
Claudio Cobelli,1 Chiara Dalla Man,1 Gianna Toffolo,1 Rita Basu,2 Adrian Vella,2 and Robert Rizza2

The Oral Minimal Model Method

The simultaneous assessment of insulin action,
secretion, and hepatic extraction is key to
understanding postprandial glucose metabolism in
nondiabetic and diabetic humans. We review the oral
minimal method (i.e., models that allow the
estimation of insulin sensitivity, b-cell responsivity,
and hepatic insulin extraction from a mixed-meal or
an oral glucose tolerance test). Both of these oral
tests are more physiologic and simpler to administer
than those based on an intravenous test (e.g.,
a glucose clamp or an intravenous glucose tolerance
test). The focus of this review is on indices provided
by physiological-based models and their validation
against the glucose clamp technique. We discuss
first the oral minimal model method rationale, data,
and protocols. Then we present the three minimal
models and the indices they provide. The disposition
index paradigm, a widely used b-cell function metric,
is revisited in the context of individual versus
population modeling. Adding a glucose tracer to the
oral dose significantly enhances the assessment of
insulin action by segregating insulin sensitivity into
its glucose disposal and hepatic components.
The oral minimal model method, by quantitatively
portraying the complex relationships between the
major players of glucose metabolism, is able to
provide novel insights regarding the regulation of
postprandial metabolism.
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The simultaneous assessment of insulin action, insulin
secretion, and hepatic extraction is key to understanding

postprandial glucose metabolism in nondiabetic and
diabetic humans and to putting therapeutic actions on
solid quantitative grounds (1,2). We review in this study
the oral minimal method (i.e., models that allow the
estimation of insulin sensitivity [SI], b-cell function,
and hepatic insulin extraction from an oral glucose
test—either a mixed-meal tolerance test [MTT] or an
oral glucose tolerance test [OGTT]). Both of these oral
tests are more physiologic and simpler to administer
than those based on an intravenous test (e.g., a glucose
clamp or an intravenous glucose tolerance test
[IVGTT]), with MTT being superior to OGTT due to the
presence of other macronutrient components (proteins
and fat). We will concentrate on the indices provided by
physiological-based models and their validation against
the glucose clamp technique. Surrogate MTT/OGTT in-
dices are not discussed since their general validity has
been questioned (3). Also, indices based on basal glucose
and insulin levels are not discussed since they do not
measure postprandial glucose metabolism and what
they measure is not clear (4).

SITTING ON THE IVGTT MINIMAL MODEL’S GIANT
SHOULDERS

The oral minimal model method sits on the giant
shoulders of the IVGTT minimal model method (5),
particularly taking advantage of two revolutionary con-
cepts introduced in 1979: 1) the system is decomposed
(partitioned) into a glucose and insulin subsystem, thus
allowing individual modeling of each system using, re-
spectively, measured concentrations of plasma insulin
and glucose as known inputs, and 2) insulin action takes
place within a compartment remote from plasma (known
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today to be the interstitium). Paradoxically, the IVGTT
seems simpler to model since one knows the exact nature
of the input (i.e., the glucose dose injected intrave-
nously). However, modeling glucose dynamics after the
bolus is complex: the single compartment representation
may undermodel the system complexity with potential
bias introduced (e.g., on SI) (6,7). Fig. 1 exemplifies such
a structural problem: net SI (i.e., insulin stimulatory ef-
fect on peripheral and liver glucose disposal plus in-
hibitory effect on endogenous glucose production [EGP]
[x-axis]), rather than being greater than disposal SI, is
virtually the same as disposal SI (SI

D, i.e., the stimulatory
effect alone [y-axis]) (7.18 6 0.33 vs. 7.21 6 0.39 1024

dL/kg/min/mU/mL), clearly indicating the inadequacy of
the model (8). Also, the widely used IVGTT approach to

assess b-cell function only uses the acute insulin re-
sponse (i.e., the area under the insulin concentration
curve of the first 10 min); since peripheral insulin con-
centrations represent the sum of insulin secretion and
hepatic extraction, this measure can potentially be con-
founded by hepatic insulin extraction, as discussed in
Cobelli et al. (9). To improve the quantitation of b-cell
function, a C-peptide IVGTT minimal model has been
developed that allows us to estimate first- and second-
phase b-cell responsivity (10) and also, in conjunction
with the IVGTT insulin minimal model, hepatic insulin
extraction (11). Finally, a clinical shortcoming of the
IVGTT method is that it does not allow assessment of
therapies or interventions that modulate the intestinal
contribution to insulin secretion (e.g., incretin-based
therapies).

THE ORAL MINIMAL MODEL METHOD:
RATIONALE, DATA, AND PROTOCOLS

Historically, the oral minimal model method has been
facilitated by a series of triple tracer meal studies that
have provided a rich database for model development
and validation (8). The MTT and OGTT data needed for
the method are shown in Fig. 2 (top). The system par-
tition analysis originally proposed for the IVGTT is also
used in this study. What is the rationale underlying
this? For instance, to describe plasma glucose and in-
sulin data after an OGTT, there is a need to simulta-
neously model both the glucose and insulin system and
their interactions. This means that, in addition to
needing to model insulin action, one also has to model
glucose-stimulated insulin secretion. Since, by defini-
tion, models are never perfect, they always will be
“wrong”; therefore, an error in the insulin secretion
model would be compensated for by an error in the
insulin action model, thus introducing a bias in SI. To
avoid this potential source of error, the dynamic con-
tribution of a subsystem can be eliminated. Such a loop
opening can be accomplished in several ways: by gross
surgical manipulation of the systems, using an external-
feedback loop to clamp the level of specific system
variables, or infusing certain substances that inhibit the
endogenous elaboration of some feedback signals. All of
these techniques are invasive, and most are not appli-
cable to humans, at least on a routine basis. In contrast,
system partition is an artificial loop cut: the system is
decomposed in two subsystems that are linked together
by measured variables (Fig. 2, bottom). The insulin
subsystem represents all tissues secreting, distributing,
and degrading insulin, and the glucose subsystem rep-
resents all tissues producing, distributing, and metab-
olizing glucose. When the system is perturbed (e.g., by
an MTT/OGTT) and the time courses of plasma glucose,
insulin, and C-peptide are measured, then the time
courses of insulin and glucose can be considered as
“input” (assumed known) and “output” (assumed noisy),
respectively, to measure SI; those of glucose and

Figure 1—Net SI (i.e., insulin action on glucose disposal and
production) versus SI

D (i.e., insulin action on glucose disposal only
from IVGTT data).
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Figure 2—Top: MTT (left) and OGTT (right) plasma glucose (top), insulin (middle), and C-peptide (bottom) in the same subject. Bottom:
Partition analysis of the system allows us to separately estimate SI, b-cell responsivity, and hepatic extraction without the confounding
effect of the two other parameters. Relevant input and output signals of the three models are shown.
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C-peptide to measure b-cell function; and those of
glucose and insulin plus C-peptide to measure hepatic
insulin extraction. In this way, models are developed
not for the whole system but for each of the sub-
systems, independently, thus considerably reducing the
difficulties of the modeling exercise.

Fig. 2 shows the desirable MTT/OGTT 10-sample
schedule (0, 10, 20, 30, 60, 90, 120, 150, 180, and 240
min), but an 8-sample reduced schedule (0, 10, 20, 30,
60, 90, 120, and 180 min) still provides accurate
results at the individual level (in severe type 2 di-
abetes, an additional 240-min time point may help for
estimating SI). The story is different if the interest is in
assessing indices at the population level (see ref. 12 for

a 7-sample schedule in nondiabetic and prediabetic
subjects).

THE ORAL GLUCOSE MINIMAL MODEL

The oral glucose minimal model is shown in Fig. 3
(top). It resembles the classic single-compartment
IVGTT minimal model but has a new element, the gas-
trointestinal tract, which has as input the oral dose. Of
note is that, given the much smoother time course of
plasma glucose and insulin during an oral test versus
IVGTT, a single-compartment model is able to accurately
describe glucose kinetics [in the IVGTT minimal model, in
order to use a single-compartment glucose kinetics rep-
resentation, one has to ignore the first 10 min of glucose

Figure 3—The oral glucose minimal models that allow us to estimate SI (top), b-cell responsivity (middle), and hepatic insulin extraction
(bottom).
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data; a two-compartment model is needed to describe
IVGTT glucose kinetics in their integrity (6,13)].

Denoting by Q the plasma glucose mass, Rd the rate of
plasma glucose disappearance, Ra the rate of glucose
appearance in plasma from the oral input, and NHGB the
net hepatic glucose balance, the system-measurement
model equations are as follows:

8<
:

_QðtÞ ¼ 2RdðtÞ þNHGBðtÞ þ RaðtÞ Qð0Þ ¼ Qb

GðtÞ ¼ QðtÞ
V

ðEq: 1Þ

where G is plasma glucose concentration, V the glucose
distribution volume, and subscript b denotes basal value.

By assuming that Rd and NHGB are linearly de-
pendent on Q but modulated by insulin in a remote (vs.
plasma) compartment, as proposed in Bergman et al. (5),
one obtains the following (14):

8>>>>><
>>>>>:

_QðtÞ ¼ 2 ½SG þ XðtÞ�$QðtÞ þ SG$Qb þ Raða; tÞ Qð0Þ ¼ Qb

_XðtÞ ¼ 2 p2$XðtÞ þ p3$½IðtÞ2 Ib�

GðtÞ ¼ QðtÞ
V

Xð0Þ ¼ 0

ðEq: 2Þ

where SG is fractional (i.e., per-unit distribution volume)
glucose effectiveness measuring glucose ability per se to
promote glucose disposal and inhibit NHGB, I plasma
insulin concentration, and X insulin action on glucose
disposal and production, with p2 and p3 as rate constants
describing its dynamics and magnitude. Ra is described as
a piecewise linear function with known break point ti and
unknown amplitude ai,

Raða; tÞ ¼
(
ai21 þ ai 2ai21

ti 2 ti21
$ðt2 ti21Þ for ti21 # t# ti; i ¼ 1;.; 8

0
ðEq: 3Þ

otherwise with a denoting [a1, a2,.a8]
T and a0 5 0.

SI is given by:

SI ¼ p3
p2
$V ðdL=kg=min per mU=mLÞ ðEq: 4Þ

A piecewise linear description for Ra with eight
parameters is sufficiently flexible to accommodate
MTT/OGTT data. The input of the model is the mea-
sured plasma insulin concentration; plasma glucose
concentration is the output to be fitted by the model.
The addition of the parameter vector a renders the
model more complex, and it can be shown that it is not
a priori uniquely identifiable because V is

nonidentifiable, and SG is nonuniquely identifiable (two
solutions). Thus, there is the need to assume V and SG
to be known, usually fixed to population values. To
improve numerical identifiability, a Maximum a Poste-
riori Bayesian estimator is used, exploiting some prior
on p2 and a constraint on Ra, related to the total
amount of glucose appearing in the circulation. SI can
be precisely estimated and has been validated both
against a multiple tracer meal protocol (15) and in an
OGTT versus euglycemic glucose clamp study (16)
showing a correlation of 0.86 and 0.81, respectively.
The MTT SI has been also correlated with that obtained
during an IVGTT in the same subjects, showing a cor-
relation of 0.74. MTT SI was also compared with OGTT
SI in 62 subjects with different degrees of glucose tol-
erance (17): correlation between the two was good (r =
0.75) but SI was significantly lower in MTT than OGTT.

SI is a steady-state measure of insulin action and does
not account for how fast or slow insulin action takes
place. To account for the timing of insulin action, the
dynamic SI index, SI

dyn, can be calculated (18,19) from SI
and p2:

SIdyn ¼
R T
0 SIð12 e2 p2tÞdt

T
¼ SI

�
12

12 e2 p2T

p2T

�
ðEq: 5Þ

where T = 60 min. SI
dyn provides a more comprehen-

sive picture of insulin action on glucose metabolism,
which is especially important in prediabetic and di-
abetic subjects who exhibit both decreased and delayed
insulin action. SI and SI

dyn are macrophysiological
parameters: they reflect insulin action in both sup-
pressing glucose production and stimulating glucose
transport and phosphorylation in muscle and adipose
tissues. Segregating at least at the macroscopic level
the two signals (i.e., insulin action on glucose pro-
duction and glucose disposal) is possible by adding
a tracer to the oral dose, as will be discussed later.

Intersubject variability of MTT SI index in healthy
individuals is large but comparable to that of the IVGTT
index in the same individuals (8). For what concerns the
intrasubject variability, MTT SI reproducibility was
assessed in Cobelli et al. (9) by calculating both the percent
mean difference [D% = (study 1 2 study 2)/mean
(study 1, study 2)] and the coefficient of variation
[CV% = jstudy 1 2 study 2j/mean (study 1, study 2)]. In
Cobelli et al. (9), D% and CV% were on average 8 and 23%,
respectively. However, these measurements do not take
into account the uncertainty of SI. This is an important
limitation of the approach since SI is a model-based
measurement from noisy data and, thus, can only be es-
timated with a certain CI.

THE ORAL C-PEPTIDE MINIMAL MODEL

The model is shown in Fig. 3 (middle) and interprets
plasma C-peptide concentration (the output) in relation
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to the observed changes in glucose concentration (the
input) (20). The model is described as follows:

8>>>>>>>>>>><
>>>>>>>>>>>:

_q1ðtÞ ¼ 2 ðk01 þ k21Þ$q1ðtÞ þ k12$q2ðtÞ þ ISRðtÞ q1ð0Þ ¼ 0

_q2ðtÞ ¼ 2 k12$q2ðtÞ þ k21$q1ðtÞ q2ð0Þ ¼ 0

ISRðtÞ ¼ yðtÞ þ kG$
dGðtÞ
dt

_yðtÞ ¼ 2
1
T

yðtÞ2b$ðGðtÞ2 hÞ� �
yð0Þ ¼ 0

c1ðtÞ ¼ q1ðtÞ
V

ðEq: 6Þ

where q1 and q2 are, respectively, the above basal amount
of C-peptide in the accessible and remote compartments
(C-peptide 1 and 2 in Fig. 3, middle); k01, k12, and k21 are
rate constants describing C-peptide kinetics; ISR is above
basal C-peptide (insulin) secretion rate; y is insulin pro-
vision (i.e., the portion of synthesized insulin that rea-
ches the cell membrane and can be released); and c1 is
above basal C-peptide plasma concentration. ISR is made
up of two components: one proportional, through pa-
rameter kG, to glucose rate of change (dG/dt), and one
representing insulin release that, after a delay T, occurs
proportionally to plasma glucose level above a threshold,
h, through parameter b. The two components are
termed, respectively, dynamic and static, and the
parameters responsible for them: dynamic, Fd (= kG),
and static, Fs (= b), responsivity indices. A single total
responsivity index, F, which combines Fd and Fs, is
often useful. The model is both a priori and a posteriori
(numerically) uniquely identifiable once C-peptide kinetic
parameters (k01, k12, k21, and V) are fixed using the
population model proposed in Van Cauter et al. (21). The
picture is markedly different from that of the IVGTT
model, in which the incretin effect is absent, and the
glucose signal is totally different, with the derivative
component only contributing during the first 2 to 3 min
and the proportional component for the rest of test.
This explains the fact that dynamic Fd and static Fs

during an MTT are 250% greater than first-phase, F1, and
second-phase, F2, IVGTT indices in the same 204 indi-
viduals (8). Dynamic, Fd, and static, Fs, during an oral
glucose challenge and IVGTT first-, F1, and second-phase,
F2, indices bear some relation (r = 0.52 for both indices),
but they are likely determined by different cellular events.

b-Cell responsivity indices during MTT were also
compared with their OGTT counterparts in 62 subjects
with different degrees of glucose tolerance (17): corre-
lations were good (r = 0.71 for Fd, r = 0.73 for Fs, and r =
0.74 for F), but the indices were significantly higher in
MTT than OGTT. Fd, Fs, and T are macrophysiological
parameters, but thanks to recent multiscale modeling of
insulin secretion (22,23), they can be given a cellular
interpretation. In particular, Fd likely relates to exo-
cytosis of insulin from secretory vesicles docked to the

membrane, Fs reflects insulin granule translocation
and maturation, and T the inherent delay in glucose-
stimulated insulin secretion in order to permit granule
mobilization and second-phase release (24). In this con-
text, it is useful to comment on another widely used model
to assess b-cell function (25). This model, like the model of
Fig. 3 (middle), has both a proportional and derivative
component, but there is no delay of supply of newly
synthesized insulin to the circulation. The authors choose
to account for the expected inability of a proportional plus
derivative glucose control to describe the C-peptide data
with a time-varying term correcting only the static com-
ponent of insulin secretion, which has been called poten-
tiation factor. This potentiation factor compensates the
proportional plus derivative description deficiency but
has no obvious mechanistic counterpart on the cellular
level. In addition to the model structure, the meth-
odology to numerically identify the model has also
been questioned (see ref. 9 for detailed comments).

The C-peptide oral minimal model of Fig. 3 (middle)
has been successfully used by Steil et al. (26) for de-
scribing hyperglycemic clamp C-peptide data as well as
meals, thus providing further independent evidence of its
validity (see also comments in ref. 27).

It is an accepted notion that b-cell function needs to
be interpreted in light of the prevailing SI. One possibility
is to resort to a normalization of b-cell function based on
the disposition index (DI) paradigm, first introduced in
1981 (28), and recently revisited first in Cobelli et al. (9)
and then in Denti et al. (29) in which b-cell function is
multiplied by SI. This concept is clearly illustrated in
Fig. 4 (left). While regulation of carbohydrate tolerance is
undoubtedly more complex, it is conceivable that the
glucose tolerance of an individual is related to the
product of b-cell function and SI. In essence, different
values of tolerance are represented by different hyper-
bolas (i.e., DI = b-cell function 3 SI = constant), and the
individual’s b-cells’ ability to respond to a decrease in SI
by adequately increasing insulin secretion can be assessed
by measuring the product of b-cell function and SI.
Thanks to its intuitive and reasonable grounds, this
measure of b-cell function, which was first introduced for
IVGTT, has become the method of choice also for MTT/
OGTT. Thus, DIs can be calculated by multiplying
responsivity indices Fd, Fs, and F by SI to determine if
the first- and second-phase global b-cell function are
appropriate in light of the prevailing SI. For instance, while
SI was found to be significantly lower in MTT than OGTT
and Fd, Fs, and F were found to be significantly higher in
MTT than OGTT, the DI is the same with the two tests,
making it a good marker of glucose tolerance (17).

Another important use of the DI paradigm is the
monitoring in time of the individual components of
tolerance and the assessment of different treatment
strategies, as illustrated in Fig. 4 (right).

However, the glucose-insulin feedback system is more
complex than the hyperbola paradigm. The relation
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between b-cell function and SI is certainly describable by
a nonlinear inverse relationship but is in all likelihood
more complex than their simple product (i.e., DI = b-cell
function 3 [SI]

a = constant), where SI is elevated to a. In
addition, this simple concept hides several methodolog-
ical issues that only recently have been thoroughly
addressed in Denti et al. (29) and that, unless fully ap-
preciated, could lead to errors in interpretation. Two
important lessons are summarized below. 1) Tradition-
ally, the most widely used approach consists in consid-
ering SI and b-cell responsivity as coordinates of
a Cartesian plane and then using a traditional-fit ap-
proach to find the curve (hyperbola or power function)
best explaining the data. However, to avoid the difficul-
ties of a nonlinear two-variable fit, simplifications such as
the log transformation of the data or assumptions on the
precision of the individual indices have been used in the
literature. Instead, a fit approach based on a nonlinear
total least squares that does not use similar approx-
imations should be used. 2) Although more reliable than
all of the other curve-fitting approaches, the nonlinear
total least squares approach relies on the hypothesis that
all of the subjects in the population have the same value of
DI. Thus, the only variability that is assumed to be present
in the data is the uncertainty of SI and b-cell responsivity
indices in each subject. This is arguably an over-
simplification; even if a group of subjects is classified as
healthy, it is very unlikely that they will all share exactly
the same value of DI. A population approach is required
based on a nonlinear mixed-effects model that accounts
separately for between-subject variability in the DI values
and the residual unexplained variability (e.g., model error
and uncertainty) affecting the estimates of SI and b-cell
responsivity in each individual. In the new framework

proposed in Denti et al. (29), the population-typical values
of DI and a are considered as features that characterize
the population distribution of SI and b-cell responsivity.

A final note concerns the forgotten role of insulin
hepatic extraction in Fig. 5. In fact, since the effect of
insulin on peripheral tissues is also determined by the
amount of insulin to which the tissue is exposed, hepatic
insulin extraction should come into play (see the fol-
lowing paragraph) and provide yet another dimension to
the relationship between insulin secretion and action
portrayed in Fig. 4.

Similarly to MTT, SI, reproducibility of MTT Fd, and
Fs were assessed in Cobelli et al. (9): D% was 1 and 7%,
and CV% was 31 and 18%, respectively.

An important addition to the parametric portrait
provided by the oral glucose and C-peptide minimal
models could be an index quantifying the effect of
glucagon-like peptide 1, as a surrogate for the incretin
effect, on insulin secretion. It can be obtained by
adapting to MTT/OGTT the model developed in Dalla
Man et al. (30) to quantify the effect of exogenous
glucagon-like peptide 1 infusion on insulin secretion.
This does not preclude other contributions to the
incretin effect (e.g., by vagal inputs or by other incretin
hormones such as glucose-dependent insulinotropic
polypeptide), and experiments are underway to directly
examine these contributions.

THE INSULIN AND C-PEPTIDE MODEL

Minimal models also provide an approach to assess he-
patic insulin extraction (Fig. 3, bottom). The rationale is
that we have seen that insulin secretion, ISR, can be
assessed from the model of C-peptide kinetics and se-
cretion identified from C-peptide and glucose data. By

Figure 4—Schematic diagram to illustrate the importance of expressing b-cell responsivity in relation to SI by using the DI metric (i.e., the
product of b-cell responsivity times SI is assumed to be a constant). Left: A normal subject (state I) reacts to impaired SI by increasing
b-cell responsivity (state II), while a subject with impaired tolerance does not (state 2). In state II, b-cell responsivity is increased but the
DI is unchanged, and normal glucose tolerance is retained normal; while in state 2, b-cell responsivity is normal but not adequate to
compensate the decreased SI (state 2), and glucose intolerance is developed. Right: Impaired glucose tolerance can arise due to
defects of b-cell responsivity and/or defects of SI. In this hypothetical example, subject x is intolerant due to his poor b-cell function,
while subject y has poor SI. The ability to dissect the underlying physiological defects (SI or b-cell responsivity) allows us to optimize
medical treatments.
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following a similar approach, posthepatic insulin delivery
rate (IDR) can be assessed by using a model able to de-
scribe insulin data with plasma glucose concentration as
an input. A recent study (31) has made this possible: an
insulin population model developed along the lines of
Van Cauter et al. (21) allows the calculation of insulin
kinetic parameters from subject anthropometric charac-
teristics, such as age, sex, and body surface area. This
renders the model both a priori and a posteriori uniquely
identifiable, thus allowing reconstruction of posthepatic
IDR. From ISR and IDR, both the time course of hepatic
insulin extraction (HE) and an index numerically quan-
tifying hepatic insulin extraction can be calculated:

HEðtÞ ¼ ISRðtÞ2 IDRðtÞ
ISRðtÞ ¼ 12

IDRðtÞ
ISRðtÞ ðEq: 7Þ

HE ¼
R T
0 ISRðtÞ2 R T

0 IDRðtÞR T
0 ISRðtÞ

¼ 12

R T
0 IDRðtÞR T
0 ISRðtÞ

ðEq: 8Þ;

with T being the duration of the experiment.

The importance of adding hepatic extraction to SI and
F for obtaining a more complete pathophysiological
portrait has been shown in several studies (2,8).

ADDING A TRACER TO THE ORAL GLUCOSE

If the oral glucose load is labeled with a glucose tracer,
the exogenous glucose time course (Gexo) can be calcu-
lated from plasma tracer concentration, once the tracer-
to-trace ratio in the oral dose is known. The endogenous
glucose (Gend) can then be derived as Gend = G 2 Gexo,
with G being the total glucose in plasma. In other words,
adding a tracer to the MTT/OGTT allows total glucose
concentration to be segregated into its exogenous and
endogenous components.

Gexo measured in plasma is the result of the glucose Ra
coming from the MTT/OGTT and the Rd (Fig. 5, left).
Thus, by fitting the model detailed in Dalla Man et al. (7)
on Gexo and insulin, one can estimate both Ra and SI

D (i.e.,
the ability of insulin to enhance glucose utilization). Cor-
relation between SI

D with disposal SI measured with the
tracer-enhanced euglycemic-hyperinsulinemic clamp tech-
nique is r = 0.70 (Fig. 6, left) (16). Of particular note is

Figure 5—The oral-labeled minimal models. Left: The exogenous glucose model. Right: The endogenous glucose model.

Figure 6—Left: SI
D, MTT versus clamp. Right: SI

L, MTT versus clamp.
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that when the oral minimal models are used, the struc-
tural problem observed with the IVGTT in Fig. 1 vanishes:
Fig. 7 shows the same plot for the same 204 subjects in
Basu et al. (8) with SI greater than SI

D (14.05 6 0.67 vs.
10.55 6 0.60 1024 dL/kg/min/mU/mL).

Gend is the result of the EGP and Rd (Fig. 5, right). The
description of glucose disappearance and its control by
insulin (SI

D) is the same derived from Gexo, since the body
does not distingue exogenous from endogenous glucose.
Therefore, EGP time course can be estimated from Gend

either by deconvolution (32) or by using a mechanistic
model (33). This assumes that EGP suppression is made up
of three components: one proportional to plasma glucose,
one proportional to delayed insulin (likely surrogating the
effect of free fatty acid suppression), and one proportional
to glucose derivative, strongly related to insulin concen-
tration in the portal vein. The first solution has the

advantage of not necessitating any assumption on EGP
time course (apart from assuming that EGP is smooth);
however, this approach does not provide indices of the
efficacy of glucose and insulin control on EGP. Conversely,
the use of a mechanistic model requires that the modality
of glucose and insulin control on EGP suppression is ex-
plicitly defined; of note, this approach provides indices of
both the inhibitory effect of glucose and insulin (SI

L) on
hepatic glucose production. Of note, recently, model-
derived SI

L has been compared with hepatic SI measured
with a labeled euglycemic-hyperinsulinemic clamp, show-
ing a correlation of 0.72 (P , 0.001) (34) (Fig. 6, right).

MODEL-BASED CLINICAL STUDIES

It may be helpful for the reader to refer to some specific
instances in which an answer to a diabetes-related
question has been provided by systematic use of the oral
minimal model method. For instance, the battery of oral
glucose, C-peptide, and insulin models has been used to
study the effect of age and sex on glucose metabolism (8),
the effect of antiaging drugs (35), the influence of eth-
nicity (36), SI and b-cell function in nondiabetic (37) and
obese (38) adolescents and children (39), the pathogen-
esis of prediabetes (17,40,41) and type 2 diabetes (1,42),
the diurnal pattern of insulin action and secretion in
healthy (43) and type 1 diabetic (44) subjects, the
mechanism of insulin resistance in pregnancy (45), the
effect of DPP4 inhibitors on insulin secretion (46), and
the effect of a bile acid sequestrant on insulin secretion
and action (47). These models also can be used to
quantitatively measure changes in insulin secretion, in-
sulin action, glucose effectiveness, and hepatic insulin
extraction in individuals with prediabetes who do versus
those who do not progress to overt diabetes.

CONCLUSIONS

Insulin action, insulin secretion, and hepatic insulin ex-
traction are important determinants of carbohydrate, fat,
and protein metabolism. Ideally, these should be assessed
using a single, simple physiologic test in the presence of
glucose, amino acids, incretins, and neural signals. The
oral minimal model method can simultaneously measure
SI, b-cell responsivity, and hepatic insulin extraction
from an MTT/OGTT. Reproducibility of the oral indices
of SI and b-cell responsivity are comparable to those
obtained with IVGTT and is between 20 and 30% (9).
Adding a tracer to the glucose dose significantly enhances
the insulin action portrait by segregating insulin action
into the ability of insulin to suppress hepatic glucose
production and stimulate glucose uptake. Table 1 sum-
marizes the wealth of quantitative information provided
by the oral minimal method.

In conclusion, the oral method, by quantitatively por-
traying the complex relationships between the major play-
ers of glucose metabolism, has provided novel insights into
the regulation of postprandial metabolism in nondiabetic
and diabetic humans. Unlike Mahler, who thought that “my

Figure 7—Net SI (i.e., insulin action on glucose disposal and
production) versus SI

D (i.e., insulin action on glucose disposal only)
from MTT data.
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time will come when his [Johann Strauss’] is over,” we
believe that the oral minimal model method’s strengths
make it a useful alternative to the present tests (clamp and
IVGTT) to measure insulin secretion and action in vivo.
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