years, Wilcoxon Rank Sum Test p value <5 x
1073, Supplementary Fig. S2).

Most genetic etiologies show specific phenotypic
homogeneity

11 of 27 etiologies had cumulative PhenSim scores greater
than expected by chance (Table 1). The analysis of Phen-
Sim scores over time generated a phenotypic “timescape”
for all disease genes found in two or more individuals
(Fig. 2 and Supplementary Table S3). Overall, we found
significant age-specific PhenSim scores across 140 of 600
(23%) of all 27 genes and age intervals for which pheno-
typic similarity could be meaningfully analyzed, after
Holm’s adjustment for 3600 hypotheses. These spanned
five etiologies: KCNQ2, KCNTI, SCNIA, SCN2A, and
STXBPI. All of these had significant PhenSim scores by
6 months of age. A less conservative post hoc interpretation
based only on the 600 calculable PhenSim scores suggested
that 38 further scores could be significant, including that of
GRINI at 6 months (Supplementary Table S3 and Fig. S4).
While 3-month age bins may be appropriate for infancy
when normal development and disease phenotypes evolve
rapidly, these may be suboptimal at older ages when there is
greater chronological variability in neurodevelopment.

SPRINGER NATURE
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Table 1 The evidence for Genetic etiology

Number of individuals with Cumulative PhenSim score from Raw p value

Holm’s adjusted

distinctive trajectories of the etiology birth to age 25 years p value

phenotypic homogeneity and

EMR usage. KCNQ2 8 62.1 1.00E—06  3.60E—05
SCNIA 29 433 1.00E—06 3.60E—-05
SCN2A 12 334 1.00E—06 3.60E—05
STXBP1 22 38.8 1.00E—06 3.60E—05
IQSEC2 6 26.3 1.05E—04 0.00336
PCDHI9 5 36.4 1.22E—-04 0.00378
DEPDCS5 4 41.1 1.94E—-04 0.00582
KCNTI1 6 222 2.30E—-04 0.00667
PURA 3 435 3.76E—04 0.0105
GRIN1 5 26.4 4.63E—04 0.0125
KCNBI 4 32.1 6.70E—04 0.0174
SCNSA 6 9.89 0.00223 0.0556
ATPIA3 3 15.4 0.00883 0.212
CACNAIA 4 9.25 0.0273 0.627
PRRT2 4 6.64 0.0511 1.00
SYNGAP1 2 3.39 0.216 1.00
MECP2 2 3.04 0.234 1.00
SLC2A1 2 222 0.284 1.00
GRIN2A 2 2.17 0.288 1.00
FRRSIL 2 1.96 0.302 1.00
TBC1D24 2 1.82 0.313 1.00
SZT2 2 1.60 0.331 1.00
SLC6A1 4 0.858 0.360 1.00
NEXMIF 2 0.749 0.413 1.00
SLC6AS5 2 0.577 0.431 1.00
GABRA3 2 0.325 0.459 1.00
CSTB 2 0.00 1.00 1.00

The empirical p value derived from 1,000,000 permutations indicating the probability of observing a
cumulative PhenSim score at least as great as that of each etiology due to chance is provided before and after
Holm’s adjustment for 36 genetic etiologies.

Hence, in a supplementary analysis we explored the effect
of binning age into 10 intervals of exponentially increasing
duration after infancy with the last spanning 15.8-25 years
(Supplementary Table S5 and Fig. S6). Compared to fixed
3-month intervals, these wider bins allowed PhenSim scores
to be calculated for two additional etiologies (DNM1I and
KCNA2) and resulted in greater PhenSim scores (median
calculable PhenSim =0.91 versus (0.70) that were more
sustained into adolescence. After Holm’s adjustment, sig-
nificant PhenSim scores were identified for the same five
etiologies and additionally for GRINI and PRRT2. The
overall proportion of PhenSim scores reaching significance
was greater (34/360=9.4% versus 140/3600 =3.9%,
odds ratio =2.58 (95% confidence interval = 1.69-3.84),
Fisher’s exact test raw p value < 1.1 x 1075).

EMR usage powers phenotypic similarity analysis

A minimum of two individuals sharing an etiology and EMR
usage at the age of interest is necessary to calculate PhenSim.
The median PhenSim score, where calculable, was 0.70.
However, PhenSim scores >1.3 (i.e., the etiology is found in
the top 5% of possible median sim values) were observed only

SPRINGER NATURE

at ages where >120 individuals had overlapping EMR usage
(Fig. 3). We explored the relationship between the number of
individuals with EMR usage and the corresponding PhenSim
scores after permutation of etiological labels to confirm that our
results had not arisen as artifacts of this (Supplementary
Fig. S7). Even with small numbers of simulated gene-positive
individuals (where PhenSim is more sensitive to extreme sim
values) the probability of each PhenSim score being >0.25 by
chance is <5%. PhenSim scores gradually increase with the
total number of individuals with EMR usage, but even with
240 individuals, the probability of any particular PhenSim
score exceeding 0.5 is <5%.

Patterns of phenotypic similarity are distinct from
single phenotype associations

In addition to using the 528 HPO terms annotated to this
cohort to quantify the overall phenotypic similarity of one
individual to another, we have previously tested the asso-
ciation of each etiology to each of these terms at each age
[11]. Next we sought to explore the chronological rela-
tionship between an etiology’s associations with individual
HPO terms and its PhenSim trajectory. We limited our
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Fig. 2 Genetic epilepsies show phenotypic similarities that vary over time. PhenSim scores are shown for the 27 etiologies for which PhenSim
could be calculated in this cohort. The height of each ridge indicates PhenSim score at for the corresponding etiology at that age. PhenSim scores
significant after Holm’s adjustment for 3,600 hypotheses are shown in color, and nonsignificant PhenSim scores in gray.

attention to the four most frequent etiologies focusing on
ages with at least 70% power to detect strong associations.
The chronological relationship between PhenSim and
associations with single HPO terms was complex (Fig. 4
and Supplementary Fig. S8). For SCNIA, high PhenSim
scores occurred at ages with (2.5-2.75 years) and without
(4.75-5 years) strong associations with single terms, and all
significant associations coincided with non-zero PhenSim
scores, although some of these PhenSim scores were lower
(at 7.5-7.75 years and 17.75-18 years) than those at ages
without strong associations (4.75-5 years, Fig. 4). KCNQ2
had high PhenSim in early childhood, coinciding with its
initial ~ strong  association with  Neonatal  onset
[HP:0003623] and its ancestor HPO terms (Supplementary
Fig. S8A). PhenSim fell briefly then increased, tracking
single term associations before remaining approximately 1

from 4.5 to 10 years (after which only a single individual
had EMR usage) despite multiple large associations. SCN2A
(Supplementary Fig. S8B) and STXBPI (Supplementary
Fig. S8C) had high but variable PhenSim scores fluctuating,
at times independently of significant associations with sin-
gle terms.

Discussion

Here, we combined two approaches to analyze large-scale
phenotype data in known or presumed genetic epilepsies,
joining the concepts of longitudinal EMR data mapping
with phenotypic similarity analysis. Our results demonstrate
that EMR analysis can identify age-specific patterns of
clinical encounters and phenotypic homogeneity. These can

SPRINGER NATURE
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Fig. 3 The relationship between PhenSim and the number of individuals with EMR usage at the corresponding age. The effect of the
number of (A) gene-positive and (B) total individuals with EMR usage on PhenSim scores at the corresponding age. The number of etiologies with
PhenSim scores of zero at each number of gene-positive individuals where this was observed is shown above the x-axis in (A). The median

PhenSim score for each value on the x-axes is shown by the black lines.

complement age-specific associations with single pheno-
typic features to delineate the longitudinal trajectory of
genetically defined disorders.

Our approach was able to confirm that some specific
genetic epilepsies have age-related clinical features that are
sufficiently homogeneous according to real-world EMR
data as to make them distinct from a wider cohort. For
some, while phenotypic similarity was significant across
much of follow-up, the degree of similarity relative to age-
matched individuals varied, sometimes falling with age.
This may reflect how some gene-defined epilepsies are
relatively similar early in the disease but evolve with vari-
able types of seizures and outcomes, for example SCNIA-
related epilepsies, which include Dravet syndrome and
Febrile Seizures plus [17-19, 22]. Our supplementary ana-
lysis showed that increased pooling of data made rarer
etiologies assessable and increased PhenSim scores in
adolescence (where fewer data were available). Overall, this
increased the probability of an etiology appearing

SPRINGER NATURE

phenotypically distinct but at the cost of lower chron-
ological precision.

Gene-specific patterns of EMR usage reflected known
clinical trajectories. For genes associated with neonatal and
infantile epilepsies, including KCNQ2 [20, 21], KCNTI
[23], PRRT2 [15], and SCNSA [24], we found that EMR
usage was concentrated in the first year of life. This was
distributed more evenly across childhood for some DEE
genes including IQSEC2 [25], SCN1A [22], SCN2A [4], and
STXBPI [3], but sustained into adolescence for only
SCNIA. Conversely, we demonstrate the extent to which
EMR usage limits EMR-based analyses in these rare dis-
eases: despite a cohort of 658 individuals, only 27 etiologies
were amenable to age-specific phenotypic similarity analy-
sis, and at limited ages. This lack of data demonstrates the
challenges of investigating the outcomes of genetic epi-
lepsies in adolescence and adulthood [26, 27].

The ages of high phenotypic similarity did not always
coincide with those of strong associations with individual
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a p-value < 0.01 and as a dotted line at ages where p-value > 0.01. PhenSim scores are shown as solid lines where significant after Holm’s

adjustment and dashed lines where not.

phenotypic terms. The trajectory of an etiology’s PhenSim
score might depend on age-related variation in the etiol-
ogy’s strong associations, or where these associations are
sustained, variation in the associated term’s information
content. We also suspect that a high overall phenotypic
similarity may emerge from combinations of phenotypic
features that individually are less demonstrably associated
with the etiology at the corresponding age. This might be
expected in a group of disorders with complex clinical
pictures made up of constellations of overlapping sets of
many individual phenotypes.

Our approach can delineate the longitudinal history of
genetic epilepsies and once a pipeline has been devel-
oped, this method is more efficient than manual pheno-
typic comparison, facilitating harmonization and analysis

of large numbers of phenotypic features. From a clinical
perspective, age-specific associations and PhenSim
trajectories  could  assist  genetically  informed
prognostic counseling in clinic. Furthermore, phenotypic
similarity approaches may benefit diagnosis (for example,
providing phenotypic evidence to help interpret variants
of uncertain significance), even within months of pre-
sentation for a few etiologies, and comparison of a
patient’s EMR data to reference cohorts may assist
with later (more retrospective) diagnosis more broadly.
From a research perspective, this approach could provide
quantitative phenotypic evidence for the “lumping” or
“splitting” of disorders sharing a genetic etiology
according to stratification by variant class, domain, or
functional consequences within a single gene, or even
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multiple genes within a common functional network.
Additionally, by delineating the range of clinical trajec-
tories, these studies may generate historical control data
for the design and interpretation of precision medicine
trials in diseases sufficiently rare to preclude large studies
achieving high power through traditional concurrent
control arms.

There are several limitations of our study. Our findings
are blinkered by the perspective of tertiary care EMR
because HPO terms were annotated to the individual’s
age at the clinical encounter where they were recorded
rather than the ages at which they may have first emerged
or persisted to. Firstly, this raises questions about the
phenotypic features of individuals we were not able to
capture before referral to our service or emerging fol-
lowing their last encounter (after discharge, transfer to
another health care provider, or limited by age).
Regarding the latter, while it may be reasonable to
extrapolate phenotypes that are likely to persist after the
last EMR entry such as microcephaly or intellectual dis-
ability, this would necessitate assumptions about survival
and could not be applied to important dynamic pheno-
types such as seizure types. Regarding the former, tran-
sient early phenotypes may be missed, and even when
recorded, the age at the documentation of a phenotype in
the EMR may not correspond to when the phenotype was
present (for example, Neonatal onset [HP:0003623] in
Supplementary Fig. S8A). Secondly, while advances in
natural language processing may improve interpretation
of the chronology of a recorded phenotype, there is a
particular challenge inherent in epilepsy EMR data as
seizures are paroxysmal and may continue to be recorded
despite coming under control with treatment or having
entered natural remission. Consequently, at a routine
clinical encounter the patient may not have experienced
the documented phenotype for several months or years.
Furthermore, we limited our data to neurological features
for tractability. Inclusion of non-neurological features
might identify novel associations or increase phenotypic
distinctiveness.

Secondly, our failure to detect high phenotypic similarity
at certain ages could reflect insufficient power rather than the
true absence of a recognizable gene-specific syndrome. An
age-specific cohort of over 120 individuals was required for
PhenSim scores >1.3 to emerge; a number of participants not
reached at 41 of 100 age intervals. Additionally, several
etiologies including TSCI, TSC2, CDKLS5, and MECP2 were
underrepresented because at our center children with the
typical syndromes of these are followed in dedicated pro-
grams. We hope to include them in future studies.

Thirdly, we grouped individuals according to the gene
carrying a diagnostic variant without refining this by protein
domain or functional consequences. For example, protein
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truncating variants in SCNIA are more likely than missense
variants to cause Dravet syndrome rather than milder epi-
lepsies [28], and the electrophysiological consequences of
particular SCN2A variants might predict age of onset and
treatment response [4]. Stratification by such features might
yield greater or more persistent phenotypic similarity for the
resulting strata but is likely to require cohorts to be larger
and followed up for longer if sufficient EMR usage is to be
obtained.

Finally, our data were harmonized using the HPO, which
does not currently facilitate the analysis of negated pheno-
types (those explicitly documented as absent in the EMR) or
drug-specific responses. These could have clinically
important distinguishing value, for example the absence of
developmental delay, or divergent clinical responses to
sodium channel blocking drugs [4, 29].

In summary, we find that phenotypic similarity-based
analysis of longitudinal EMR data provides a novel
approach to assess etiology-specific patterns of clinical
features that aligns with our clinical understanding of age-
related epilepsy syndromes. We demonstrate that EMR data
can be used to systematically assess not only the association
of single phenotypic features but also overall clinical like-
ness between individuals within discrete age ranges using
phenotypic constellations. As the size of cohorts with both
genomic and EMR data increases, these frameworks will
allow us to analyze the dynamic interplay of phenotypes
over time, beyond the capabilities of manual data collection,
harmonization, and analysis. Ultimately, they may con-
tribute to improved genetically stratified classification,
diagnosis, prognostication, and treatment.

Data availability

Supporting data can be found in the Supporting Information
of this article as well as our previous publication [11]. The
raw data comprise sensitive patient information and are
therefore not openly available. Requests for access should
be made to IH.

Code availability

The code for this study is available at https://github.com/
shiva-g/The-Cube.
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