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Environmentally persistent pathogens present unique 
challenges for studies of host–pathogen interactions:  
Reply to Field (2018)
We thank Field (2018) for his comments on Davy et al. (2017), 
“The Other White-Nose Syndrome Transcriptome: tolerant 
and susceptible hosts respond differently to the pathogen 
Pseudogymnoascus destructans”, where we reported the outcomes 
of experimental exposure of little brown bats, Myotis lucifugus, 
and greater mouse-eared bats, Myotis myotis, to P. destructans. 
Field (2018) raises three key points: (1) that the putatively tolerant 
species in our experiment (M. myotis) did not develop infection, 
(2) that the reported qPCR results do not confirm the presence 
of the pathogen at the time of sampling, and (3) that the M. my-
otis tissue used for RNA sequencing did not contain the patho-
gen, P. destructans. These points highlight the unique challenges 
of studying host–pathogen interactions in environmentally per-
sistent pathogens, and we welcome the opportunity to explicitly 
discuss these challenges.

1  | MYOTIS MYOTIS  E XPERIMENTALLY 
E XPOSED TO P.  DE S TRUC TANS  DID NOT 
DE VELOP CLINIC AL INFEC TIONS

The bats in our experiment were exposed to a controlled dose of 
a virulent, viable pathogen, under conditions in which the same 
pathogen demonstrated growth and virulence on another host 
species, but did not develop infections. Therefore, our results 
provide an opportunity to quantify response (or lack thereof, in 
our case) to pathogen exposure, in the absence of disease, in a 
species (M. myotis) that is sometimes (but not always) resistant 
or tolerant to P. destructans. This point is clearly made in our 
study, in which we defined the treatment as “exposed to P. de-
structans”. We agree that our single use of the word “infection” 
in the Discussion should have read “exposed”, which is how we 
described the treatment of M. myotis in all other instances. In our 
discussion, we proposed experimental designs that could account 
for individual variation in response to P. destructans or WNS and 
that could be used to explore the temporal shift in responses of 
exposed individuals that develop or do not develop clinical dis-
ease. We are currently completing one such experiment, and we 
look forward to similar upcoming publications from Field et al.

2  | QUANTITATIVE PCR ONLY DETEC TED 
LOW PATHOGEN LOADS ON THREE 
E XPOSED M . MYOTIS

Field (2018) expressed skepticism that our positive qPCR results 
from three exposed M. myotis actually indicated pathogen presence, 
because one of these results was at the edge of the detection limit 
for the qPCR assay (Ct = 40). We appreciate the chance to clarify 
this point. We submitted swabs from each bat to the Pathogen & 
Microbiome Institute at Northern Arizona University, where they 
were tested with the qPCR described by Muller et al. (2013). This 
assay included negative controls, which were all confirmed nega-
tive, and a series of three dilutions of positive control (a quantified 
standard of isolate P. destructans 20631-21; https://www.atcc.org/
Products/All/MYA-4855D.aspx; K. Parise, personal communication). 
Each plate was run in duplicate in order to confirm positives and pick 
up any low-level positives. We reported the absolute range of Ct 
values for the three M. myotis that tested positive, but the paired 
Ct values from the three Pd-positive bats were 38.289/40.068; 
36.998/38.598; and 33.064/33.183. Thus, each of these bats 
met the currently accepted threshold for qPCR detection of P. de-
structans (Langwig et al., 2015; Moore et al., 2017), but Field’s point 
raises a pervasive challenge in the study of WNS.

Quantification of pathogen loads through qPCR is relatively sim-
ple in some systems, especially those where the pathogen is internal 
and relatively evenly distributed through the target tissue. Examples 
include qPCR quantification of Plasmodium sporozoite abundance in 
mosquito midguts and salivary glands (Emami, Ranford-Cartwright, 
& Ferguson, 2017) and quantification of pathogen loads of the bac-
terium Weissella ceti in rainbow trout (Oncorhynchus mykiss; Snyder, 
Hinshaw, & Welch, 2015).

The interpretation of qPCR swab data in relation to WNS is a 
challenge for all research groups, because exposure (the presence of 
fungus on the wings) is not synonymous with infection. Furthermore, 
the pathogen is not distributed evenly across the wing, so swabs 
from different parts of the wing may pick up different concentra-
tions of the pathogen. Ironically, swabbing the bats in our study for 
qPCR before sampling them for RNA sequencing may have reduced 
the detection probability of P. destructans during RNA sequencing. 
This challenge is not specific to our study. Examples from other 
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excellent studies include putatively unexposed bats that produce 
borderline “positive” qPCR results, clinically infected bats consid-
ered as a single “treatment” group with qPCR-based pathogen loads 
that range across orders of magnitude, and clinically infected bats 
that test negative for the pathogen based on qPCR of wing swabs 
(Field et al., 2015; Moore et al., 2017). Similar challenges occur in 
studies of snake fungal disease (Allender et al., 2015), where clinical 
infection may not correlate with pathogen detection based on skin 
swabs.

3  | PSEUDOGYM NOA SCUS DE S TRUC TANS  
DID NOT INVADE THE TISSUE OF E XPOSED 
M . MYOTIS

Quantification of pathogen loads is essential for robust comparisons 
among infected individuals, and we have quantified pathogen load 
and gene expression in vitro and in infected bats, where our data 
permit (Davy et al., 2017; SI; Donaldson et al., 2018). However, our 
M. myotis did not develop infections, despite the confirmed superfi-
cial persistence of the pathogen on the wings of three exposed in-
dividuals at the end of the experiment. There were, therefore, no 
pathogen loads to quantify in the exposed tissue (Davy et al., 2017). 
We thank Field (2018) for confirming that P. destructans was virtu-
ally undetectable in the wing tissue of exposed M. myotis, as we also 
reported in our study.

4  | ENVIRONMENTALLY PERSISTENT 
PATHOGENS PRESENT PARTICUL AR 
RESE ARCH CHALLENGES

In our view, some of Field’s (2018) criticisms of our study are se-
mantic in nature, which provides a welcome opportunity to explicitly 
consider terminology in studies of diseases such as WNS. Studies 
of wildlife diseases, including ours, often attempt to classify host–
pathogen interactions into discrete categories. Hosts can be in-
fected, naïve, or recovered; resistant, tolerant, or susceptible. These 
categories may work well for host-transmitted diseases with patho-
gens carried internally in the host, because exposure and infection 
in these systems are more closely linked. However, environmentally 
persistent pathogens such as P. destructans present semantic chal-
lenges, because disease is a process that operates on a continuum.

Following exposure to a pathogen, a susceptible host may or 
may not become infected (i.e., develop clinical symptoms that can 
be confirmed by a pathologist). This distinction between exposure 
and infection is particularly relevant for environmentally persistent 
pathogens such as P. destructans or Batrachochytrium dendrobatidis, 
which can grow on some hosts without causing disease (Moore 
et al., 2017; Woodhams et al., 2007). If an exposed host does not 
develop detectable symptoms, it is impossible to determine, in hind-
sight, whether it was never infected or whether the symptoms were 
resolved before they became detectable. Where clinical infection 

occurs, experimental exposure studies typically point to the time of 
exposure as a meaningful baseline from which to measure the effects 
of infection. Is this appropriate in pathosystems such as WNS, where 
the pathogen may grow for some time on the host prior to causing 
disease? At what point in this process does a susceptible host that 
is exposed to an environmentally persistent pathogen qualify as “in-
fected”? Discriminating among these definitions appears particularly 
challenging for environmentally persistent pathogens. However, this 
problem has also been identified in relation to microbial pathogens 
in clinical practice, where even advanced diagnostic methods cannot 
always identify the exact points at which exposure leads to infection 
(Pirofski & Casadevall, 2002).

Susceptibility, tolerance, or resistance to a pathogen also operate 
on a continuum. Myotis lucifugus are typically considered susceptible 
to P. destructans (Field et al., 2015; Warnecke et al., 2012), because 
mortality rates of naïve populations are high (>90%; Langwig et al., 
2012, 2015). Yet populations of M. lucifugus persist in eastern North 
America, suggesting selection for resistance or tolerance (Donaldson 
et al., 2017; Langwig et al., 2017; Lilley et al., 2016). Should we con-
sider free-ranging M. lucifugus currently persisting in eastern North 
America as “susceptible”?

The line between tolerance and resistance to WNS is even 
blurrier. Pathogen loads and mild symptoms of WNS occur on free-
ranging M. myotis across its range, suggesting tolerance (Zukal et al., 
2016). Yet in our study, we found no evidence of pathogen growth on 
this “tolerant” species (M. myotis), and no symptoms were observed, 
suggesting resistance. Is M. myotis a resistant species, a tolerant spe-
cies, a “less-susceptible” species, a species that is susceptible only 
under particular conditions, or a species with high interindividual 
variation in susceptibility?

Truly resistant species are still more elusive. The big brown bat 
(Eptesicus fuscus) is often labeled as resistant to WNS (Field, 2018; 
Frank et al., 2014; Moore et al., 2017). Yet 25% of “resistant” E. fus-
cus experimentally exposed to P. destructans developed clinical 
symptoms of WNS (Moore et al., 2017), and we strongly disagree 
with Field’s (2018) classification of E. fuscus as a species that is resis-
tant to WNS. Instead, the combined results of the studies mentioned 
here support a continuum of susceptibility, tolerance, and resistance 
to WNS in a range of species and that this continuum appears to be 
strongly context-dependent.

Finally, our title was not intended to antagonize readers, but to 
highlight the diverse outcomes that can occur when bats of different 
species are exposed to P. destructans. The M. lucifugus in our experi-
ment did develop infections that allowed us to characterize host and 
pathogen transcriptomes related to WNS, but we agree wholeheart-
edly that the responses of tolerant, resistant, or less-susceptible 
species of bat to P. destructans merit further, detailed investigation.

The WNS system is proving to be extremely context-dependent, 
and it will require the contributions of diverse research teams to 
disentangle it fully. We are grateful for this opportunity to further 
discuss the complexity of this system, which is shared by other 
emerging infectious diseases including snake fungal disease and 
chytridiomycosis in amphibians (Allender et al., 2015; Poorten & 
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Rosenblum, 2016). Every study on these important wildlife patho-
gens has its strengths and limitations, but each study takes us an-
other step closer to understanding and mitigating the impacts of 
these diseases on threatened wildlife populations. We encourage the 
research community to focus on understanding and finding solutions 
to the conservation challenges posed by emerging wildlife diseases.
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