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Abstract
TheMEK/ERK signalling pathway is involved in cell division, cell specialisation, sur-
vival and cell death (Shaul and Seger in Biochim Biophys Acta (BBA)-Mol Cell Res
1773(8):1213–1226, 2007). Here we study a polynomial dynamical system describ-
ing the dynamics of MEK/ERK proposed by Yeung et al. (Curr Biol 2019, https://doi.
org/10.1016/j.cub.2019.12.052) with their experimental setup, data and known bio-
logical information. The experimental dataset is a time-course of ERK measurements
in different phosphorylation states following activation of either wild-type MEK or
MEK mutations associated with cancer or developmental defects. We demonstrate
how methods from computational algebraic geometry, differential algebra, Bayesian
statistics and computational algebraic topology can inform themodel reduction, identi-
fication and parameter inference of MEK variants, respectively. Throughout, we show
how this algebraic viewpoint offers a rigorous and systematic analysis of such models.

Keywords Systems biology · Algebraic model reduction and identification ·
Topological data analysis
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θ Tuple of all model parameters
x Tuple of all species concentrations in a model

WT Wild Type
X Tuple of all measurements of species concentrations in a set of

experiments
t Time

kMi Michalis–Menten constant associated to compound Ci

QSSA Quasi-steady-state-approximation
f (x, θ) Rates of change of concentrations given x and θ

V( f ) Vanishing ideal of a polynomial f
Yθ , Vθ Parameter/QSSA-variety of θ

κi , π, γi Parameters of reduced models
φt1,...,tl (θ) The model prediction map at times t1, . . . , tl and parameters θ

K A differentially closed field
I� The differential ideal studied to determine structural identifiability

C(θ){x, y} The differential ring in indeterminates x, y over the fraction field
C(θ)

k The subfield ofK := Q(C[θ ]{x, y}/I�) generated by the image of
C{y}

Uδ A δ-confidence region
	 Likelihood ratio
α A significance level
r Number of replicates
δ Minimal log-likelihood of a point in parameter space to be included

in α-confidence region
σ Standard deviation of a distribution

TDA Topological data analysis
� Parameter space
X Data space (all measurements from a set of experiments)

(S∗
j )t,i Measurement of species concentration j at time t in trial i
K A simplicial complex
τ A simplex
v A set of vertices
h A simplicial map
g A map defining a filtration of a simplicial complex or topological

space
T A topological space
Hk The k-th homology functor
M A persistence module
� A matching of barcodes
K A kernel function
b The bandwidth of a kernel

KDE Kernel density estimation
VRb(v) A Vietoris–Rips complex on vertices v at resolution b

B A barcode
π̂ A p-value estimate
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1 Introduction

In systems biology, dynamics play a crucial role in cellular decision making (e.g.
whether a cell responds appropriately to a particular signal) (Voit 2017). Molecular
interactions can bemodelled as systems of chemical reactionswith a choice of kinetics,
such as the law of mass action, which assumes that the rate at which a chemical reac-
tion proceeds is proportional to the product of the concentrations of its reactants. From
a finite set of reactions, the mass-action modelling assumption gives rise to a system
of polynomial ordinary differential equations (ODEs), which are sums of monomi-
als in which each term includes concentrations of molecular species as variables and
coefficients as rates of reaction. Chemical reaction network theory (CRNT) is a math-
ematical field developed by Horn and Jackson, and independently by Bykov, Gorban,
Volpert and Yablonsky, for analysing such reactions, and the mathematical techniques
employed extend beyond dynamical systems theory to include algebraic geometry,
differential algebra, algebraic statistics and discrete mathematics (Dickenstein 2016).

CRNT often focuses on steady-state analysis through the lens of computational and
real algebraic geometry, asking questions about the capability or preclusion of multi-
ple positive real steady-states (i.e. multistationarity) or more complex dynamics, often
without requiring specialised parameter values (Banaji and Craciun 2009; Craciun and
Feinberg 2005; Millán et al. 2012; Angeli 2009; Wang and Sontag 2008; Feliu and
Wiuf 2012; Müller 2016; Conradi and Pantea 2019). Multi-site protein phosphoryla-
tion systems, such as the ERK/MEK signalling pathway, can be translated into such
chemical reactions and their multistationarity, corresponding to different biological
cellular decisions, has attracted much attention (Thomson and Gunawardena 2009b;
Gunawardena 2007; Aoki 2011; Takahashi et al. 2010; Markevich et al. 2004). Alge-
braic analyses and invariants of multi-site phosphorylation have revealed geometric
information of steady-state varieties, informed experimental design and enabledmodel
comparison using steady-state data (Manrai and Gunawardena 2008; Thomson and
Gunawardena 2009a; Harrington et al. 2012; Gross et al. 2016; MacLean et al. 2015).
However, such systems have also been shown to exhibit nontrivial transient dynamics
and oscillations (Conradi et al. 2019; Qiao et al. 2007). In recent years, the fields of
systems biology and CRNT have extended the repertoire of techniques to assert other
dynamics (Banaji 2020; Conradi et al. 2019; Domijan and Kirkilionis 2009; Mincheva
and Roussel 2007; Kay 2017; Errami 2015; Angeli et al. 2013), reduce models sys-
tematically (Pantea et al. 2014; Goeke et al. 2017; Feliu et al. 2019; Sweeney 2017;
Boulier et al. 2011; Hubert and Labahn 2013), and assess identifiability (Ljung and
Glad 1994; Ollivier 1990; Meshkat et al. 2009; Hong et al. 2020; Bellu et al. 2007).
Furthermore, combinatorial structures, such as simplicial complexes, and techniques
from computational algebraic topology have enabled comparison of chemical reac-
tion network models and their parameters (Vittadello and Stumpf 2020; Nardini et al.
2020).

A previous algebraic systems biology case study (Gross et al. 2016) analysed a
chemical reaction network model at steady state, by studying the steady-state ideal,
chamber complex and algebraic matroids of the model. Here we present a sequel of
such analysis to study the dynamics of chemical reaction networks with time-course

123



137 Page 4 of 50 L. Marsh et al.

data, which relies on studying the QSS variety (Sect. 3), the model prediction map
(Sect. 4) and the topology of a parameter inference (Sect. 5).

We perform a detailed mathematical analysis of recently published models and
experimental data (Yeung et al. 2019). The Full ERKmodel describes dual phosphory-
lation of ERKbyMEK, twomolecular specieswhose activation regulates cell division,
cell specialisation, survival and cell death (Shaul and Seger 2007). The dynamics of
the six ERK/MEK molecular species x ∈ R

n=6 in the Full ERK model are governed
by a polynomial dynamical system ẋ(t) = f (x(t), θ), where θ ∈ R

m=6 is the vec-
tor of parameters and there are two conservation relations between the species. The
Full ERK model is presented in Sect. 2. Analysing the kinetic parameters of a model
depends on the available data. The accompanying time-course experimental observa-
tions include measurements of ERK in 3 different states, at 7 time points following
activation by its activated enzyme kinase MEK, which is either wild-type (WT) or
mutated MEK. Mutations of MEK are known to be involved in human cancer and
embryonic developmental defects; therefore, understanding their kinetics and differ-
ences between wild-type and 4 mutants (e.g. Y130C, F53S, E203K or SSDD) may
increase fundamental biological understanding of the pathway and contribute to the
development of potential therapies. The experimental data and relevant biological
information are presented in Sect. 2.

Using algebraic approaches first presented by Goeke, Walcher and Zerz in Goeke
et al. (2017), we decrease the number of variables and parameters in the Full ERK
model. We derive two model reductions: the Rational ERK model and the Linear ERK
model. We show, with known biological information (see Sect. 2), that the reduction
to the Linear ERK model by Yeung et al. (2019) is mathematically sound. We note
that the Rational ERK model was not analysed in Yeung et al. (2019), although it
can be derived from the Full ERK model using singular perturbation methods. A
natural question is whether a quasi-steady-state approximation is justified given the
experimental setup, which equates to solving an algebraic problem (Goeke et al. 2017).
We identify algebraic varieties Vθ that are (analytic) invariant sets of the ODE system
and characterise neighbourhoods in parameter space for which the ODE solutions
remain close to these varieties. This systematic analysis allows us to simplify themodel
equations such that the dynamics of both reduced models are good approximations to
the Full ERK model. Algebraic model reduction and derivation of the reduced ERK
models are given in Sect. 3.

Before estimating the parameters of a model from observations, one must deter-
mine its identifiability. Identifiability is concerned with asking whether it is possible to
recover values of the model parameters given data. Amodel is structurally identifiable
if parameter recovery is possible with perfect data. Mathematically, this task is equiv-
alent to asking whether the model prediction map is injective. The model prediction
map, defined precisely in Sect. 4.1, is a map that takes a parameter to the correspond-
ing predicted noise-free data point(s) (Dufresne et al. 2018). Real data is often noisy;
testing whether parameter recovery is possible with imperfect data is the problem
of practical identifiability (Raue et al. 2009; Dufresne et al. 2018). Mathematically,
measurement noise induces a probability distribution in data space. Assuming that the
model prediction map is injective (at least generically), practical identifiability can be
defined in terms of the boundedness (with respect to a reference metric in parame-
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ter space) of the confidence regions of a likelihood test. Under our assumptions, this
translates to asking whether the preimages of small bounded regions in data space are
bounded in parameter space. We prove the following:

Theorem 1 The Linear ERK/MEK model, with the given experimental setup (num-
ber of species, number of replicates, number of measurement time-points and initial
conditions), is structurally and practically identifiable.

We provide a definition of practical identifiability that improves a previous defini-
tion (Dufresne et al. 2018), and which is an alternative to that of Raue et al. (2009).
We also propose a computable algorithm for practical identifiability, implement it and
apply it to the ERK models. We prove Theorem 1 in Sect. 4.

We use the differential algebra method to show that the Full ERK model and the
Rational ERK model are generically structurally identifiable. These results are guar-
anteed to be valid if we have at least 2m + 1 generic time points by Sontag’s result
(Sontag 2002), but can be valid with fewer generic time points. Indeed, as the Linear
ERK model admits analytic solutions, we can prove that it is globally structurally
identifiable for any choice of three distinct time points. Determining structural identi-
fiability for specific time points in the absence of analytic solutions is an open problem.

We numerically show that the Full ERK model and Rational ERK model are not
practically identifiable; however, the source of this practical non-identifiability is not
completely clear (see Sect. 4).

Finally, for a model that is structurally and practically identifiable, one would like
to infer parameters, i.e. what parameter values are consistent with the observations?
We perform Bayesian inference, as done in Yeung et al. (2019), and extend this to the
Rational ERK model. The result of the parameter inference on the Linear ERK model
is a sample point cloud of posterior densities of inferred ERK parameter kinetics that
are consistent with the data. We obtain five different sample densities corresponding
to the five MEK variants.

In Sect. 5, we compare the geometry of the admissible regions of parameter space of
the five MEK variants. The computational field of topological data analysis quantifies
the shape and connectivity of data through computation of topological invariants across
resolutions (or threshold values) of metric data. In recent years, topological methods
have dramatically improved in computational speed as well as theoretical advance-
ments that facilitate the analysis of scientific datasets. We implement a theoretical
framework originally proposed by Taylor (2019a), in order to quantify the shape of
the resulting posterior distributions of kinetic parameters and facilitate a comparison
between mutants. Specifically, their theorem provides a direction for hypothesis test-
ing of two densities using distances between topological summaries. The framework
relies on approximating the persistent homology of super-level sets of posterior den-
sities by simplicial complexes. We perform these measurements on the distributions
obtained from Bayesian parameter inference for the 5 MEK variants and compare
them via a topological bottleneck distance.

Biological Result The topological data analysis quantifies that the Linear ERK model
parameter posteriors are most different between the WT and SSDD mutant data. The
kinetics of the SSDD mutant, which mimics phosphorylated MEK, has the largest
topological distance from all other MEK/ERK mutants.
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This biological result raises the question of whether the SSDD variant is a suitable
approximation for wild-typeMEK activated by Raf, and suggests further experimental
studies are needed. While the previous analysis by Yeung et al. (2019) compared the
variants by the inferred kinetics of each parameter, here we complement that analysis
by comparing the three parameters together as a point cloud.

Our aim is to showcase how systematic algebraic, geometric and topological
approaches can be applied to a biologically relevant model with state-of-the-art exper-
imental time-course data. Each of these approaches incorporates the structure of the
mathematical model, experimental observations, and experimental setup and observa-
tions (e.g. experimental initial condition, observable species, number of experimental
replicates, number of time points collected, etc.), as well as known biological infor-
mation (e.g. published parameter values). Due to the multiple disciplines and different
notation conventions (as well as standard abbreviations), we include a glossary of
symbols at the start of the paper. The framework we present is not limited to this
case study and may enhance the analysis of similar models in systems and synthetic
biology.

2 From ERK Biochemical Reactions to a Polynomial Dynamical System

Protein phosphorylation alters protein function in signalling pathways and plays a
crucial role in cellular decisions and homeostasis. Phosphorylation is the addition
of a phosphate group by an enzyme known as a kinase, and dephosphorylation is
the removal of a phosphate group by an enzyme known as a phosphatase. Multi-
site phosphorylation is the process of having multiple possible locations on a protein
phosphorylated, which increases the number of potential ways protein function can
be altered. The algebra, geometry, combinatorics and dynamics of multisite phospho-
rylation has been a source of interesting mathematical problems (Dickenstein 2016;
Manrai and Gunawardena 2008; Conradi and Pantea 2019). A protein with q phos-
phorylation sites has been shown to have 2q phospho-states; the sites on the protein
can be phosphorylated in q! possible ways (Thomson and Gunawardena 2009b). One
of the simplest multisite phosphorylation systems is when a protein has two phospho-
rylation sites. We focus on the sequential dual phosphorylation of the extracellular
signal regulated kinase (ERK) by its kinase activated (dually phosphorylated) MEK.
The model developed by Yeung et al. (2019) encodes a mixed phosphorylation mech-
anism (i.e. distributive and processive) by changes in parameter values rather than
separate models (see, for example, Conradi and Shiu 2015; Gunawardena 2007 and
references therein). This enabled them to quantify the extent to which a MEK variant
is processive or distributive. We remark that the model presented by Yeung et al. does
not include dephosphorylation mechanisms, since the experimental setup omitted the
addition of phosphatases.

Next, we introduce the model and the experimental data published by Yeung et al.
(2019).
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Fig. 1 The reaction network associated with dual phosphorylation of ERK by its activated enzyme kinase
MEK

2.1 TheModel

The protein substrate ERK, is activated through dual phosphorylation by its activated
enzyme kinase MEK. As shown in the chemical reaction network (see Fig. 1), unphos-
phorylated ERK (S0) binds reversiblywith its kinaseMEK (E) to form an intermediate
complex C1. The complex becomes C2 when a phosphate group is added. Complex
C2 can then disassociate to form MEK (E) and ERK phosphorylated on the tyrosine
site (S1), or a second phosphate group is added to C2, resulting in product reactants
E + S2. The six species and six rate constants are given in the following chemical
reaction network (Fig. 1).

We can translate this reaction network into a dynamical system ẋ = f (x, θ).
Here, f is a vector-valued function of the vectors of species concentrations
x = {S0,C1,C2, S1, S2, E} and rate constants, referred to as parameters θ =
{k f1, kr1 , kc1 , k f2 , kr2 , kc2}. The kinetics assumption for f is a modelling choice; here
we assume that the law of mass action holds (Klipp et al. 2016, §2.1.1), as for the
original model (Yeung et al. 2019). The resulting dynamical system of ODEs is given
in Eqs. (1).

dS0
dt

= −k f1E · S0 + kr1C1, (1a)

dC1

dt
= k f1E · S0 − (kr1 + kc1)C1, (1b)

dC2

dt
= kc1C1 − (kr2 + kc2)C2 + k f2E · S1, (1c)

dS1
dt

= −k f2E · S1 + kr2C2, (1d)

dS2
dt

= kc2C2, (1e)

dE

dt
= −k f1E · S0 + kr1C1 − k f2E · S1 + (kr2 + kc2)C2. (1f)

We assume that initially all species are zero, except for S0(t = 0) = Stot and E(t =
0) = Etot . Equations (2)–(3) define two conserved quantities that constitute a basis
for the linear space of conservation relations of the model:

Stot = S0 + S1 + S2 + C1 + C2, (2)
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Etot = E + C1 + C2, (3)

where the total amounts of substrate ERK (Stot ) and enzymeMEK (Etot ) are constant
and known from the initial conditions.

We aim to study the relationship between the species x , parameters θ , conserved
quantities and available biological information (previous knowledge and experimental
observations). The emphasis in this paper is not to analyse the steady-state variety as
in Gross et al. (2016), rather here we focus on the transient dynamics of the model
and algebraic approaches to analyse ERK kinetics in light of the available biological
information.

2.2 The Data

The data is published. Details on measurement techniques and experimental methods
can be found in Yeung et al. (2019). We present the experimental setup for the data
we analyse.

2.2.1 Experimental Setup and Data

In all experiments, 0.65μM free (activated) enzyme MEK (E) was added to 5μM
of unphosphorylated ERK substrate (S0) along with ATP; therefore, Stot = 5μM
and Etot = 0.65μM . ERK were measured in three states: unphosphorylated (S0 +
C1), mono-phosphorylated (S1 +C2) and dually phosphorylated ERK (S2), at 7 time
points, with r different experimental replicates. The sample space for each MEK
variant is X = R

3×7×r , where for human wild-type (WT) MEK, r = 11; for MEK
variants with phosphomimetic (SSDD), r = 6; and for activating mutations, r = 5.
The three activating mutants of MEK are known to be involved in human cancer
(E203K) or developmental abnormalities (F53S and Y130C). The ERK observations
were collected at seven time points t = {0.5, 2, 3.25, 3.75, 5, 10, 20} minutes for all
MEK variants except SSDD, which were collected at t = {1, 2, 3.25, 5, 10, 20, 40}
minutes.

2.2.2 Known Biological Information

The relationship between some kinetic rate constants is known. When a substrate
binds reversibly to an enzyme to form an enzyme-substrate complex, which then reacts
irreversibly to form a product and release the enzyme, one can define the Michaelis–
Menten constant kM . In the reaction network given byEqs. (1), there are twoMichaelis-
Menten constants kMi = (kci + kri )/k fi for i = 1, 2. Measurements show that in our
experimental setup kMi ≈ 25μM for i = 1, 2 (Taylor 2019b). While the reaction rates
kci and kri for i = 1, 2 cannot be measured directly, they have been shown to be of
the same order of magnitude (Bar-Even 2011). We will use these insights to assume,
henceforth, that S0, S1 and S2 were measured (without added compound variables).
We justify this mathematically in Sect. 3.2.4.
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3 Algebraic Model Reduction

The first step to studying most models typically involves model reduction, which
reduces the number of dependent variables and constant parameters. For many chem-
ical reactions, there are time scales on which the rate of change of some variables is
negligible and their dynamics is dominated by those of the remaining variables. This
observation motivates the Quasi-Steady-State-Approximation (QSSA).

In recent years, algebraic approaches to reduce polynomial ODEmodels have been
extended byWalcher and colleagues. In 2013, Pantea et al. (2014) usedGalois theory to
characterise chemical reaction networks for which no explicit QSSA reduction is pos-
sible. Furthermore, they provided computational tools for determining the feasibility
of an explicit reduction. Subsequently, Sweeney (2017) proved that the nonsolvability
of polynomials poses no issue to the CRNs most commonly encountered in practice
and derived a more efficient algorithm for determining explicit reducibility by trans-
lating algebraic structures into graphs. Goeke and Walcher (2014) provide an explicit
formula for obtaining a reduced QSSA model using a subset of an algebraic variety
defined by the slow manifold. Subsequently, Goeke et al. (2017) characterised param-
eter values at which QSSA reduction is accurate using algebraic varieties and bounds
on the polynomials governing the ODE system on a bounded parameter- and variable-
domain. Most recently, Feliu et al. (2019) derived necessary and sufficient conditions
for purely algebraic reductions of aCRNmodel to agreewithmodel reductions derived
via classical singular-perturbation theory (Keener and Sneyd 2011; Segel 1988).

In this section, we briefly reviewQSSA using classical singular-perturbation theory
as well as the algebraic approaches developed by Goeke et al. (2017); Goeke and
Walcher (2014). We then apply both methods to the full ERK model (Eqs. (1)). We
show both approaches can generate the same QSSA-reduction of our ERK model,
which we will call the Rational ERK model. Additionally, the algebraic method can
yield a linear QSSA-reduction of our ERK model in a single step (which we call the
Linear ERK model). By contrast, the singular-perturbation-theory approach requires
additional assumptions on parameter values to arrive at the Linear ERK model (see
Sect. 3.2). We show that the Linear ERK model approximates the Full ERK model
(Eqs. (1)) with similar accuracy as the Rational ERK model in the context of the
experimental setup, data and known biological information (see Sect. 3.2; Appendix
A.2 for details).

With the algebraic method, we provide a rigorous mathematical justification of
the Linear ERK model presented by Yeung et al. (2019). By comparing the singular
perturbationmethodwith the algebraicmethod and the two resultingmodel reductions,
we illustrate how the algebraic methods form a well-structured approach for arriving
at a QSS reduction and for assessing the accuracy of such reductions systematically.

Notation for Model Reduction

Throughout, we will assume we have an ODE system in variables x ∈ R
n and param-

eters θ ∈ R
m . If the system dynamics are governed by f , a vector of polynomials in
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R[x, θ ]n , then our ODE system is given by

dx

dt
= f (x, θ). (4)

For 1 ≤ q < n, we may define

x [1] = (x1, . . . , xq), f [1] = ( f1, . . . , fq),

x [2] = (xq+1, . . . , xn), f [2] = ( fq+1, . . . , fn).

Wewish to retain the variables x [1] in the reducedmodel and seek to eliminate variables
x [2] as part of our model reduction.

For the full ERK model (Eqs. (1)), we choose x [1] := (S0, S1, S2) and x [2] :=
(C1,C2). Analogously, f [1] are the polynomials governing the rates of change of S0,
S1 and S2 (Eqs. (1a), (1d) and (1e)) and f [2] are the polynomials governing the rates
of change of C1 and C2 (Eqs. (1b) and (1c)).

Remark In the current section, we treat the (non-zero) initial conditions of the ODE
systems as parameters (and include them in the parameter countm), as they are central
to determining the goodness of a model reduction. In Sect. 4 (Identifiability) and
Sect. 5 (Inference & Comparison), we will not include the initial conditions in the set
of parameters, as they are given by the experimental setup and, as such, do not need
to be identified or inferred.

3.1 The Algebraic QSSA Approach

The algebraic approach to QSSA, as presented by Goeke, Walcher and Zerz in Goeke
et al. (2017), differs from the classical approach in several ways. Most notably, an a
priori separation of time scales is not needed. On the other hand, we require a choice
of fast and slow variables (i.e., a choice of which variables we eliminate, and which
we retain in the reduced model).

Remark To the best of our knowledge, all existing algebraic approaches to QSSA,
including (Goeke et al. 2011; Goeke and Walcher 2014; Boulier et al. 2011; Goeke
et al. 2017), require a choice, explicit or implicit, of slow and fast variables. In Goeke
et al. (2011) the relevant choice is made by expanding f (in Goeke et al. (2011): h) at
different orders of ε.

First, we characterise points in parameter space, i.e. parameter values, where the
fast variables are exactly determined by the slow variables, which yields a reduced
model. This set of parameter values is defined as the vanishing set of the polyno-
mials governing the ODEs of the fast variables. This defines an algebraic variety in
the parameter space. Typically, the ODE system will be degenerate at these values.
Secondly, we characterise neighbourhoods of these values in parameter space, as well
as time scales, for which the reduction is a good approximation to the original model.
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To describe the characterisation fromGoeke et al. (2017), we use x [1], x [2], f [1] and
f [2] as before. In addition, we denote the partial derivative with respect to x [i] by Di .
For a fixed θ∗ ∈ R

m , we let Yθ∗ denote the algebraic variety defined by f [2]( · , θ∗).

Definition 2 Let y ∈ Yθ∗ be such that the (n−q)×(n−q)matrix D2 f [2] has full rank
at (y, θ∗). Then we denote by Vθ∗ ⊆ Yθ∗ a relatively Zariski-open neighbourhood of
y in which this rank is maximal. We call Vθ∗ a quasi-steady-state (QSS) variety in
the sense of Goeke et al. (2017) and may assume without loss of generality that it is
irreducible.

If, furthermore, Vθ∗ is an invariant set of the ODE system dx [1]/dt = f (x, θ∗),
then we call θ∗ a QSS parameter value. Recall that in dynamical systems theory, Vθ∗
is an invariant set of Rq if whenever the initial condition of an ODE at t = 0 is in Vθ∗ ,
then the corresponding trajectories of the ODE remain in Vθ∗ for all t > 0.

Remark Note that the steady-state variety (see Gross et al. 2016) and the QSS
variety at a parameter value θ∗ are not as closely related as one may first think.
Indeed with our notation, the steady state variety is the zero set in R

n ×R
m of

the ideal 〈 f [1](x, θ), f [2](x, θ)〉 of R[x, θ ], while the QSS variety at θ∗ is con-
tained in the zero set in R

n ×{θ∗} of the ideal 〈 f [2](x, θ∗)〉 of R[x]. That is, we
have both VR

n ×R
m ( f [1](x, θ), f [2](x, θ)) ⊂ VR

n ×R
m ( f [2](x, θ)) and Vθ∗ ⊆ Yθ∗ =

VR
n ×{θ∗}( f [2](x, θ∗)) ⊂ VR

n ×R
m ( f [2](x, θ)), but the steady-state variety and Vθ∗

are not contained in one another in general.

To apply the theory of Goeke, Walcher and Zerz in Goeke et al. (2017), we assume
that the initial condition of our ODE system (Eq. (4)) lies in Vθ∗ . As D2 f [2] has full
rank on Vθ∗ , we have that x [2] = �

(
x [1]) for some continuous � by the Implicit

Function Theorem. Hence, writing x = (x [1], x [2]), we obtain a reduced model:

dx [1]

dt
= f [1] ((x [1], �

(
x [1])) , θ∗) (5)

on some open neighbourhood in R
j that naturally includes Vθ∗ . This corresponds to

determining the fast variables in terms of the slow variables.We do this by setting their
time rates of change equal to zero on the short timescale in classical QSSA, with the
addition that on Vθ∗ the above yields an exact solution rather than an approximation.
As a caveat, we note that, in both settings, it may not be possible to find an algebraic
expression for �; this was pointed out and completely characterised by Pantea et al.
(2014) in terms of Galois theory. Because of the possible non-solvability issue with
Eq. (5), we require a more general methodology (Proposition 3) to study the accuracy
of a model reduction (Proposition 4).

Goeke, Walcher and Zerz showed that locally, in the variable x [1], the reduced
system given by Eq. (5) has the same solution as the following ODE system

dx [1]

dt
= f [1] (x, θ∗) , dx [2]

dt
= −D2 f

[2](x, θ∗)−1D1 f
[2](x, θ∗) f [1](x, θ∗).

(6)
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Proposition 3 (Lemma 1 & Proposition 1 in Goeke et al. (2017)) Let Vθ∗ be a QSS-
variety. Then Vθ∗ is an invariant set of Eq. (5). Moreover, any solution of Eq. (6) with
initial condition in Vθ∗ locally solves Eq. (5). Conversely, any solution of Eq. (5) with
initial condition in Vθ∗ locally solves Eq. (6). In addition, Vθ∗ is an invariant set of
Eq. (4) if and only if the solutions of Eqs. (4) and (6) are equal for all initial conditions
in Vθ∗ .

This proposition equips us with amethod to obtain a solution for x [1] in an algebraic
QSSA without explicitly determining �. In Sects. 4 and 5, we will use Eq. (5) as our
model reduction.

First, however, we assess the accuracy of Eq. (6) as an approximation to the full
system, for parameter-values θ in some neighbourhood of θ∗. For convenience, we
abbreviate system (6) as dx/dt = fred(x, θ∗).

Proposition 4 (Outline of Proposition 2 in Goeke et al. (2017)) Let K ∗ ⊆ R
n+ ×R

m+ be
a compact domain in the product of the variable and parameter spaces which satisfies
a number of conditions (we refer the interested reader to Appendix A.2 for details). Let
θ∗ be given such that Vθ∗ × {θ∗} has non-empty intersection with int K ∗, let (y, θ∗)
be a point in this intersection, and let V ′

θ∗ be an open neighbourhood of y such that
(Vθ∗ ∩ V ′

θ∗)×{θ∗} ⊆ K ∗. Additionally, let t∗ > 0 be such that the solution of Eq. (4),
with initial condition y, remains in V ′

θ∗ for t ∈ [0, t∗].
Then there exists a compact neighbourhood Aθ∗ ⊆ Vθ∗ of y such that:

(i) For every z ∈ Aθ∗ , the solution of Eq. (4) with initial condition z exists and
remains in V ′

θ∗ for t ∈ [0, t∗].
(ii) For every ε′ > 0, there exists a δ1 > 0 such that for every z ∈ V ′

θ∗ ∩ Aθ∗
the solution of Eq. (6), with initial condition z, exists and remains in V ′

θ∗ for
t ∈ [0, t∗] whenever ‖ f − fred‖ < δ1 on Vθ∗ .

(iii) For every ε′ > 0, there exists a δ ∈ (0, δ1] such that, for any z ∈ Vθ∗ ∩ Aθ∗ , the
difference between the solutions of Eqs. (6) and (4), with initial condition z, is at
most ε′ for t ∈ [0, t∗] whenever ‖ f − fred‖ < δ on V ′

θ∗ . Here, ‖ · ‖ denotes the
infinity-norm over the interval [0, t∗] for a fixed parameter value.

In summary, given some technical assumptions on the variables and the domain
K ∗, we can bound the difference between the solutions of Eqs. (4) and (6) in terms of
‖ f − fred‖ up to some time t∗ > 0. The full statement of this proposition also includes
lower bounds on this difference.Note thatwe do not assume that θ∗ is aQSS-parameter
value, but the assumptions on K ∗ (as detailed in Appendix A.2) require it to be close
to some QSS-parameter value.

3.2 Reducing the ERKModel Algebraically

We now apply the theory from Sect. 3.1 to the Full ERK model (Eqs. (1)) in two
different ways to derive two reduced models (the Linear ERK and Rational ERK
models). The full details of the derivations can be found in Appendix A.1.We also give
a brief biological explanation of why both systems explain the phenomena underlying
the given experimental data equally well.
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3.2.1 Reduction via Conservation Laws

We can exploit the conservation laws (2) and (3) to eliminate a variable before using
the analytic or algebraic QSSA approach. First, we choose to eliminate E and note
that there are two choices:

E = Etot − C1 − C2 (7)

or

E = Etot − Stot + S0 + S1 + S2. (8)

Subsequently,we choose to eliminate the variablesC1 andC2 via (algebraic)QSSA.
For the Rational ERK model, using (7) to eliminate E , we obtain

f [2]
rat =

(
k f1(Etot − C1 − C2) · S0 − (kr1 + kc1)C1

kc1C1 + k f2(Etot − C1 − C2) · S1 − (kr2 + kc2)C2

)
,

while for the Linear ERK model, employing substitution (8), we have

f [2]
lin =

(
k f1(Etot − Stot + S0 + S1 + S2) · S0 − (kr1 + kc1)C1

kc1C1 + k f2(Etot − Stot + S0 + S1 + S2) · S1 − (kr2 + kc2)C2

)
.

3.2.2 Reduction via an Algebraic QSSA

To reduce the model further, we apply an algebraic QSSA, as described in Sect. 3.1.
We start by identifying QSS-parameter-values. For f [2]

rat , we have

D2 f
[2]
rat =

[−k f1S0 − (kr1 + kc1) −k f1S0
−k f2 S1 + kc1 −k f2 S1 − (kr2 + kc2)

]
,

while for f [2]
lin we have

D2 f
[2]
lin =

[−(kr1 + kc1) 0
kc1 −(kr2 + kc2)

]
.

In both cases, assuming that (kri + kci ) > 0 for i = 1, 2 (otherwise, the reaction
network would be degenerate, meaning some or all variables would remain constant),
and given that S0 and S1 are non-constant, we deduce that these matrices are invertible.
Hence, both substitutions (7) and (8) are good candidates for an algebraic QSSA
reduction.

We note that the assumption Etot = 0 is required to ensure that the initial condition
lies in Vθ∗ . This is not physically realistic, as the absence of free enzyme makes
the reaction rates negligible, however, in parameter space this assumption is close
to the experimental setup (Etot ≈ 0.65μM). In fact, unlike the rate parameters, we
know the value of Etot and can, therefore, bound the error associated with such an
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idealisation (cf. AppendixA.2). The assumption that Etot = 0 is similar to the classical
singular-perturbation theory approach, where a typical choice of short timescale is
(tS = Etot k f1) and one then subsequently assumes ε = Etot/Stot → 0.

As Etot = 0 will yield a stationary model and ensure that Vθ∗ contains the initial
condition, we find that any parameter value θ∗ satisfying (kri + kci ) > 0 for i = 1, 2
and Etot = 0 is a QSS-parameter-value for both the Rational and Linear ERK model.

For both models, we have

Yθ∗ =
{
x = (S0, S1, S2,C1,C2) ∈ R

5 | f [2](x, θ∗) = 0
}

.

For theLinearERKmodel,we can show thatY lin
θ∗ is irreducible (at generic parameter

values) and thus its QSS-variety is V lin
θ∗ = Y lin

θ∗ . For the Rational ERK model, we have
that Y rat

θ∗ decomposes as

Y rat
θ∗ = (Y rat

θ∗ ∩ V(〈C1 + C2〉)) ∪ (Y rat
θ∗ ∩ V(〈λ(kr2 + kc2) + S0 + λk f2 S1〉))

where λ := −kr1/(k f1(kc1 − kc2 − kr1)). At generic parameter values, only the first
irreducible component will contain the initial condition. Hence, the natural choice for
the QSS-variety is

V rat
θ∗ =

{
x = (S0, S1, S2,C1,C2) ∈ R

5 |C1 = 0, C2 = 0
}

.

The substitution (7) yields the Rational ERK model given by

dS0
dt

= −κ1S0
γ1S0 + γ2S1 + 1

, (9a)

dS1
dt

= −κ2S1 + (1 − π)κ1S0
γ1S0 + γ2S1 + 1

, (9b)

dS2
dt

= πκ1S0 + κ2S1
γ1S0 + γ2S1 + 1

, (9c)

while the substitution (8) gives the Linear ERK model:

dS0
dt

= −κ1S0, (10a)

dS1
dt

= −κ2S1 + (1 − π)κ1S0, (10b)

dS2
dt

= πκ1S0 + κ2S1. (10c)

Here, for i = 1, 2, we use the newly introduced quantities

κi = Etot
k fi kci

kci + kri
, π = kc2

kc2 + kr2
, γi = k fi

kc1 + kc2(
kc1 + kr1

) (
kc2 + kr2

) . (11)
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Both models are reductions obtained via the ODE system (5). The processivity param-
eter, which is the probability that both phosphorylations are carried out by the same
enzyme, is represented by π in the reduced models. The κi represents the kinetic
efficiencies of the first and second phosphorylation steps, respectively (Yeung et al.
2019).

It should be noted that the Rational ERK model is the system we would obtain via
the classical singular perturbation approach (Keener and Sneyd 2011).

3.2.3 Assessing Accuracy

We can use the algebraic framework of Goeke, Walcher and Zerz and, in particular,
Proposition 4 to bound the error of the Linear ERK model reduction to the full model.
Given themeasurements of theMichaelis-Menten constants kMi , we can derive simple
expressions which bound the approximation error (see Appendix A.2 for both the
Rational & Linear ERK model). Unfortunately, the bound on the approximation error
depends on parameters with unknown values. However, we can compare the bounds
derived for the Linear ERK model to those for the Rational ERK model and show that
in the regime where kMi ≈ 25μM, both approximate the full model equally well (see
Appendix A.2).

Recall that we can also derive the Rational ERK model via singular perturbation
theory. When using perturbation theory, it is uncommon to bound the approximation
error as explicitly as we do via the algebraic methods of Goeke et al. (2017). However,
we can still show that the Linear ERK model is a good approximation of the Rational
ERK model when 0 ≤ γ1, γ2 � 1. Again, we can use knowledge of the Michaelis-
Menten constant to show that in our experimental setup, γ1 and γ2 are small. Indeed,
we can rewrite

γ1 = 1

kM1

kc1 + kc2
kc2 + kr2

, γ2 = 1

kM2

kc1 + kc2
kc1 + kr1

.

Since kMi ≈ 25μM and the parameters kci and kri are of similar magnitude (see
Bar-Even 2011), we conclude that γ1 ≈ 1/25 (1/μM).

We reiterate that by employing an algebraic approach, we can derive a reduced
model (without taking further limits) that approximates the Full ERK model as well
as that obtained via singular perturbation theory, but has several advantages: it has
fewer parameters, is interpretable as a chemical reaction network, and identifiable, as
discussed in the next section.

3.2.4 Choice of Output Variables

Recall from Sect. 2.2, the experimental measurements correspond to the following
linear combinations of variables: S0 + C1, S1 + C2 and S2. Here we argue that in the
context of available data, S0, S1 and S2 are sufficient approximations of the output
variables,which simplifies both the identifiability analysis and the parameter inference.

We argued in Sect. 3.2.3 that in the context of experimental data the Linear ERK
model is as good of an approximation to the Full ERK model as the Rational ERK
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model. On the long timescale, substitutions forC1 andC2 from the Linear ERKmodel
give approximately

C1 = 1

kM1

Etot · S0,

C2 = 1

kM2

Etot · S1 + kc1
kc2 + kr1

1

kM2

Etot · S0.

Recall that kMi ≈ 25μM and Etot = 0.65μM . We then find that the measurements of
Si + Ci+1 will be dominated by Si . Henceforth we will use Si interchangeably with
our measurements Si + Ci+1.

4 Identifiability

One of the goals of this ERK study is to determine the kinetic parameters of themodels
given the data. Each model and experimental setup induces a map from the space of
model parameters to observable model solutions (here, this is the measurement of
the 3 species at the 7 time points over the course of r experimental replicates, i.e.
a subset of R21r ). We call this map φt1,...,t7 : � → R

21r the model prediction map
(see Dufresne et al. 2018). Here, the parameter space � is a subset of the positive
octant R6≥0 for the Full ERK model, R5≥0 for the Rational ERK model, and R

3≥0
for the Linear ERK model. One can think of the data as being a point z∗ in the
space of observable model solutions, i.e. R21r , and parameter estimation corresponds
to attempting to compute the inverse image φ−1

t1,...,t7(z
∗) of this map at that point.

Structural identifiability generally corresponds to the model prediction map φt1,...,t7
being injective. Real-world observations are noisy, hence the data point z∗ may not
be in the image of the map φt1,...,t7 . Thus, when performing parameter estimation,
we instead search for parameters yielding model predictions close to the data point
z∗. Practical identifiability broadly corresponds to having the set of parameters with
model predictions close to the data point z∗ being bounded. In Sect. 4.1 we show
that the Linear ERK model is structurally identifiable on its whole parameter space,
while the Rational ERK model and the Full ERK model are structurally identifiable
on some open dense subset of their parameter space. In Sect. 4.2 we show that the
Linear ERK model is practically identifiable for our experimental data, providing the
proof of Theorem 1. By contrast, we provide evidence that the Rational ERK model
and Full ERK model are not practically identifiable.

4.1 Structural Identifiability

First, we study the structural identifiability of our ODE models, that is whether the
model predictionmapφt1,...,t7 : � → R

21r is one-to-one, or at least locally one-to-one.
We start by providing a formal definition of structural identifiability for models given
by ODE systems with specific time points. Suppose we have a rational ODE system
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in variables x ∈ R
n and parameters θ ∈ R

m , given by

dx

dt
= f (x, θ), (12)

where f is a vector of rational functions in R(x, θ)n . We assume that the measurable
output is y = g(x, θ) where g is also a vector of rational functions. Let x̂(θ, t) be a
solution of (12) for the parameter value θ ∈ � and then let ŷ(θ, t) = g(x̂(θ, t), θ) be
the observable solution for the same parameter value. Then, supposing that there are r
replicates of the experiment, for the specific time points t1, . . . , tl the model prediction
map is given by

φt1,...,tl (θ) = (ŷ(θ, t1), . . . , ŷ(θ, tl), . . . , ŷ(θ, t1), . . . , ŷ(θ, tl))︸ ︷︷ ︸
r times

.

The model prediction map then induces an equivalence relation ∼t1,...,tl on the param-
eter space � via

θ ∼t1,...,tl θ ′ if and only if φt1,...,tl (θ) = φt1,...,tl (θ
′),

for any θ, θ ′ ∈ �.

Definition 5 (c.f. Definition 2.8 in Dufresne et al. (2018)) Suppose we have a model
given by a system of rational ODEs (as above) with parameter space � and model
prediction map φt1,...,tl . We say a model is:

• globally identifiable if every equivalence class of ∼t1,...,tl on � has size exactly 1.
• generically identifiable if for almost all θ ∈ � the equivalence class of θ has size
exactly 1.

• locally identifiable if for almost all θ ∈ � the equivalence class of θ is finite.
• generically non-identifiable if for almost all θ ∈ � the equivalence class of θ is
infinite.

Here “almost all” means everywhere except possibly in a closed subvariety (i.e. the
set of common zeroes of some polynomials).

There are several approaches to assess structural identifiability. All identifiability
methods involve a certain number of assumptions of genericity, but not always explic-
itly (see for example discussions in Ovchinnikov et al. (2021), Hong et al. (2020),
Joubert et al. (2021), Saccomani et al. (2003), Villaverde et al. (2018), Villaverde et al.
(2019)). First, all methods assume that one has access to the whole trajectory of the
observable output, and so are looking at the size of the equivalence classes of the
equivalence relation ∼∞ on � defined as

θ ∼∞ θ ′ if and only if ŷ(θ, t) = ŷ(θ ′, t) for all t ≥ 0.

For rational ODE models with time series data as considered here, a result of
Sontag (2002) proves if at least 2m + 1 generic time points are observed, where m
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is the dimension of the parameter space, then the equivalence relation ∼t1,...,t2m+1

coincides with the equivalence relation ∼∞. If there are fewer time points or they
are not generic, it could be that almost all equivalence classes of ∼∞ have size 1
but those of ∼t1,...,tl are larger. For the Linear ERK model, the parameter space has
dimension 3, so we have enough time points, although we do not know a priori if
they are generic. In fact, this model admits analytic solutions (see Sect. 4.2), so we
can build the model prediction map explicitly and determine its identifiability directly.
By a straightforward computation, we can show that for any choice of three distinct
non-zero time points, the model prediction map φt1,t2,t3 of the Linear ERK model
is injective and so the model is globally structurally identifiable (see Appendix A.4
for details). In particular, it follows that any choice of three distinct time points is
generic. For the Rational ERK model and the Full ERK model, the parameter space
has dimensions 5 and 6, respectively; hence, we may not have enough time points,
and we cannot determine the validity of any structural identifiability results for these
specific model prediction maps. Indeed, these two models are non-linear and do not
admit analytic solutions that would allow us to make the same argument as for the
Linear ERK model. This is an instance of a more general open problem:

Open Problem 6 Find and implement an algorithm to determine structural identifi-
ability of a rational ODE model with time series data at specific given time points
{t1, . . . , tl}.

Methods to assess the structural identifiability of ODEmodels include the classical
approachviaTaylor series (Pohjanpalo 1978) andgenerating series (Grewal andGlover
1976), and, more recently, approaches based on differential algebra (Audoly 2001;
Saccomani et al. 2003; Hong et al. 2020). In this paper, we use SIAN (Hong et al.
2019), an approach based on differential algebra implemented in Maple (2019).

Similar to other methods based on differential algebra (for example, the method
implemented in DAISY (Bellu et al. 2007)), SIAN is based on the differential Null-
stellensatz (Ritt 1950, Chapter 1) or (Seidenberg 1952, Section 4). For a differentially
closed field K,this theorem establishes a correspondence between radical differential
ideals and differentially closed subsets of Kn . In the context of an ODE system, this
implies that the solutions of the ODE system are completely determined by a prime
differential ideal in a differential ring (see below). Criteria for identifiability can then
be extracted from the ideal (or the quotient ring). The requirement that K is differen-
tially closed then means that the solutions in question are possibly complex-valued,
and the identifiability results will be about complex parameters, whether this is stated
explicitly or not. For this reason, Hong et al. (2020) state their definition for complex
parameters.

Remark As mentioned above, the first difference between our definition of identifia-
bility and Hong et al.’s is that their parameter space is a subset of Cn instead of Rn . A
second difference to note is that what Hong et al. (2020) call “globally identifiable”
corresponds to what we call generically identifiable. Finally, Hong et al.’s (2020) def-
inition is written for components of the parameters and makes the notion of “almost
all” more precise.
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The starting point is an ODE system of the same form as in Eq. (12) together
with the initial condition x(0) = x0. Let Q be the least common multiple of all the
polynomials appearing in the denominators in f and g. Then we have f = F/Q and
g = G/Q where F andG are polynomial functions. Note that SIAN usually views the
initial conditions as additional unknown components of the parameter that one may
want to identify. The differential ring of interest is the differential ring C(θ){x, y}
(the differential ring in indeterminates x and y over the fraction field C(θ), i.e. the
field of complex rational functions in the parameters). We can think of this ring as
a polynomial ring in infinitely many indeterminates: θ , x , y and the infinitely many
higher derivatives of x and y (i.e. x (i) and y(i) for i ≥ 1). We are interested in the
differential ideal I� of C(θ){x, y} given by

I� :=
(
(Qẋi − Fi )

( j), (Qẏk − Gk)
( j) | 1 ≤ i ≤ n, 1 ≤ k ≤ m, j ≥ 0

)
: Q∞,

(13)

where for non-empty subsets T , S of a ring R, the set T : S∞ is defined as follows:

T : S∞ := {r ∈ R | there exist s ∈ S, n ∈ Z≥0 such that snr ∈ T }.

Note that for polynomial systems like the Full ERKmodel and the Linear ERKmodel,
we have Q = 1, and so the column operation is not needed and the ideal I� is simply
the differential ideal generated by the equations defining the ODE system and their
derivatives. The ideal I� is the ideal of all differential polynomials in C(θ){x, y} that
vanish on the solutions of the system of ODE system (12) (Saccomani et al. 2003;
Hong et al. 2020).

The ideal I� is prime (Hong et al. 2020) and so the quotient ring C(θ){x, y}/I�
is an integral domain. Let K := Q(C[θ ]{x, y}/I�) be the field of fractions of the
domainC(θ){x, y}/I� , and let k be the subfield ofK generated by the image ofC{y},
that is, the subfield generated by the elements of the form yi + I� . We can now state
the non-constructive algebraic criterion for structural identifiability:

Proposition 7 (c.f. Proposition 3.4 in Hong et al. 2020) Suppose we have a model
given by a system of rational ODEs as described above.

• If the fields k and k(θ) coincide, then the model is generically identifiable.
• If the field extension k ⊆ k(θ) is algebraic, then the model is locally identifiable.

Remark Note that Proposition 3.4 inHong et al. (2020) implies thatk andk(θ) coincide
(respectively the field extension k ⊆ k(θ) is algebraic) if and only if the model is
globally identifiable (respectively, locally identifiable) in the sense of Hong et al.
(2020). We are interested in something weaker; we only wish to identify parameters
in the parameter space �, which is a subset of the real positive octant.

The criterion provided by the proposition above is not constructive, as it involves
the field of rational functions of an infinitely generated C-algebra. Hong et al. (2020)
go on to provide a constructive version of the criterion (Hong et al. 2020, Section 3).
The software SIAN (Hong et al. 2019), which we use here, is in turn based on a
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probabilistic version of the criterion (Hong et al. 2020, Section 4). Note that local
identifiability is determined via the Taylor series approach.

We now consider the issue of initial conditions. As mentioned above, by default,
SIAN considers the initial conditions as parameters that one may wish to identify.
Other methods, like the differential algebra method as implemented in DAISY (Bellu
et al. 2007), do not explicitly address initial conditions. Ovchinnikov et al. show in
(Ovchinnikov et al. 2021, Theorem 19) that input-output identifiability corresponds
to what they call multiple experiment identifiability, that is, identifiability from suf-
ficiently many generic initial conditions. DAISY and COMBOS verify input-output
identifiability (Meshkat et al. 2014).

Using SIAN (Hong et al. 2019), we verify that all three models are generically
identifiable. In particular, in all three models all parameters are generically globally
identifiable. Recall that this result is valid under the assumption that we have mea-
surements at sufficiently many generic time-points, and for generic initial conditions.
Inspired by the discussion in Saccomani et al. (2003), in Appendix A.3 we show that
the set of differential polynomials in C(θ){x, y} vanishing on those solutions of the
system 12 with initial conditions S0(0) = 5μM and S1(0) = S2(0) = 0μM for all
three models, as well as C1(0) = C2(0) = 0μM and E(0) = 0.65μM for the Full
ERK model coincides with the ideal I� . This means that the set of solutions with
initial conditions corresponding to our experimental setup is dense in the set of all
solutions for the Kolchin topology (induced by the differential ideals of C(θ){x, y}).
We can, therefore, conclude that the initial conditions specific to the experimental
setup are indeed generic. Therefore, our structural identifiability results hold for the
initial conditions specific to the experimental setup.

Remark Using SIAN we can show that the Full ERK model is also generically iden-
tifiable with measurable outputs S0 +C1, S1 +C2 and S2 which is what was actually
measured experimentally (see Sect. 3.2.4).

4.2 Practical Identifiability

Suppose a model is generically identifiable, then, generically, distinct parameters pro-
duce distinct data points. However, if there are parameter values that are arbitrarily far
from one another but produce data points close to each other, parameter estimation
would not be meaningful in practice. Practical (non-)identifiability aims to categorise
models exhibiting such undesirable behaviour. For example, sloppiness (Gutenkunst
2007), uncertainty quantification (Smith 2013) and filtering problems (Shi et al. 1999)
study mathematical models with a similar aim. We use a definition of practical iden-
tifiability introduced in Dufresne et al. (2018), which was adapted from the definition
given in Raue et al. (2009).

Practical identifiability depends on more than the defining equations and specifi-
cation of input and output of the model. Practical identifiability will be influenced
by the precise choice of time points, the method used for parameter estimation, the
assumption on measurement noise of the data, and the way we measure distances in
parameter space. It may also vary on the area in the data space. A data point z∗ is an
experimental observation in the form of an N -dimensional vector whose entries are
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the observed values of the measured variables at each of the specific time points for
each replicate of the experiment. We focus on practical identifiability for maximum
likelihood estimation (MLE), one of the most widely used methods for parameter
estimation (see, for example Ljung et al. 1987). Accordingly, in the remainder of
this section, we consider models (M, φt1,...,ts , ψ, d�) with a precise choice of model
prediction map φt1,...,ts with specific time points t1, . . . , ts , a specific assumption for
the probability distribution ψ of measurement noise and a choice of reference met-
ric d� on parameter space �. We will also assume that the model considered is at
least generically identifiable, so that MLE exist and are unique for generic data (see
(Dufresne et al. 2018, Proposition 4.15)). We write θ̂ (z∗) to denote the MLE for z∗,
that is, θ̂ (z∗) := maxθ∈� ψ(θ, z∗).

We define an δ-confidence region Uδ(z∗) as follows:

Uδ(z
∗) := {θ ∈ � | − logψ(θ, z∗) < δ}.

The set Uδ(z∗), often known as a likelihood-based confidence region (Vajda et al.
1989; Casella and Berger 2002), is intimately connected with the likelihood ratio test.
Specifically, suppose we had a null hypothesisH0 that data point z∗ has true parameter
θ∗, and we wished to test the alternative hypothesis H1 that z∗’s true parameter is
something else. By definition, a likelihood ratio test would reject the null hypothesis
when

	(θ∗, z∗) := ψ(θ∗, z∗)
ψ(θ̂(z∗), z∗)

≤ k∗,

where k∗ is a critical value, with the significance level α equal to the probability
Pr(	(z∗) ≤ k∗|H0) of rejecting the null hypothesis when it is in fact true. The set of
parameters such that the null hypothesis is not rejected at significance level α is

{θ ′ ∈ � | − logψ(θ ′, z∗) < − logψ(θ̂(z∗), z∗) − log k∗},

that is, Uδ(z∗), where δ = − logψ(θ̂(z∗), z∗) − log k∗.

Definition 8 (Dufresne et al. 2018,Definition 4.17) The model (M, φt1,...,ts , ψ, d�) is
practically identifiable for a data point z∗ ∈ R

N at significance level α if and only if
the confidence region Uδ(z∗) is bounded with respect to d�, where

δ = − logψ(θ̂(z∗), z∗) − log k∗

and

α = Pr

(
ψ(θ̂(z∗), ẑ)

maxθ∈� ψ(θ, ẑ)
< k∗ | ẑ is data with true parameter θ̂ (z∗)

)

. (14)

For our analysis, we make the common assumption that the measurement noise is
additiveGaussianwith covariancematrix equal to amultiple of the identitymatrix. The
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assumption is implicit when performing a least-squares fit computation for MLE. In
our setup, we are measuring 3 substances at 7 time-points and there were r replicates,
so our assumption on the measurement noise means that the probability distribution
of the data is given by

ψ(θ, z) = (2πσ 2)
−21r
2 e− 1

2σ2
‖z−φt1,...,t7 (θ)‖22 ,

where σ 2 I21 is the covariance. It then follows that

δ = − logψ(θ̂(z∗), z∗) − log k∗

= 21r

2
log(2πσ 2) + 1

2σ 2 ‖z∗ − φt1,...,t7(θ̂(z∗))‖22 − log k∗,

and

− logψ(θ ′, z∗) = 21r

2
log(2πσ 2) + 1

2σ 2 ‖z∗ − φt1,...,t7(θ
′)‖22.

Therefore, we have that

Uδ(z
∗) = {θ ′ ∈ � | ‖z∗ − φt1,...,t7(θ

′)‖22 < ‖z∗ − φt1,...,t7(θ̂(z∗))‖22 − 2σ 2 log k∗}
= φ−1

t1,...,t7(Bρ(z∗)),

where Bρ(z∗) is the Euclidean open ball of radius

ρ :=
√

(‖z∗ − φt1,...,t7(θ̂(z∗))‖22 − 2σ 2 log k∗) around the data point z∗. It follows
that under our assumptions, determining whether the various models we study are
practically identifiable corresponds to determining whether the preimages under the
model prediction map of small open balls around data points are bounded in parameter
space. The size of the balls will depend on the data point and the significance level α
(or equivalently the critical value k∗).

4.3 Algorithm for Testing Practical Identifiability

The Rational ERK model and the Full ERK model do not admit analytic solutions,
hence we do not have access to an explicit model prediction map φt1,...,tl . Therefore,
we must approximate φt1,...,tl and thus alsoUδ using numerical methods and repeated
sampling.

First, we assume that our measurements have been corrupted with some Gaussian
noise with mean 0 and variance σ 2. This variance is identical across measurement
quantities, time points and trials. The noise distributions are independent across mea-
surements.

As we have assumed that measurement noise is additive Gaussian with covariance
matrix equal to a multiple of the identity matrix, we can obtain an MLE, given some
data z∗, by solving a least squares problem. This gives us θ̂ (z∗). We use this parameter
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to calculate the sample variance, assuming that the mean of each quantity is the model
trajectory at each time point. This gives us an estimate of the covariance σ 2.

Recall that δ is defined to be − logψ(θ̂(z∗), z∗) − log k∗. The log-likelihood is
easy to compute, as we already know z∗ and θ̂ (z∗), and can estimate φt1,...,t7 using a
numerical solution to theODE system.We use the following procedure to approximate
− log k∗:
Algorithm 1: Computing approximate − log k∗

Data: z∗, p̂(z∗), σ 2, α, niter (number of iterations)
1 {z′i }i=1,..,niter ← niter corruptions of z∗ by adding i.i.d. random samples from
N (0, σ 2) to each measurement

2 LogLik ← [] (create an empty list)
3 for i = 1, ..., niter do
4 Calculate p̂(z′i ) by least-squares solving
5 Append logψ( p̂(z′i ), z′i ) − logψ( p̂(z∗), z′i ) to LogLik

6 return �niter · (1 − α)�-th largest element of LogLik

This simply follows the definition of k∗ in Eq. (14) and approximates − log k∗ by
repeatedly sampling likelihood-ratios under our given noise assumptions and then
taking a (1 − α)-quantile (as − log( · ) is a monotonically decreasing function).

Remark In a situation where the number of replicates r is large, an approximate δ can
be computed from α that depends primarily on the distance between the data point z∗
and the predicted data point φt1,...,t7(θ̂(z∗)) corresponding to the MLE.

From the definition, we have δ = − logψ( p̂(z∗), z∗) − log k∗, meaning that k∗ =
1/eδψ( p̂(z∗), z∗), and so we can describe α in terms of δ directly:

α = Pr

(
ψ(θ̂(z∗), ẑ)

maxθ∈� ψ(θ, ẑ)
< 1/eδψ(θ̂(z∗), z∗) | ẑ is data with true parameter θ̂ (z∗)

)

.

This is equivalent to

α = Pr

(

− log

(
ψ(θ̂(z∗), ẑ)

maxθ∈� ψ(θ, ẑ)

)

> − log(1/eδψ(θ̂(z∗), z∗) | ẑ has true parameter θ̂ (z∗)
)

,

and so

α = Pr
(
− logψ(θ̂(z∗), ẑ) + logmaxθ∈� ψ(θ, ẑ) > δ

+ logψ(θ̂(z∗), z∗) | ẑ has true parameter θ̂ (z∗)
)

.

Note that for each value of ẑ, the MLE θ̂ (ẑ) maximises ψ(θ, ẑ). It follows that

α = Pr
(
2(logψ(θ̂(ẑ), ẑ) − logψ(θ̂(z∗), ẑ)) > 2δ

+2 logψ(θ̂(z∗), z∗) | ẑ has true parameter θ̂ (z∗)
)

.
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Wilk’s theorem (Fan et al. 2000) implies that 2(logψ(θ̂(ẑ), ẑ) − logψ(θ̂(z∗), ẑ)) is
asymptotically χ2 with three degrees of freedom. If F(ẑ) is the asymptotic cumulative
distribution function of 2(logψ(θ̂ z), ẑ) − logψ(θ̂(z∗), ẑ)), then α is approximately
equal to

α = 1 − Pr
(
2(logψ(θ̂(ẑ), ẑ) − logψ(θ̂(z∗), ẑ)) < 2δ

+2 logψ(θ̂(z∗), z∗) | ẑ has true parameter θ̂ (z∗)
)

≈ 1 − F(2δ + 2 logψ(θ̂(z∗), z∗)).

Therefore, asymptotically we have that

δ = F−1(1 − α)/2 − logψ(θ̂(z∗), z∗).

Unfortunately, this is not applicable here, as the number of experiments is 5, 6 or
11, which are not large numbers. Indeed, the δ obtained by applying Wilks’ Theorem
and the δ obtained via Algorithm 1 are notably different. For example, for the wild-
type and the Linear model, we approximate − log k∗ as 0.477 while Wilks’ theorem
approximates it as 3.907.

In order to demonstrate practical non-identifiability for the Full and Rational
ERK models, we pick two parameters from each model, based on which we can
illustrate non-identifiability well by presenting confidence areas marginalised to
these two parameters. This choice of parameters is informed by performing a (ill-
posed) Bayesian parameter inference first (see next section). This procedure is
described here for the Rational ERK model, but works similarly for the full model:

Algorithm 2: Computing marginalised confidence regions

Data: δ, (κmin
1 , κmax

1 ), (γmin
1 , γmax

1 ) (bounds on the parameters), niter (number of
evaluations per parameter)

1 CA ← [] (create an empty list)
2 �κ1 ← (κmax

1 − κmin
1 )/niter

3 �γ1 ← (γmax
1 − γmin

1 )/niter
4 for i = 0, . . . , niter − 1 do
5 κ̂1 ← κmin

1 + i · �κ1
6 for j = 0, . . . , niter − 1 do
7 γ̂1 ← γmin

1 + j · �γ1
8 Find parameters (κ ′

2, π
′, γ ′

2) minimising ψ((κ̂1, κ
′
2, π

′, γ̂1, γ ′
2), z

∗) by
least-squares solving

9 if − logψ((κ̂1, κ
′
2, π

′, γ̂1, γ ′
2), z

∗) < δ then
10 Append (κ̂1, γ̂1) to CA

11 return CA

While we do not know the values of κ1 and γ1, previous experimental work has
provided bounds for κ1 and γ1, which we pass to the algorithm above. The list returned
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Fig. 2 (Color figure online) Marginalised confidence area following Algorithm 2 at significance level 0.05
for theRational ERKmodel for thewild-type data point z∗, with κmin

1 = 0 (1/min), κmax
1 = 1000 (1/min),

γmin
1 = 0 (1/μM) and γmax

1 = 1000 (1/μM)

by the algorithm is a discrete approximation of the confidence area, marginalised to
the pair of parameters κ1 and γ1. We plot these points for visual inspection, which can
be seen in Fig. 2. The blue area reaching the upper and leftmost boundary of the plot
indicates that the confidence region is very unlikely to be bounded and that this model
is very unlikely to be practically identifiable.

The source of this practical non-identifiability of the Full ERKmodel and the Ratio-
nal ERK model is not completely clear. One possible source of non-identifiability
could be the choice of time points. Indeed, as mentioned in Sect. 4.1, in both cases we
do not know if the time points are sufficiently generic. There are reasons to believe
that not all practical non-identifiability can be explained by having an insufficient
number of time points. Indeed, as part of earlier work during the preparation of
Yeung et al. (2019), additional time point data were simulated for the Full ERK
model, but confidence regions still appeared unbounded. Another possible source
of non-identifiability could be that for the given experimental data there is a valid
quasi-steady-state approximation resulting in a smaller dimensional parameter space.
At quasi-steady-state parameter values, the reduction is exact and so for these param-
eters, the equivalence class of ∼t1,...,t7 is positive dimensional. Intuitively, since the
solutions of the Full ERKmodel and the Rational ERKmodel are close to those of the
Linear ERK model near quasi-steady-state parameter values, the confidence regions
should contain the equivalence class of the nearby quasi-steady-state parameter value,
which in this case, was unbounded. This might be an example of more widespread
phenomena.
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Fig. 3 (Color figure online)Boundary of the confidence regions forwild-type and eachmutant at significance
level 0.05 for the Linear ERK model

4.4 The Practical Identifiability of the Linear ERKModel

We now consider the practical identifiability of the Linear ERK model. What distin-
guishes the Linear ERKmodel from the Full ERKmodel and the Rational ERKmodel
is that an analytic solution to the ODE system is available and so we can construct
an explicit model prediction map. The solution to the ODE system (10) with initial
conditions S0(0) = 5μM and S1(0) = S2(0) = 0 is given by:

S0(t) =5e−κ1t

S1(t) =5κ1(1 − π)te−κ1t if κ1 = κ2

5κ1(1 − π)(e−κ2t − e−κ1t )/(κ1 − κ2) otherwise

S2(t) =5 − S0(t) − S1(t).

As we did for the Rational ERK model in Sect. 4.3, for a given data point z∗, we
obtain an MLE θ̂ (z∗) by solving a least-squares problem. We then use Algorithm 1 to
approximate− log k∗, and then δ, using the explicitmodel predictionmapwe construct
based on the analytic solutions. In Fig. 3we plot the boundary of the confidence regions
at significance level α = 0.05 for the data points corresponding to the wild-type and
each mutant. All five confidence regions are seen to be bounded, and we conclude that
the model is practically identifiable for those data points.

5 Topological Data Analysis for Kinetic Parameter Inference

Since the Linear ERKmodel is practically identifiable, we now infer the parameters of
this model using data from wild-type and mutant experiments. First, we briefly review
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the Bayesian approach for inferring parameters of the Linear ERK model, as already
computed by Yeung et al. (2019). We then introduce topological data analysis (TDA)
and present previous results that enable us to analyse the parameters sampled from
the posteriors of the wild-type (WT) and four mutants with topological data analysis.
Specifically we exploit a theorem by Bobrowski et al. (2017) for hypothesis testing
of topological distances in noisy settings. We implement their theoretical result and
compare the topological distances between WT and mutants.

5.1 Bayesian Inference

Given experimental data and a mathematical model, we seek to infer parameters for
which the model accurately fits the data. We choose to do this via Bayesian inference.
The theory of Bayesian statistics captures how our belief in the true values of these
parameters changes when we make observations (in this case: measurements) in the
language of probability theory. Most importantly, Bayesian inference does not infer
a single value for each parameter, as would a frequentist approach; rather, it infers
a probability distribution of parameter values expressing how strongly we believe a
certain set of parameter values is correct.

Formally, we are given a parameter space � and observations x from some sample
space X . Combining the mathematical model with noise assumptions on available
measurements, we obtain an expression for p(x |θ), the likelihood of observing x
assuming that the parameter of the model is θ ∈ �. In addition, we need to specify
a measure of belief in the parameter values before we observe any data, expressed
through a probability density p(θ), called the prior distribution. Theoretically, we
want to inform a Bayesian inference only through observations. Consequently, we do
not want to inform the inference by placing strong prior beliefs on certain parameter
values. In practice, however, a trade-off between neutral prior beliefs (which should
only account for substantive prior knowledge and possibly scientific conjectures),
analytical convenience and computational tractability is commonplace (Gelman and
Shalizi 2013, 11-12).

Having selected a mathematical model and a prior distribution, our formal belief
in parameter values becomes

p(θ |x) ∝ p(x |θ) · p(θ)

by making observations x ∈ X . The probability density p(θ |x) is called the posterior
distribution. The proportionality in the above equation indicates that we omitted a nor-
malisation which is independent of θ . As one can approximately sample from p(θ |x)
without normalising, the normalisation factor is not necessary for our application.

For the Linear ERK model (Eqs. (10)), the parameter is θ = (κ1, κ2, π, σ ) ∈ R
4 =

�. Here, the first three components come from the parameter of the Linear ERKmodel,
while σ , the variance of the distribution of the data, which must be inferred in order
to construct a Bayesian model, and will be subsequently marginalised (i.e. integrated
out). The observations are measurements of S0, S1 and S2. As measurements of each
MEK type are taken from r replicates, at 7 different times, for 3 phosphorylation states
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of substrate, we formally haveX = R
r ·3·7 = R

r ·21. We have r = 11 for the wild-type,
r = 6 for SSDD and r = 5 for all other variants.

To construct a statistical model on the mechanistic Linear ERK model, we set the
prior distributions to

κ1, κ2 ∼ Unif(0 (1/min), 10 (1/min)), σ ∼ Unif(0 (μM), 10 (μM)),

a uniform distribution over values we deem biologically feasible for these parameters
(Yeung et al. 2019), and π ∼ Unif(0, 1), as π can only take values within this range
by definition.

Given samples S∗
0 , S

∗
1 and S∗

2 , we assume that

(
S∗
0

)
t,i ∼ N (S0(κ1, κ2, π, t), σ ) ,

(
S∗
1

)
t,i ∼ N (S1(κ1, κ2, π, t), σ ) ,

(
S∗
2

)
t,i ∼ N (S2(κ1, κ2, π, t), σ ) ,

where t denotes the respective measurement time and i indexes the sample. Here,
S j (κ1, κ2, π, t) is a solution to the ODE system at time t for parameters κ1, κ2 and
π . For the Linear ERK model, we can construct an analytic solution to the governing
equations, but generally, a numerical solution suffices. Such ODE solutions give rise
to an expression for the likelihood p(x |θ).

We note that in the above Bayesian model, some standard simplifying assumptions
were made. First, in the given setup, negative values of measurements of S0, S1 and S2
have strictly positive likelihoods, which is not true in reality. Second, we assume that
(S∗

0 )t,i , (S
∗
1 )t,i and (S∗

2 )t,i are independent randomvariables for all t and i and that they
have the same standard deviation. Despite these assumptions, we obtained good fits to
the data. For example, performing an inference with three different standard deviation
parameters σ0, σ1 and σ2 for S0, S1 and S2, respectively, did not significantly improve
the fits to the data.

This Bayesian inference framework can also be applied to other ODE models
describing the measurements, including the Rational ERK model (Eqs. (9)) and the
Full ERK model (Eqs. (1)). In these cases, we employ numerical solutions and adapt
priors to the larger parameter spaces.

We note that for the Full ERK model and the Rational ERK model, the choice of
prior distributions significantly changes both the location and prominence of modes of
the posterior distributions. In particular, they tend to be near the endpoints of the prior
distributions. This is linked to the practical non-identifiability of these models and
prevents us from interpreting parameter modes, and also from conducting a sensible
topological comparison that is not highly dependent on the choice of prior distribution.

In order to compute posterior distributions of the involved parameters, we used
PyStan, the Python version of the statistical software STAN (Carpenter et al. 2017).
While analytical expressions for the posterior distributions are too complex to be
feasible for interpretation, PyStan enables us to approximately sample from them via
Hamiltonian MCMC. The resulting samples (visualised in Fig. 4) form the basis of
our further analysis.
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Fig. 4 (Color figure online) a Random samples from the posterior distributions for the WT and all mutants
(2000 points each); Moreover, we display approximate marginal densities for κ1 in (b), κ2 in (c) and π in
(d) in the same colour scheme

5.2 Topological Analysis

To analyse the topology of the samples of the resulting posterior distributions, we
introduce notation and methodology from Topological Data Analysis (TDA).

Definition 9 Let v be a finite set of vertices. A subset of the power-set of v,K ⊆ P(v),
is called a simplicial complex if for any τ ∈ K the relation τ ′ ⊆ τ implies τ ′ ∈ K.

We write Ki = {τ ∈ K | |τ | = i + 1} and call the elements of Ki the i-simplices.
A map h : v → v′ which extends to a map h : K → K′ by h(τ ) := {h(v) | v ∈ τ } for
each τ ∈ K is called a simplicial map.
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Fig. 5 (Color figure online) aAn example of a simplicial complex on vertices v0, v1, v2 and v3 (left) and its
geometrical realisation (right); bAn example of a filtration of a simplicial complex, visualised on geometric
realisations

We can view a simplicial complex as a combinatorial description of a topological
space. Given a simplicial complex K, we can investigate its geometric realisation

|K| :=
⋃

τ∈K
cvx(τ ) ⊆ R〈v〉,

where cvx denotes the convex hull in the real free vector space generated by the vertices
V . The realisation |K | is endowed with the subspace topology in R〈v〉. An example
of a simplicial complex and its geometric realisation can be found in Fig. 5a. Since
K is a discrete and combinatorial entity, one can compute meaningful topological
information from topological spaces (or datasets) described by simplicial complexes.

5.2.1 Homology

One topological invariant we can compute from simplicial complexes is homology.
In each dimension k, the dimension of the k-th homology group can be thought of as
the number of voids in a simplicial complex enclosed by a k-dimensional boundary.
We restrict our definition of homology over the field of two elements, F2, which is the
setting for our computations. For a simplicial complex, the homology groups coincide
with those of its geometric realisation (viewed as a topological space).

Definition 10 LetK be a simplicial complex. We define its chain complex C•(K) over
F2 to be the collection of vector spaces Ci = F2〈Ki 〉, together with the collection of
linear maps ∂i : Ci → Ci−1 induced by

∂i : τ �→
∑

v∈τ

τ\{v}
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for all τ ∈ Ki .

We observe that ∂i ◦ ∂i+1 = 0 for all i . Furthermore, we note that any simplicial
map h : K → K′ induces a collection of maps on corresponding chain complexes C•
and C′•, denoted {ĥi : Ci → C′

i }i , which are defined as

ĥi (τ ) :=
{
h(τ ) if dim h(τ ) = dim τ

0 otherwise
.

Wecall such a collectionofmaps a chainmap fromC• toC′•. It satisfies ∂ ′
i◦ĥi = ĥi−1◦∂i

for all i .

Definition 11 Let K be a simplicial complex and let C•(K) be its associated chain
complex over F2. Then the k-th homology group of K is defined to be the quotient of
vector spaces

Hk(K) := ker ∂i
im ∂i+1

.

Note that for ĥ : C•(K) → C•(K′) the induced map h∗ : Hk(K) → Hk(K′) given
by h∗ : [c] �→ [ĥk(c)], where c ∈ ker ∂k and the brackets denote equivalence up
to translation by im ∂k and im ∂ ′

k respectively, is well defined for all k (Otter 2017).
Moreover, for simplicial maps h : K → K′ and h′ : K′ → K′′ we have (h ◦ h′)∗ =
h∗ ◦ (h′)∗. This property is called the functorality of homology and will be used when
we introduce persistence.

5.2.2 Persistence

Weviewpoint clouds as a discrete subset of a continuous geometric object embedded in
Euclidean space. The underlying continuous space is the primary subject of interest. In
order to obtain information about this geometric object, we wish to inflate our discrete
points to a continuous space, or to capture a relative offset between points in this space.
In practice, we usually do not know the adequate inflation resolution. Persistence
theory offers an elegant way to overcome this caveat by scaling the resolution from
fine to coarse, and tracking how the homology of these spaces evolves by considering
their canonical inclusion relations.

Definition 12 Let K be a simplicial complex and let g : K → R be a function such
that τ ⊆ τ ′ implies g(τ ) ≤ g(τ ′) for any τ, τ ′ ∈ K. A filtration of the simplicial
complex K by g is then defined to be the sequence of simplicial complexes {KL}L∈R,
where

KL := {τ ∈ K | g(τ ) ≤ L},

togetherwith the canonical inclusions ιL
′

L : KL ↪→ KL ′ whenever L ≤ L ′. An example
of a filtration is visualised in Fig. 5b. In the same spirit, let T be a topological space
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and g : T → R be a continuous function. A filtration of the topological space T is
then defined to be the sequence of topological spaces {TL}L∈R, where

TL := {x ∈ T | g(x) ≤ L},

together with the canonical inclusions ιL
′

L : TL ↪→ TL ′ whenever L ≤ L ′.

A common way of constructing a filtration from a point cloud v ⊂ R
d is to set

K = P(X) and g(τ ) = max{d(x, y) | x, y ∈ τ }. This is called the Vietoris–Rips
filtration, and KL is a good approximation to an inflation of v by placing balls of
radius L/2 at each point (Oudot 2015). We will consider the following alternative
filtration. For a fixed L ∈ R and map p : R

d → R, we set K′ := KL in the
Vietoris–Rips sense and consider the filtration by the map g′ : K′ → R defined by
g′(τ ) := max{p(x) | x ∈ τ }.
Definition 13 Let F2[t] be the ring of polynomials in the indeterminate t with coef-
ficients in F2. Let {KL}L∈R be a filtration of a simplicial complex. Moreover, define
CritL := {L ∈ R |ιLL−ε �= id ∀ε > 0}, the set of all L at which KL changes (which
is a finite set at K is finite). Define the function c : N0 → CritL ∪ {inf CritL − 1} by
mapping 0 to inf CritL − 1 and n > 0 to the n-th smallest element of CritL (without
loss of generality, we map integers bigger than the cardinality of CritL to the largest
element of CritL ).

For a fixed integer k, let Hk( · ) denote the k-th simplicial homologywith coefficients
in F2. Define

Mk :=
⊕

n∈N0

Hk
(
Kc(n)

)
(15)

together with the action ofF2[t] onMk induced by ta ·x = ι
c(n)
c(n+a)(x)

∗ ∈ Hk(Kc(n+a))

for x ∈ Hk(Kc(n)) and non-negative integer a. Then Mk is a (graded) F2[t]-module,
called the persistence module of the filtration.

The definition works analogously for a filtration of a topological space (assuming
that the homology of the spaces changes at only finitely many filtration values). It
can be shown that the operation of taking a persistence module of a filtration of a
simplicial complex (or a topological space) is functorial. Hence, persistence modules
are algebraic invariants of filtrations.

SinceK is finite, the persistence module Mk is finitely generated as a F2[t]-module.
As F2[t] is a principal ideal domain, Mk decomposes into summands generated by
a single object uniquely up to (graded) isomorphism and permutation of summands.
Hence, we can write

Mk ∼=
⎛

⎝
⊕

a∈GF

F2[t]
⎞

⎠⊕
⎛

⎝
⊕

b∈GT

F2[t]/〈tdb 〉
⎞

⎠ ,

where GF is the subset of chosen generators that are free and GT is the subset of
generators that are torsion. In particular, any element in GF or GT will have a non-
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zero entry in exactly one summand of the decomposition in Eq. (15). We call the
integer n indexing this entry the degree of that element.

Definition 14 Let Mk be a persistence module that decomposes as above. Let deg :
GF ∪ GT → N0 be the function mapping each element to its degree. The barcode of
Mk is defined to be the multiset

B := {(c(deg(a)),∞) | a ∈ GF } ∪ {(c(deg(a)), c(deg(a) + da)) | a ∈ GT }.

We call the elements of B bars, the first coordinate of each bar its birth-value, the
latter coordinate its death-value and the absolute difference of the coordinates its
persistence.

Amatching of barcodes B andB′ is a partial injection� : B ↪→ B′. The bottleneck
distance between B and B′ is defined to be

dBD
(B,B′) := inf

�
max

{
max

a∈dom�
‖a − �(a)‖∞ , max

(x,y)/∈dom�

y − x

2
, max
(x,y)/∈im�

y − x

2

}
,

where the infimum is taken over all possible matchings and elements of a barcode are
viewed as elements of R2 (we assume ∞ − ∞ = 0). Here, dom� is the domain of
� , i.e. the set of inputs at which � is defined.

The bottleneck distance defines a metric on the space of barcodes (Oudot 2015).
This metric is stable in the following sense:

Theorem 15 (e.g. Corollary 3.6 in Oudot 2015) Let K be a simplicial complex and
let g, g′ : K → R be functions defining filtrations of K, and subsequently persistence
modules Mk and M ′

k , and barcodes B and B′. Then

dBD
(
B,B′) ≤ ∥∥g − g′∥∥∞ .

Henceforth, we write PHk(g) to denote the k-dimensional persistent homology
(which can equivalently be summarised by a barcode or a persistence module) of a
simplicial complex or a topological space filtered by a function g.

5.2.3 Persistent Homology of Random Data

In this section, we study the persistent homology of the posterior distributions of
the parameter inferences of Sect. 5.1. Note that simplicial complexes, filtrations and
persistent homology can also be employed to compare biological models a priori (i.e.
with no dependence on measurement data) (Vittadello and Stumpf 2020).

We demonstrate that filtering a Vietoris–Rips complex for a fixed value L by a
function g′, as described at the beginning of this section, yields more discriminative
power. Here, we pick g′ to be an estimated probability density function. These filtra-
tions turn out to be highly discriminative between the mutants and offer novel insight
at the biological level. While a Vietoris–Rips filtration is entirely based on distances,
the construction we employ, using a Vietoris–Rips complex at a fixed parameter value
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and then filtering it by a probability density function (pdf), places an emphasis on
density. The information encoded is directly related to the probability distribution and
the resulting barcodes will stabilise as the sample size increases (Theorem 3.5.1 in
Rabadan and Blumberg 2020). Furthermore, the chosen construction is stable with
respect to outliers. By contrast, in a Vietoris–Rips filtration, bars in the resulting bar-
codes will converge towards zero length when increasing the sample size and a single
outlier, even in a large sample, can change a barcode drastically.

Initially, we assume that we are given a probability density function p :
R
m → R. This pdf defines a filtration of the graph by −p, T say, via TL ={
x ∈ R

m | − p(x) ≤ L
}
. For L ′ ≤ L we then have TL ′ ⊆ TL . Such a filtration is

visualised for the case m = 1 in Fig. 6. By analogy with filtrations of simplicial com-
plexes, we can theoretically compute a barcode for each such topological filtration
and investigate the resulting bottleneck distances.

For each (homological) dimension, these barcodes provide a topological signature
of a posterior distribution. We point out that although this signature is not a sufficient
statistic, it is effective at distinguishing between posteriors corresponding to distinct
mutants in our application. In particular, for any pdf p1 : Rd → R, the pdf p2(x) =
p1(x − x0) gives rise to the same topological signature for any constant x0 ∈ R

d .
Thus, rather than comparing the location of probability density in parameter space, in
the context of a Bayesian inference, this topological signature captures the quality of
the certainty we have in parameter values, irrespective of their location.

For example, bars in the H0-barcode encode the density (as negative of the birth-
value) and the prominence (as the persistence) of the modes of a pdf. Similarly, Morse
Theory tells us that for a (smooth) pdf on R

d , the (d − 1)th barcode captures local
minima by their density (as death-value) and the depth of their basin of attraction (as
persistence).

In order to conduct such a topological analysis, two questions must be addressed:

(1) How can we approximate the topology of a graph of a probability density combi-
natorially (i.e. in a manner amenable to the application of discrete computational
methods) if only point samples are available?

(2) Can we test the statistical significance of the resulting bottleneck distances?

To resolve the first question, we will employ a result from Bobrowski et al. (2017)
that relies on the concept of kernel density estimation (KDE). In order to test the
significance of the resulting bottleneck distance, we will use an empirical p-value
estimate.

Definition 16 Let v = {v1, . . . , vN } ⊆ R
m be a set of N samples drawn independently

from a probability distribution governed by the density function p : Rm → R. Let
K : Rm → R be smooth, unimodal, symmetric probability density function whose
support is contained in the unit ball centred at 0. Then

p̂b(x) = 1

Nbm

N∑

i=1

K

(
x − vi

b

)

is called a kernel density estimate (KDE) of p with bandwidth b.
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Fig. 6 (Color figure online) An example of a super-level-set filtration of the graph of a density function
p : R1 → R. This is equivalent to a sub-level-set filtration of −p

Fig. 7 (Color figure online) A probability density function on R
1 (black line) with 1.000 samples (black

dashes). We see kernel density estimations with bandwidth 0.6 (blue line) and 1.4 (green line). The ideal
bandwidth is approximately 1

On each sample vi , we place a pdf and average it, where b controls the width of each
pdf, that is, how much of the probability mass is centred around vi . Loosely speaking,
if b is too large, then the resulting function underfits a histogram given by the data,
while if it is too small, then the bandwidth overfits the histograms (see Fig. 7). The
bandwidth is negatively correlated with the sample size and there are standardised
ways of picking optimal bandwidths for the case where p is unknown (Henderson and
Parmeter 2012).

Given such an i.i.d. sample v = {v1, . . . , vN } ⊆ R
m from our probability density

function p and an optimal bandwidth b, we can construct a Vietoris–Rips complex
with fixed parameter b (equalling the bandwidth)

VRb(v) := {{v0, . . . , vk} ⊆ v | ‖vi − v j‖ ≤ b ∀i, j} .
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For the sake of brevity, let K = VRb(v). The KDE p̂b of p based on v then extends
to a function on K via

p̂b({v0, . . . , vk}) := min
{
p̂b(v0), . . . , p̂b(vk)

}
.

In return, the extended function p̂r defines a filtration {KL}L∈R of K by

KL := {{v0, . . . , vk} | − p̂b({v0, . . . , vk}) ≤ L
}
.

We seek to relate the persistent homology of the filtration of simplicial complexesKL

to the persistent homology of the filtration of topological spaces TL .
In order to use results from Bobrowski et al. (2017), we introduce some notation.

For a function f : K → R and η > 0 define f�η�(σ ) := 2η� f (σ )/(2η)�. Then
Theorem 17 (Theorem 3.7 in Bobrowski et al. 2017) Let p : Rm → R be a smooth
bounded pdf with finitely many critical points. Let p̂ be a KDEwith bandwidth b based
on n i.i.d samples of p and K be a simplicial complex as above. Assume b → 0 and
Nbm → ∞. Then for any 0 ≤ k ≤ m, we have

Pr
(
dBD (PHk(p) ,PHk

(
p̂�η�
) ≤ 5η

) ≥ 1 − 3η∗Ne−CηNrd ,

where for pmax := supx∈Rd p(x) we define

η∗ := �pmax/2η� and Cη := (η/2)2

3pmax + η/2
.

Theoretically, the above theorem can be exploited for testing the null hypothesis
H0 : PHk (p) = PHk

(
p′) for two distributions P and P ′ with associated densities p

and p′, as the result enables us to establish a bound on how large a bottleneck distance
can be explained by sampling noise at a given significance level. However, we estimate
that to use this theorem for showing that the bottleneck distances between posterior
distributions associated with the wild-type and the four mutants are significant, we
must sample at least 1.5×107 points per distribution. This makes persistent homology
computation infeasible.

At the same time, we observe that there is little change in the bottleneck distances
between the barcodes resulting from the wild-type’s and the four mutants’ posterior
distributions when resampling point clouds containing as few as 200 points. This leads
us to think that the true p-value associated with the null hypothesis H0 : PHk (p) =
PHk
(
p′), where p and p′ are posterior densities corresponding to the wild-type and a

mutant is possibly much lower than the upper bound derived by appealing to Theorem
17. One factor that may explain this discrepancy is that while our distributions are
technically distributions on R

3, they have compact support. Similarly, major sources
of instability for KDE, and subsequently for the filtration of density functions, are
modes linked to outliers, while repeated simulations suggest that in our case all density
functions are unimodal. Together, these aspects imply that the computed barcodes
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Table 1 Bottleneck distance between Barcodes for H1 obtained from super-level-set filtration of KDEs
(top) and their respective p-value estimates (bottom)

dBD Wild-type Y130C F53S E203K SSDD

wild-type 0.0000 401.5999 334.7258 186.3972 2162.7175

Y130C 401.5999 0.0000 401.5999 401.5999 2124.4453

F53S 334.7258 401.5999 0.0000 334.7258 2162.7175

E203K 186.3972 401.5999 334.7258 0.0000 2162.7175

SSDD 2162.7175 2124.4453 2162.7175 2162.7175 0.0000

π̂ Wild-type Y130C F53S E203K SSDD

wild-type 0 0.01 0.01 0.01 0.01

Y130C 0.01 0 0.01 0.01 0.01

F53S 0.01 0.01 0 0.01 0.01

E203K 0.01 0.01 0.01 0 0.01

SSDD 0.01 0.01 0.01 0.01 0

could converge to the barcode obtained by filtering the unknown density function at a
faster rate than in the general setting of Theorem 17.

Henceforth, we use the method of constructing a filtration based on a point cloud
proposed in Bobrowski et al. (2017), which is provably well-behaved asymptotically
but uses a different approach to estimate significance. To do this we opt for a Monte
Carlo p-value estimate, also known as the empirical p-value (e.g. see Davison and
Hinkley 1997). For each mutant, we sample β additional point clouds of size n from
the posterior distribution. In this context, for the first mutant (or the wild-type) under
investigation, we call the original point cloud v and let vi for i = 1, . . . , β denote
β additional point clouds of size n, obtained by repeated sampling. Define v′ and
v′
i analogously for a distinct mutant. Let di = dBD

(
PHk
(
p̂
)
,PHk

(
p̂i
))
, where p̂i

is the density estimate obtained from vi and define d ′
i analogously. Assume d =

dBD
(
PHk
(
p̂
)
,PHk

(
p̂′)) is the j-th largest element in the multiset {di }βi=1 ∪ {d} and

the j ′-th largest element in
{
d ′
i

}β
i=1 ∪ {d} for two distinct mutants, then

π̂ = min

{
β + 1 − j

β + 1
,
β + 1 − j ′

β + 1

}

is a p-value estimate for a hypothesis test H0 : PH1 (p) = PH1
(
p′). The resulting

p-value estimates, for each pair of mutants and wild-type, can be found in Table 1. It
is likely that these p-value estimates over-estimate the actual value, but they allow us
to reject all null hypotheses at a significance level of 0.05 (North et al. 2002).

The results (Table 1) of the topological data analysis quantify the differences
between the Linear ERK model parameter posteriors for WT and mutants and find
SSDD mutant kinetics are most different fromWT and other mutants. This biological
result raises the suitability for using the SSDD variant as a replacement for wild-type
MEK activated by Raf.We suggest this should be investigated with further experimen-
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tal studies. The previous work by Yeung et al. (2019) found that π , the processivity
parameter, of E203K differed the most from WT MEK. Here we extended and com-
plemented their analysis by comparing the three parameters together as a point cloud.

It remains to address the practical computability of all the constructions involved.As
mentioned in the previous section, we use the statistical software STAN (in particular,
PyStan) to sample from the posterior distributions. This sampling is approximate via
Hamiltonian MCMC (Carpenter et al. 2017), but we can verify via output summaries
and trace plots of the Markov chains involved that all chains have converged close to
their stationary distribution during the warm-up phase.

In order to construct theKDE,weused theKernelDensitymethodof thePython
package sklearn. We used the Epanechnikov kernel, which satisfies the hypothesis
of the kernel in Theorem 17. As a guess for the bandwidth, this package uses a rule
of thumb proportional to Silverman’s method, which we then cross-validate and plot
against a histogram of our samples for each marginal distribution. Given experimental
data, we construct a Vietoris–Rips complex with a radius b, equalling the bandwidth
from the KDE, using the Python package dionysus (version 2). We compute the
resulting bottleneck distances using the package persim.

6 Conclusion

Wepresented an exhaustivemathematical analysis that supports the threemainfindings
presented inYeung et al. (2019):model reduction, analysis of themodel parameters and
comparing mutation kinetics. Yeung et al. observed that certain values of parameter
combinations from the Full ERK model fit the data, which in turn motivated the
creation of a reduced model, the Linear ERK model. We confirmed the derivation of
the Linear ERKmodel using algebraic QSS and the validity of the QSS approximation
using the QSS variety. We performed systematic identifiability analyses on all three
models, which is a prerequisite for meaningful parameter estimation. We found the
Full, Rational andLinear ERKmodels are structurally identifiable.We then improved a
previous definition of practical identifiability and showed that the Linear ERKmodel is
practically identifiability butRational andFull ERKmodels are not,which is consistent
with (Yeung et al. 2019). Hitherto, testing structural identifiability has been limited to
small models due to computational costs; however, recent work significantly improves
computing structural identifiability, enabling analysis of larger models (Dong et al.
2021; Villaverde et al. 2019). We remark there are many realistic models, such as
this ERK study or those by the group of Marisa Eisenberg, that benefit from existing
methods and motivate the development of new identifiability tools.

We reproduced theparameter inference forwild-type andmutantMEKexperiments.
WhileYeung et al visually inspected samples of the posteriors, herewe quantified these
point clouds with computational algebraic topology. In future, it would be interesting
to further explore the relationship between topological analysis and practical identifi-
ability and how they may be used to inform experimental design (Apgar et al. 2010;
Hagen et al. 2013). Throughout we showcase the potential role of algebra, geometry
and topology in systems and synthetic biology. Complementary to the analysis here
is an inference of models in systems and single-cell biology that relies on algebra and
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topology (Wang et al. 2019; Vittadello and Stumpf 2021; Rizvi 2017). We believe that
topological data analysis in combination with modelling and parameter estimation is a
promising area for the sciences (Thorne et al. 2022; Carriere et al. 2018; Suzuki 2021).
We hope our analysis of this ERK case study will motivate other systems biologists to
partner with algebraists and topologists to analyse dynamical systems together with
their experimental setup and data.
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Appendix

A.1 QSSAModel Reduction via the Algebraic Approach

We use the algebraic approach to derive two reduced models.

A.1.1 Deriving the Linear ERK Model

We now substitute E using Eq. (8),

E = Etot − Stot + S0 + S1 + S2 =: E ′,

into the Full ERK model (Eqs. (1)).
Setting dC1/dt = 0 and dC2/dt = 0, we get

C1 = k f1

kr1 + kc1
E ′ · S0,

C2 = 1

kr2 + kc2

(
k f2E

′ · S1 + kc1C1
) = E ′

kr2 + kc2

(
k f2 S1 + k f1kc1

kr1 + kc1
S0

)
,

which can be substituted into dS0/dt , dS1/dt and dS2/dt :

dS0
dt

= − k f1kc1
kr1 + kc1

E ′ · S0,
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dS1
dt

= − k f2kc2
kr2 + kc2

E ′ · S1 + kr2
kr2 + kc2

k f1kc1
kr1 + kc1

E ′ · S0,
dS2
dt

= k f2kc2
kr2 + kc2

E ′ · S1 + kc2
kr2 + kc2

k f1kc1
kr1 + kc1

E ′ · S0.

We rewrite the above equations in terms of the parameter combinations κ1, κ2 and π

(see Eq. (11)) then gives the Linear ERK model (Eqs. (10a)–(10c)).
Observe that the Linear ERKmodel obeys the conservation law S0+S1+S2 = S̃tot .

Here, S̃tot is a constant close to Stot . Hence, E ′ = Etot − (Stot − S̃tot ) is a constant
close to Etot . The implication that E ′ = Etot at all times t is physically infeasible.
Whether S̃tot = Stot depends on whether one updates the initial conditions for S j

through an inner solution, which is typically assumed in singular-perturbation-theory
approaches. The algebraic approach does not require computing an inner solution.

It is important to reiterate at this point that this reduction is not the result of a singular
perturbation analysis. Indeed, if we had followed a singular perturbation analysis with
substitution (8) for E , we could not factor out Etot/Stot in the non-dimensionalised
differential equations for C1 and C2 as nicely as we were able to in the previous
subsection. In this instance, we would have to leave factors of ε−1 in the algebraic
equations, which would be ambiguous when taking a limit ε → 0.

A.1.2 Deriving the Rational ERK Model

We substitute E using Eq. (7) into the Full ERK model (Eqs. (1)). We then follow the
same steps as in the algebraic QSSA model reduction for the Linear model to arrive
at the Rational model.

Alternatively, after substituting for E using Eq. (7), we can perform classical QSSA
to arrive at the same model reduction (Keener and Sneyd 2011).

A.2 Accuracy of Algebraic QSSA

We start by providing the full statement of Proposition 2 of Goeke et al. (2017) (i.e.
the full version of Proposition 4 of this manuscript):

Let K ∗ ⊂ R
n+ ×R

m+ satisfy the following:

• There exists (ŷ, θ̂ ) in the interior of K ∗ such that f [2](ŷ, θ̂ ) = 0.
• D2 f [2](x, θ) is invertible for all (x, θ) ∈ K ∗.
• There exist y0 ∈ R

n and r > 0 with the following property:
Whenever (x, θ) ∈ K ∗ for some x ∈ R

n and some θ ∈ R
m+ then Br (y0) × {θ} ⊆

K ∗.
• There exists an R > 0 such that ‖ f (x, θ)‖ ≤ R and ‖ fred(x, θ)‖ ≤ R for all

(x, θ) ∈ K ∗.
• There exists an L > 0 such that ‖Df (x, θ)‖ ≤ L and ‖Dfred(x, θ)‖ ≤ L for all

(x, θ) ∈ K ∗.
These conditions imply that every Vθ∗ , with θ∗ near θ̂ , is a submanifold. Note that
every (y, θ∗) with y in the interior of Rn+ is contained in some K ∗ that satisfies the
last three of the above conditions.
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Proposition 18 Assume that the above conditions are satisfied for K ∗.

(a) Let θ∗ be given such that Vθ∗ × {θ∗} has non-empty intersection with int K ∗, let
(y, θ∗) be a point in this intersection and V ′

θ∗ ⊂ R
n be some open neighbourhood

of y such that (Vθ∗ ∩V ′
θ∗)×{θ∗} ⊂ K ∗. Moreover let t∗ > 0 such that the solution

of (4) with initial value y exists and remains in V ′
θ∗ for all t ∈ [0, t∗]. Then there

exists a compact neighbourhood Aθ∗ ⊆ V ′
θ∗ of y with the following properties: (i)

For every z ∈ Aθ∗ the solution of (4) with initial value z exists and remains in V ′
θ∗

for all t ∈ [0, t∗]. (ii) For every ε′ > 0 there is a δ1 > 0 such that the solution of (6)
with initial value z ∈ Aθ∗ ∩Vθ∗ exists and remains in Vθ∗ for t ∈ [0, t∗] whenever
‖ f − fred‖ < δ1 on V ′

θ∗ . (iii) For every ε′ > 0 there is a δ ∈ (0, δ1] such that the
difference of the solutions of (4) resp. of (6) with initial value z ∈ Aθ∗ ∩ Vθ∗ has
norm less than ε′ for all t ∈ [0, t∗] whenever ‖ f − fred‖ < δ on V ′

θ∗ .
(b) Let y ∈ Vθ∗ and let ρ0 > 0 such that

Bρ0/2L(y) × {θ∗} ⊆ K ∗.

Let ρ ≤ ρ0 such that ‖ f (y, θ∗) − fred(y, θ∗)‖ ≥ 2ρ. Then for t ′ := ρ/(2LR) the
solutions of (4) resp. of (6) with initial value y exist and remain in Bρ0/2L(y) for
0 ≤ t ≤ t ′, and their difference has norm at least ρ2/(2LR) at t = t ′.

Returning to our two model reductions of interest, we use the notation of Sects. 2
and 3 and label the two possible substitutions for the variable E as (7) and (8), as
before. Moreover, we write Ṡ0 and Ṡ1 as shorthand for the algebraic expressions for
the time derivatives of S0 and S1 respectively. Recall that Ki := kci +kri . Throughout,
we will view our set of polynomials f , which govern the ODE system, as a smooth
function from R

5 to R. Any norm in this subsection will refer to the ‖ · ‖∞-norm on
the respective space.

Define a domain K ∗ such that k fi � Ki for i = 1, 2 and such that it satisfies all
hypotheses in the list at the start of this section (i.e. from Proposition 2 of Goeke et al.
2017).

Note that for both substitutions, E is bounded above by Etot ≈ 0.65μE . Hence,
the norms on the slow variables are going to be approximately the same for both
substitutions.

For the case (7), we get that ‖ fred‖ (showing only the components that have changed
compared to f ) is given by

∥
∥
∥∥

k f1E(S0 − det−1 Ṡ0(k f2 S1 + K2) + Ṡ1k f2 S0) − K1C1
k f2 E(S1 − det−1(k f1(Ṡ1S0 + Ṡ0S1)) + det−1 E(Ṡ0k f1kc2 − Ṡ1k f2 ) + kc1C1 − K2C2

∥
∥
∥∥

on variables C1 and C2. Here, the quantity det is given by

det = k f1(kc1 + K2)S0 + K1(k f2 S1 + K2) = O(K1K2).
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Similarly, for (8), we get

∥∥∥
∥∥∥

k f1

(
ES0 − E+S0

K1
Ṡ0
)

− K1C1 + kc1k f2
K1K2

(E + S1)Ṡ1

k f2

(
ES1 − E+S1

K2
Ṡ1
)

+ kc1C1 − K2C2

∥∥∥
∥∥∥

.

In both cases, applying the triangle inequality shows that the upper entry is of order
|K1C1| while the lower entry is of order |kc1C1 − K2C2|. It follows that the quantity
R, as in the assumptions of Proposition 18, is of a similar order for both substitutions.

For ‖Dfred‖, we get
∥
∥∥∥∥∥∥
∥∥∥∥∥

k f1E

(
1 + k f1 (det+Ṡ0(kc1+K2)

det2
(k f2 S1 + K2) + k f2 Ṡ1

)

−k2f2 S0

−k f1

(
S0 − Ṡ0(k f2 S1+K2)

det + Ṡ1k f2 S0 − E
kr1 (k f2 S1+K2)

det

)
− K1

0

∥
∥∥∥∥∥∥
∥∥∥∥∥

T

for the row of the Jacobian corresponding to the entry of fred giving the rate of change
of C1 and

∥∥∥∥
∥∥∥∥∥∥
∥

Ek f1
k f2 ((k f1 S1−Ṡ1)+(Ṡ1S0+Ṡ0S1)k f1 (kc1+K2))+k f1kc2 det+(Ŝ1k f2−k f1kc2 Ŝ0)(kc1+K2)

det2

Ek f2
det2 +k f1k f2 S0 det+k f1k f2 (Ṡ1S0+Ṡ0S1)K1+k f2 det−(Ṡ0k f1kc2−Ṡ1k f2 )K1

det2

− k f2 kr1 ES1
det + k f1kc2 kr1 E

det + kc1
− k f2 kr2 ES0

det + E
k f2 kr2
det + K2

∥∥∥∥
∥∥∥∥∥∥
∥

T

for the row of the Jacobian corresponding to the entry of fred giving the rate of change
of C2 for the substitution (7). Here, the four columns (or rows in the given transposed
presentation) correspond to partial derivatives with respect to S0, S1, C1 and C2 (in
that order). Note that the rows of Dfred corresponding to the rates of change of S0, S1
and S2 are identical for both substitutions. Thus, we omit their calculations.

Similarly, for (8)

∥∥∥∥∥
∥∥∥∥∥∥
∥∥

k f1

(
S0 + E − 2Ṡ0−k f1 (E+S0)

K1

)
+ kc1k f2

K1K2
Ṡ1 k f1

(
S1 − Ṡ1

K2

)

k f1

(
S0 − Ṡ0

K1

)
− 2k f2

kc1k f2
K1K2

k f1

(
E + S1 − 2Ṡ1−k f1 (E+S1)

K2

)

−k f1
Ṡ0+kr1 (E+S0)

K1
− K1 −k f2

Ṡ1+kr2 (E+S1)
K2

+ kc1
0 K2

∥∥∥∥∥
∥∥∥∥∥∥
∥∥

T

.

We note that the dominant terms are exactly K1, kc1 and K2 for both substitutions.
We conclude that the quantity L , as in the assumptions of Proposition 18, is of similar
order for both substitutions.
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For the quantity ‖ f − fred‖, for substitution (7), we get
∥∥∥
∥

k f1E(Ṡ1k f2 S0 − det−1 Ṡ0(k f2 S1 + K2))

det−1 k f1kc2E Ṡ0 − det−1 k f1k f2E(Ṡ0S1 + Ṡ1S0) − det−1 k f2K1E Ṡ1

∥∥∥
∥ .

Similarly, for (8) we get

∥∥∥
∥∥

kc1k f1
K1K2

(E + S1)Ṡ1 − k f1
E+S0
K1

Ṡ0
−k f2

E+S1
K2

Ṡ1

∥∥∥
∥∥

.

Both of the above norms areO(1) (as Ṡ0 and Ṡ1 contain terms K1 and K2 respectively).
Hence, all quantities use to bound accuracy in Proposition 18 (above, by part (a),

or below, by part (b)) are of a similar order. We conclude that the accuracy of both
reductions is approximately the same when assuming 0 ≤ k fi � Ki . This follows
from the measurements kMi ≈ 25μM (Bar-Even 2011). Moreover, we have seen
previously (in the main text) that Ki > 0 for i = 1, 2 is a sufficient condition for a
parameter value θ to be a QSS-parameter value in the sense of Goeke et al. (2017).

A.3 Deriving Equality of Ideals

In this section of the appendix, we derive that I (V0) = I� for the ERK models with
given initial condition. In Saccomani et al. (2003), V0 is defined as all trajectories of
a given ODE system with initial condition x0. That is, if x(t) satisfies S(0) = x0 and
Ṡ = f (S, θ), then V0 = {x(t) | t ≥ 0} ⊂ C(θ)n . Then I (V0) is defined to be the ideal
of all polynomials in C(θ)[S] vanishing on V0.

Proposition 19 Assume we are given a complex-valued ODE model, including an
initial condition. Let θ denote the set of its parameters and S the set of its variables.
Consider the affine space A given by its variables and their derivative terms (of all
orders), viewed as an affine space over the fraction field C(θ). Define V0 to be the
manifold in A given by the ODE trajectories under the given initial condition.

Then for the Full, Rational and Linear ODE model considered in this manuscript,
we have that I (V0), the differential ideal of all polynomials in the differential ring
C(θ)[S] vanishing on V0 (c.f. Saccomani et al. 2003), is exactly I� .

Proof By definition, I (V0) ⊃ I� . Hence, we need only show the inclusion I� ⊂
I (V0). By way of contradiction, suppose there are elements of I (V0) which are not
elements of I� . Without loss of generality, we may assume that such polynomials
contain no derivatives of variables. Indeed, starting with any polynomial in I (V0), we
can use the differential equations in I� to cancel out all terms containing derivatives
of variables and so obtain an element of I (V0) without such terms.

We need to take some extra care for the Rational ERK model: strictly speaking,
the polynomial A(γ1S0 + γ2S1 + 1) − 1 is in I (V0) but not in I� . However, we know
this relation a priori and it is merely a result of us converting a rational ODE model
into a polynomial one. In particular, it is independent of an initial condition. Hence,
in the context of this section, we will assume that the Rational ERK model contains
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an output variable y3 := A(γ1S0 + γ2S1 + 1) (in addition to y1 = S0 and y2 = S1).
Whilst y3 adds polynomials to I� , we will omit it from any polynomials we study
henceforth as it is equivalent to the constant 1 (given the definition of A).

For the Rational ERK model, assume there exists a nonzero p ∈ C(θ)[S0, S1, A]
such that p(S0, S1, A) = 0 for all t ≥ 0 given our initial condition. By using A(γ1S0+
γ2S1+1) = 1, we can turn p into a rational function in variables S0, S1 which vanishes
on the ODE trajectories. Hence, there must exist a polynomial q ∈ C(θ)[S0, S1] such
that q(S0, S1) = 0 for all t ≥ 0 given our initial condition. Any properties we will use
in the following argument are satisfied by both the Rational and Linear ERK models
unless stated otherwise. As we need to disprove the existence of such polynomial q
when studying the Linear ERKmodel, the following conclusion will hold for both the
Linear and Rational ERK models.

Without loss of generality, assume that q is a polynomial of the smallest non-zero
degree satisfying q(S0, S1) = 0 on the ODE trajectories and that q is irreducible. If it
were reducible, simply replace q with an irreducible factor of q such that q(S0, S1) = 0
for all 0 ≤ t < t1 for some t1 > 0. The following argument will still hold.

The Linear and Rational ERK models have thus far been presented as an ODE in
R
2 in the basis S0, S1. At generic parameter values (i.e. if κ1 �= κ2), we may change

our basis to X0 = S1, X1 = κ1(1− π)/(κ1 − κ2)S0 + S1. We then find Ẋ0 = −κ1X0
and Ẋ1 = −κ2X1 for the Linear ERK model and Ẋ0 = −κ1AX0 and Ẋ1 = −κ2AX1
for the Rational ERK model.

As this change of basis is an invertible affine transformation, we may assume that q
is a polynomial in variables X0 and X1. We note that this diagonalisation of the ODE
models would not have been possible if we had not removed S2 from our systems, as
S2 decouples.

We will write

(X0, X1) =
∑

i, j≥0

ai j X
i
0X

j
1 = 0.

Taking the derivative of this equation with respect to t gives
∑

i, j≥0

ai j (i Ẋ0X
i−1
0 X j

1 + j Ẋ1X
i
0X

j−1
1 ) = 0,

which, after substitution for the derivative variables, yields

q ′(X0, X1) :=
∑

i, j≥0

ai j (iκ1 + jκ2)X
i
0X

j
1 = 0

(for the Rational ERK model, we need to divide by A to obtain such q ′).
Note that, given our initial condition, both X0 and X1 vary, hence the intersection of

V (q) and V (q ′)must contain a smooth point, as both contain the ODE trajectory. This
would imply that q ′ is a constant multiple of q, which is not true at generic parameter
values. Hence, no such q can exist.

For the Full ERK model, assume that there is a non-zero polynomial p ∈
C(θ)[S0, S1,C1,C2] such that p(S0, S1,C1,C2) = 0 for all t ≥ 0 given our ini-
tial condition. Let p have degree n. Again, we may assume without loss of generality
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that n is minimal. We know that there are no conserved quantities in the Full ERK
model (after removing E and S2) and thus n ≥ 2. Let

p(S0, S1,C1,C2) =
∑

i, j,k,l≥0

ai jkl S
i
0S

j
1C

k
1C

l
2 = 0.

By taking the derivative with respect to t , we get

∑

i, j,k,l≥0

ai jkl(i Ṡ0S
i−1
0 S j

1C
k
1C

l
2 + j Ṡ1S

i
0S

j−1
1 Ck

1C
l
2

+kĊ1S
i
0S

j
1C

k−1
1 Cl

2 + lĊ2S
i
0S

j
1C

k
1C

l−1
2 ) = 0.

For S0, this rearranges to

Ṡ0 = −
∑

i, j,k,l≥0 ai jkl( j Ṡ1S
i
0S

j−1
1 Ck

1C
l
2 + kĊ1Si0S

j
1C

k−1
1 Cl

2 + lĊ2Si0S
j
1C

k
1C

l−1
2 )

∑
i, j,k,l≥0 ai jkl i S

i−1
0 S j

1C
k
1C

l
2

,

(assuming there are S0 terms in p) and we can derive similar expressions for the
other variables. Note that the denominator is of a smaller degree than p, hence it
will be non-zero at almost all points of our ODE trajectory. In addition, for our given
initial condition, all of our variables vary and hence the numerator must be a non-zero
polynomial and must not vanish on the ODE trajectory. Denote i∗ the highest power
of S0 in p. Then ai∗ jkl �= 0 implies k = 0, as otherwise the highest power of S0 in
the numerator is i∗ + 1 and i∗ − 1 in the denominator, implying that we can find an
S20 -term in Ṡ0, a contradiction. We can derive similar statements for S1, C1, and C2.
Then, in the above equation, the highest power of C1 in the numerator is k∗ +1, while
the highest power in the denominator is k∗ −1 (at generic parameter values), implying
that Ṡ0 is quadratic in C1, a contradiction. If p does not contain terms in S0, we can
apply a similar argument to S1, C1 or C2.

In conclusion, no such p can exist. #$

A.4 The Linear ERKModel is Globally Structurally Identifiable

Proposition 20 For any choice of three time points 0 < t1 < t2 < t3 the model
predictionmapφt1,t2,t3 is injective and so the LinearERKmodel is globally structurally
identifiable.

Proof For a parameter (κ1, κ2, π), we denote the analytic solution in the Linear ERK
model for species i at time t by Si (t) as in Sect. 4.4. Then the model prediction map
φt1,t2,t3 is given by

(κ1, κ2, π) �→ (S0(t1), S1(t1), S2(t1), S0(t2), S1(t2), S2(t2), S0(t3), S1(t3), S2(t3))
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Suppose that (κ1, κ2, π) and (κ ′
1, κ

′
2, π

′) are two parameters such that

φt1,t2,t3(κ1, κ2, π) = φt1,t2,t3(κ
′
1, κ

′
2, π

′).

Looking at the first component we find that 5e−κ1t1 = 5e−κ ′
1t1 , and since t1 �= 0 it

follows that κ1 = κ ′
1.

There are three cases to consider. The first case is if κ2 = κ1 = κ ′
2. In this case,

looking at the second component,weget that 5κ1(1−π)t1e−κ1t1 = 5κ1(1−π ′)t1e−κ1t1 ,
and so π = π ′, since t1 �= 0.

Without loss of generality, the second case is if κ2 = κ1 �= κ ′
2. Suppose for a

contradiction that (κ1, κ1, π) �= (κ1, κ
′
2, π

′). Let S1(t) be the analytic solution of the
Linear ERK model for species 1 at time t with parameter (κ1, κ1, π) and S′

1(t) be the
analytic solution at time t with parameter (κ1, κ ′

2, π
′). For the moment, consider t > 0

to be a variable. Then S1(t) = S′
1(t) is equivalent to

(1 − π)te−κ1t = 1 − π ′

κ1 − κ ′
2

(
e−κ ′

2t − e−κ1t
)

. (16)

Dividing both sides by e−κ1t and rearranging the above gives

(1 − π)t − 1 − π ′

κ1 − κ ′
2
e−(κ ′

2−κ1)t = − 1 − π ′

κ1 − κ ′
2

Taking the derivative with respect to t yields

(1 − π) = (1 − π ′)e−(κ ′
2−κ1)t .

Rearranging and taking a log then gives

t = 1

κ1 − κ ′
2
log

(
1 − π

1 − π ′

)
.

As the derivative of Eq. (16) has exactly one solution in t , Eq. (16) has at most two
solutions in t by Rolle’s theorem. Therefore, the second, fifth and eighth components
of φt1,t2,t3 cannot take the same value. This is a contradiction, and so we should have
(κ1, κ1, π) = (κ1, κ

′
2, π

′), meaning that this case is simply not possible.
We now consider the third and final case, κ2 �= κ1 �= κ ′

2. Suppose for a contradiction
that (κ1, κ2, π) �= (κ1, κ

′
2, π

′). Let S1(t) be the analytic solution of the Linear ERK
model for species 1 at time t with parameter (κ1, κ2, π) and S′

1(t) be the analytic
solution at time t with parameter (κ1, κ

′
2, π

′). For the moment, consider t > 0 to be a
variable. Then S1(t) = S′

1(t) is equivalent to

1 − π

κ1 − κ2

(
e−κ2t − e−κ1t

) = 1 − π ′

κ1 − κ ′
2

(
e−κ ′

2t − e−κ1t
)

. (17)
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Dividing both sides by e−κ1t and rearranging the above gives

1 − π

κ1 − κ2
e−(κ2−κ1)t − 1 − π ′

κ1 − κ ′
2
e−(κ ′

2−κ1)t = 1 − π

κ1 − κ2
− 1 − π ′

κ1 − κ ′
2
.

Taking the derivative with respect to t yields

(1 − π)e−(κ2−κ1)t − (1 − π ′)e−(κ ′
2−κ1)t = 0.

Taking a log and rearranging gives

t = 1

κ1 − κ ′
2
log

(
1 − π

1 − π ′

)
.

As the derivative of Eq. (17) has exactly one solution in t , Eq. (17) has at most two
solutions in t by Rolle’s theorem. Therefore, the second, fifth and eighth components
of φt1,t2,t3 cannot take the same value. This is a contradiction, and so we must have
(κ1, κ2, π) = (κ1, κ

′
2, π

′). #$
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