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Abstract

A newly emerged coronavirus (COVID-19) seriously threatens human life and health world-

wide. In coping and fighting against COVID-19, the most critical step is to effectively screen

and diagnose infected patients. Among them, chest X-ray imaging technology is a valuable

imaging diagnosis method. The use of computer-aided diagnosis to screen X-ray images of

COVID-19 cases can provide experts with auxiliary diagnosis suggestions, which can

reduce the burden of experts to a certain extent. In this study, we first used conventional

transfer learning methods, using five pre-trained deep learning models, which the Xception

model showed a relatively ideal effect, and the diagnostic accuracy reached 96.75%. In

order to further improve the diagnostic accuracy, we propose an efficient diagnostic method

that uses a combination of deep features and machine learning classification. It implements

an end-to-end diagnostic model. The proposed method was tested on two datasets and per-

formed exceptionally well on both of them. We first evaluated the model on 1102 chest X-

ray images. The experimental results show that the diagnostic accuracy of Xception + SVM

is as high as 99.33%. Compared with the baseline Xception model, the diagnostic accuracy

is improved by 2.58%. The sensitivity, specificity and AUC of this model reached 99.27%,

99.38% and 99.32%, respectively. To further illustrate the robustness of our method, we

also tested our proposed model on another dataset. Finally also achieved good results.

Compared with related research, our proposed method has higher classification accuracy

and efficient diagnostic performance. Overall, the proposed method substantially advances

the current radiology based methodology, it can be very helpful tool for clinical practitioners

and radiologists to aid them in diagnosis and follow-up of COVID-19 cases.

1. Introduction

Since the outbreak of COVID-19 in Wuhan, Hubei Province, China in December 2019, it has

spread rapidly in a short period of time. One month later, on January 30, 2020, the World

Health Organization (WHO) announced that COVID-19 is a global Health emergency [1]. At

the time of writing this paper, the cumulative number of diagnoses in the world has exceeded
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6 million, and the increasing number of deaths has exceeded 300,000, which seriously threat-

ened the life and health of humans worldwide. COVID-19 is caused by a type of virus called

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [2]. In February 2020, the

World Health Organization (WHO) named the disease caused by SARS-CoV-2 as COVID-19.

During this period, the WHO proposed that the key step in controlling the spread of viral

infections is to keep the population at a social distance and track close contacts promptly. To

accurately diagnose and screen COVID-19 patients, on the one hand, it is to allow infected

people to get timely treatment, and on the other hand, to effectively prevent the virus from

spreading further. The greatest difficulty at present is the detection and diagnosis of COVID-

19. Although the use of real-time reverse transcriptase polymerase chain reaction (RT-PCR) to

detect viral nucleic acids is a recognized gold standard for diagnosing this type of virus [3].

However, due to the wide range of epidemics and insufficient testing supplies, many high-inci-

dence areas and countries do not have enough testing reagents to conduct RT-PCR tests on

hundreds of thousands of suspected patient. Also, this detection method usually takes several

hours or even days to complete. At the same time, in order to ensure reliable test results, the

sample needs to be tested multiple times at intervals of several days.

Studies have shown that the use of imaging technology (X-ray or Computed Tomography

(CT)) to diagnose and screen COVID-19 is higher sensitivity and can be used as an alternative

to RT-PCR [4, 5]. Usually, CT imaging takes more time than X-ray imaging, and real-time X-

ray imaging can significantly accelerate the speed of disease screening. In addition, many less

developed regions may not have enough high-quality CT scanners. Since X-ray equipment is

low in cost and simple to operate, most outpatient clinics and institutions have deployed X-ray

equipment as the necessary imaging equipment. Compared with CT imaging, X-ray imaging

is the most common and widely used diagnostic imaging technology and plays a vital role in

clinical nursing and epidemiological research [6]. Therefore, this study selected chest X-ray

images as the research object. However, radiologists and experts mainly interpret images based

on personal clinical experience when analyzing X-ray images. Usually, different doctors or

experts have a different understanding of the same image. Moreover, the situation of the same

image in different periods are not entirely consistent, and the conclusions produced will be dif-

ferent. Also, the workload of interpretation of images is vast, and doctors are prone to misdiag-

nosis due to fatigue. Therefore, there is an urgent need for a computer-aided diagnosis system

to help radiologists interpret images faster and more accurately.

At present, artificial intelligence is more and more used in the diagnosis and analysis of

medical images. Among them, the effect of deep learning, especially convolutional neural net-

works (CNNs) in the field of computer vision has even exceeded that of humans [7, 8]. Rajpur-

kar et al. [7] proposed a pneumonia detection model: CheXNet. The author trained the model

on ChestX-ray14 dataset [9] to detect 14 diseases of the lungs, and its effect even exceeded that

of ordinary radiologist diagnostic result. For COVID-19, there have also been some recent lit-

erature reports: Wang et al. [10] not only created a new model architecture COVID-net but

also established a larger dataset COVIDx (consisting of 13,800 chest X-ray images). The pur-

pose is to classify X-ray images as normal, pneumonia and COVID-19. The results showed

that the diagnostic accuracy of COVID-19 reached 92.4%. El-Din Hemdan et al. [11] com-

pared several traditional deep learning classification frameworks, and pre-trained the model in

ImageNet dataset [12] to distinguish between normal and COVID-19. In the experiment, they

selected a small dataset with only 50 images, 25 of which were from healthy patients and 25

from COVID-19 positive patients. In the model selected by the author, VGG19 and DenseNet

showed similar performance, with F1-Score of 0.89 and 0.91 for normal and COVID-19,

respectively. Farooq et al. [13] proposed a fine-tuned ResNet-50 architecture, which divided

the chest X-rays into normal, COVID-19, bacterial pneumonia and viral pneumonia.
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Compared with COVID-net [10], the authors report better accuracy. Apostolopoulos et al.

[14] accomplished comprehensive experiments on state-of-the-art CNN models applying

transfer learning. In the end, the authors found that VGG-19 outperforms other CNNs for

accuracy. Narin et al. [15] implemented three different deep CNN models such as ResNet-50,

InceptionV3, and Inception-ResNetV2, where they also used transfer learning for the detec-

tion of COVID-19. While many approaches have already been developed and implemented

for coronavirus recognition, there is still room for performance improvement for different

datasets.

According to the survey, in addition to some of the literature mentioned above reports, the

use of deep learning or other methods to diagnose and screen COVID-19 in X-rays is few.

Therefore, our goal is to establish an efficient combination of deep features and machine learn-

ing classification to help radiologists diagnose COVID-19 more accurately in X-ray images.

The main contributions of this work are as follows:

1. Firstly, transfer learning is adopted to overcome the overfitting problem caused by the lim-

ited number of training images in deep learning. Due to the lack of public COVID-19 data-

set, we prepared a dataset containing 1102 chest X-ray images of healthy patients and

COVID-19 positive patients, and randomly divided the training set and test set. Five popu-

lar convolutional neural network models including VGG16, InceptionV3, ResNet50, Xcep-

tion and DenseNet121 were pre-trained on the ImageNet dataset. And their performance

was evaluated on a test set containing 298 X-ray images. The accuracy of our best model

(Xception) is 96.75%.

2. We use the method of automatically extracting features from deep convolutional neural

networks. This method does not require traditional manual methods for feature extraction,

avoiding complex feature extraction processes. This method can directly extract bottleneck

features from five pre-trained depth models. After extracting bottleneck features, COVID-

19 patients are screened by five traditional machine learning classifiers.

3. Through extensive experiments, we find that each deep model shows excellent performance

on different classifiers. The accuracy of the best model is as high as 99.33%. It is worth men-

tioning that our best model also shows good accuracy on another dataset.

The rest of the paper is structured as follows: The second section introduces the method

used in this study. The third section introduces experimental process. The fourth section dis-

cusses the experimental results. Finally, the fifth section summarizes the research.

2. Method

2.1. Transfer learning and pre-trained model

In the field of medical imaging, a large dataset is often challenging to obtain. Because the num-

ber of images currently marked as COVID-19 is minimal, some depth models cannot get bet-

ter results in these few images [16–18]. On the one hand, because the model used cannot learn

the actual distribution of the image samples, which can easily lead to overfitting, and on the

other hand, the deep learning model usually requires a large number of labeled images to train

the model. Therefore, to overcome these problems, we first use a widely used strategy: transfer

learning (using a model that has been pre-trained on an extensive labeled dataset for a different

task), as shown in Fig 1.

To train a neural network from scratch, we need a lot of data and enough processing power

and time, which is impractical. Therefore, we were fine-tuning the parameters of the pre-

trained deep learning network model to adapt to the new task. The initial layer of the network
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model can often only learn low-level features. When the network goes up, it will tend to learn

more specific training task patterns. Therefore, in our method, since the number of COVID-

19 images is minimal, we only fine-tuning the last layer of the convolutional neural network.

By removing the fully connected layer on the top layer of the pre-trained model, add a custom

fully connected layer on the top layer, and then freeze the convolutional layer in front of the

network to train only the customized fully connected layer. In our study, we evaluated the per-

formance of five commonly used models, namely VGG16 [19], InceptionV3 [20], ResNet50

[21], DenseNet121 [22] and Xception [23]. The full details of the five pre-trained networks uti-

lized in this study, with their input size, the number of layers as well as the number of parame-

ters are illustrated in S2 Table. Below we will briefly outline the architecture of these models.

1. Simonyan and Zisserman proposed VGG16 [19]. The model participated in the ImageNet

Large Scale Visual Recognition Challenge 2014 (ILSVRC2014) in 2014 and achieved excel-

lent results. Compared with AlexNet, it used a smaller convolution kernel, a smaller amount

of parameters, and the classification effect is significantly improved. There are two versions

of this deep network architecture, namely VGG16 and VGG19. Among them, VGG19 has

more layers than VGG16, with a more considerable overhead and a larger number of

parameters.

Fig 1. Flowchart of deep models for transfer learning fine-tuning.

https://doi.org/10.1371/journal.pone.0242535.g001
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2. InceptionV3 achieved first place on GoogLeNet in 2014, with a Top-5 accuracy of 93.3%.

The network splits a larger two-dimensional convolution into two smaller one-dimensional

convolutions. It not only reduces a large number of parameters but also speeds up calcula-

tions and reduces overfitting. The architecture of InceptionV3 emphasizes the importance

of memory management and the computing power of the model.

3. ResNet50 is a very popular convolutional neural network structure in recent years. It won

the championship in the ILSVRC2015 competition. Its creatively proposed residual struc-

ture provides a simpler gradient flow and more effective training.

4. DenseNet121 is the latest network architecture. It is the winner of the 2017 ImageNet com-

petition. It uses features to achieve better results and fewer parameters. It can directly con-

nect all layers under the condition of ensuring the maximum information transmission

between layers in the network.

5. Xception pushes the method of Inception to the extreme. It assumes that cross-channel cor-

relation and spatial correlation can be separated. Also, the classification performance on the

ImageNet dataset is slightly better than InceptionV3. And using the same number of

parameters on large-scale image data sets can achieve better performance.

2.2. Proposed method

We propose a method—using deep features combined with machine learning classification

methods to diagnose COVID-19 in X-ray images automatically. The process of the proposed

method flow in Fig 2. The proposed framework includes three main steps to accomplish the

diagnostic procedure of COVID-19, as follows.

Step # 1: Input raw image dataset and preprocessing. The method proposed in this paper

avoids extensive preprocessing steps and improves the generalization ability of the CNN archi-

tecture. It helps make the model more robust to noise, artifacts and changes in the input image

during the feature extraction phase. Hence, we only used two standard preprocessing steps

and data augmentation when training the deep learning model.

1. Re-scale all images: Because the images in the data set may come from different devices, the

image acquisition parameters are also different, and each image has a different pixel size.

Therefore, there are considerable changes in the intensity and size of the image. We then

resized all the images to the dimension 224×224 pixels.

2. Image normalization: Inevitably, some of the images in the chest X-ray image dataset used

may come from different acquisition devices, and the device parameters are different. The

pixel intensity of each image may vary considerably. Therefore, we normalize the intensity

values of all images to between [–1, 1]. The benefit of normalization is that the model is less

sensitive to small changes in weights and is easy to optimize.

3. Data augmentation: As the model’s network deepens, the parameters to be learned will also

increase, which will easily lead to overfitting. In this case, to solve the over-fitting problem

caused by the small number of training images, we have added data augmentation (rotation

and zoom), randomly rotate images by 30 degrees and randomly zoom by 20% images.

Step # 2: Pre-trained deep learning models and extract bottleneck features. In the trans-

fer learning experiment of this study, the performance obtained by the fine-tuning method is

not significant. We propose another representation method of convolutional features to

improve the generalization performance of the model. In this method, we used five pre-trained
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CNN models (VGG16, InceptionV3, ResNet50, DenseNet121, and Xception) as feature extrac-

tors. The first input image is encoded as the feature vector of the image descriptor. Each model

calculates the encoded feature vector, and finally, the bottleneck features of each model are

extracted. The extracted bottleneck features are a low-dimensional vector, which can signifi-

cantly reduce the training time of the model compared with retraining the model after fine-

tuning.

Step # 3: Classify with machine learning classifier. In the last step of the framework. First,

save the bottleneck features of each model, and then input the generated features into five dif-

ferent machine learning classifiers (Decision Tree [24], Random Forest [25], AdaBoost [26],

Bagging [27], SVM [28]). Finally, all X-ray images were classified as COVID 19 cases or nor-

mal cases.

3. Experiment

3.1. Dataset and experiment setup

Since COVID-19 is a new disease, there is currently no dataset of appropriate size available for

this study. Therefore, we combined and modified three different public datasets. Only ante-

rior-posterior and posterior-anterior chest X-ray images from COVID-19 were included in

this study.

Fig 2. Flowchart overview of the proposed method. (a) Input raw image dataset. (b) Data preprocessing (c) Pre-trained deep learning models and extract bottleneck

features. (c-1) Example of basic network architecture (VGG16). (c-2) Five basic deep learning models (d) Classify with machine learning classifier. (d-1) Five traditional

machine learning classification methods.

https://doi.org/10.1371/journal.pone.0242535.g002
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1. The first dataset is a public dataset of X-ray images and CT scan images provided by Dr.

Joseph Cohen, obtained from the GitHub repository [29]. Until 15/9/2020, the dataset

includes more than 657 X-ray images and CT scan images of patients infected with

COVID-19 and other diseases (such as MERS, SARS and ARDS). Here, we only considered

X-ray images and selected 500 images from COVID-19 patients.

2. The second dataset is “Fig 1 COVID-19 Chest X-ray Dataset Initiative” [10, 30], which

selected 37 X-ray images from COVID-19 patients.

3. To overcome the unbalanced data problem, we used a resampling technique (random

under-sampling) which involves randomly deleting examples from the majority class until

the dataset becomes balanced. We randomly used 565 normal X-ray images from the chest

X-ray image dataset provided by Kaggle [31].

A total of 1102 chest X-ray images were obtained by combining the above three public data-

sets, and the dataset consists of 565 normal and 537 COVID-19 cases. These images are ran-

domly divided into a training set (70%) and a test set (30%), and ensure that multiple images

of the same patient are in a training set or test set. In the training phase, 20% of the training set

will be used as the validation set. Tables 1 and 2 list the specific image division information

and image distribution. The normal and COVID-19 images extracted from our dataset are

shown in Fig 3.

All experimental operations are done on Google Colaboratory because it provides a com-

plete Keras library and excellent experimental conditions (Tesla P100 PCI-E 16GB GPU and

12.72GB RAM).

3.2. Evalution indexes

In order to evaluate the performance of the transfer learning method and our proposed

method. This study used different evaluation indexes to evaluate the chest X-ray image. The

evaluation indexes are as follows:

SensitivityðSENÞ ¼
TP

TP þ FN
ð1Þ

SpecificityðSPEÞ ¼
TN

TN þ FP
ð2Þ

AccuracyðACCÞ ¼
TPþ TN

TPþ TN þ FP þ FN
ð3Þ

Table 1. The division of training set and test set.

Type Normal COVID-19 Total

Train Set 404 400 804

Test Set 161 137 298

https://doi.org/10.1371/journal.pone.0242535.t001

Table 2. Images sample source.

Sample Type Number of X-ray Images Sources and Repository

COVID-19 500 GitHub (Dr. Joseph Cohen) [29]

COVID-19 37 GitHub (Chung et al.) [30]

Normal 565 Kaggle [31]

https://doi.org/10.1371/journal.pone.0242535.t002
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PrecisionðPREÞ ¼
TP

TPþ FP
ð4Þ

F1 � Score ¼
2� PRE� SEN
PREþ SEN

ð5Þ

In the above equation, TP (true positive) and TN (true negative) denote the number of posi-

tive (COVID-19) and negative (Normal) samples, respectively, that were correctly classified.

FP (false positive) and FN (false negative) denote the number of negative (Normal) and posi-

tive (COVID-19) samples, respectively, that were misclassified. PRE represents the proportion

of samples that are classified as positive that are actually positive. F1-Score can be seen as a har-

monic average of precision and recall. AUC: Area under ROC curve.

3.3. Implementation details

As mentioned earlier, we discussed two COVID-19 diagnostic methods in our research:

1. Using pre-trained models for transfer learning, these models include VGG16, InceptionV3,

ResNet50, DenseNet121 and Xception.

2. Using Deep features and traditional machine learning classification methods automatically

diagnose COVID-19. For the first method, we removed the top layer of each model and fro-

zen the previous convolutional layer, and added my own dense layers at the bottom. Add a

dropout layer in the dense layer, and use L1 regularization to prevent the model from over-

fitting, and define loss as a categorical cross entropy. The Adam optimizer is used for train-

ing on the proposed dataset. We set the hyperparameters used in the training based on

experience: learning rate = 1e-7, epochs = 1000, batch size = 32. During training, to obtain

Fig 3. X-ray images dataset for normal cases (first row) and COVID-19 patients (second row).

https://doi.org/10.1371/journal.pone.0242535.g003
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the best generalization performance of the trained neural network, we also set early stop-

ping. For the second method, 10-fold cross-validation is used to evaluate the generalization

performance of each machine learning classifier.

4. Results and discussion

4.1. Classification results on our proposed dataset

First, five pre-trained models are used to classify chest X-ray images. Table 3 shows the results

of a detailed comparison of five different pre-trained models using six evaluation indexes. By

repeating three experiments (take the average of the three results, each result is given in S1

Table), this transfer learning method has shown excellent results in our proposed dataset.

Overall, Xception showed a reasonable average accuracy of 96.75%. Compared with several

other models, the effect of the model is relatively stable, with a standard deviation of only

0.16%. It can also be noted that the Xception model also shows good sensitivity (average sensi-

tivity is 94.16%), which is important because we want to limit the missed diagnosis rate of

COVID-19 as much as possible. At the same time, the model also performs well in the classifi-

cation of normal cases, with an average specificity of 99.17%. The average F1 Score is 96.38%,

and the average AUC value has also reached 96.54%, which shows that Xception can more

accurately distinguish normal cases from COVID-19. The possible reason is that Xception

uses depthwise separable convolution to replace the original convolution operation in Incep-

tionV3. Compared with ordinary convolution, depthwise separable convolution has stronger

expression ability. The introduction of depthwise separable convolution did not reduce the

complexity of the network, but to widen the network so that the number of parameters is simi-

lar to Inception v3, and then the performance will be better under this premise. In the S1 Fig,

the train/validation loss and train/validation accuracy of the Xception model are given. It can

be seen from the S1 Fig that when the epoch is 314, the validation loss is the lowest, and the

training is stopped at this time. We set an early stopping during training to prevent the deterio-

ration of model generalization performance caused by continued training.

To further improve the generalization ability and accuracy of the model, we used pre-

trained deep learning models and traditional machine learning classification methods to diag-

nose COVID-19 automatically. Extract and save the bottleneck features on five pre-trained

models, and then use five machine learning classification algorithms to distinguish normal

and COVID-19.

Tables 4–8 summarize the evaluation results of different models and five machine learning

algorithms. At the same time, the confusion matrix of each method is displayed in the S4

Table. These five machine learning algorithms include SVM, RF (Random Forest), DT (Deci-

sion Tree), AdaBoost and Bagging. From these tables and S4 Table, it can be seen that com-

pared with the traditional transfer learning method, the evaluation index has been improved.

It is worth noting that each pre-trained model with different classifiers has excellent

Table 3. Evaluation results of transfer learning methods.

Model SEN% SPE% PRE% ACC% F1% AUC%

VGG16 [19] 91.73 ± 0.34 98.97 ± 0.29 98.70 ± 0.36 95.64 ± 0.00 93.81 ± 1.82 95.34 ± 0.02

InceptionV3 [20] 92.46 ± 0.34 98.76 ± 0.00 98.45 ± 0.00 95.72 ± 0.17 95.36 ± 0.18 95.75 ± 0.12

ResNet50 [21] 89.29 ± 2.41 95.65± 0.51 94.59 ± 0.56 92.73 ± 1.03 91.85 ± 1.27 92.47 ± 1.14

DenseNet121 [22] 91.24 ± 0.60 98.35 ± 0.30 97.91 ± 0.37 95.08 ± 0.42 94.46 ± 0.48 94.75 ± 0.44

Xception [23] 94.16 ± 0.60 99.17 ± 0.29 98.97 ± 0.36 96.75 ± 0.16 96.38 ± 0.18 96.54 ± 0.16

https://doi.org/10.1371/journal.pone.0242535.t003
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performance. Table 8 has the best performance, and the accuracy of Xception + SVM reaches

99.33%. Compared with other methods, the AUC and F1 Score are also optimal.

The sensitivity is 99.27%, indicating that the percentage of COVID-19 correctly judged as

COVID-19 is 99.27%, which means that 136 out of 137 COVID-19 cases were correctly classi-

fied (in S4 Table), and only 1 case was missed; Also, we found that the specificity of this

method reached 99.38%, which means that 160 of the 161 normal cases were correctly classi-

fied, and only 1 case was misdiagnosed. Because too many missed cases and misdiagnosed

cases will increase the burden on the medical system, it will lead to additional PCR testing and

extra care. The possible reasons are: the diversity of the image details of the COVID-19 case

makes the individual difference more extensive than the normal case. Besides, the image fea-

tures of positive cases are more obvious than those of normal cases and are easier to identify.

Compared with the Xception model in Table 3, the effect of these evaluation indicators has

been improved, especially in terms of accuracy, which has been improved by nearly three per-

centage points. The reason for the apparent improvement in effect may be that: the bottleneck

features of the CNN model pre-trained first contain high-level and highly discriminative infor-

mation. Therefore, the traditional machine learning classification method can use these

selected deep features to improve the performance of the COVID-19 classification task. Fur-

thermore, SVM has good learning ability, and the result of learning has a good generalization

effect. It is a good classifier in machine learning. To further illustrate our evaluation results, we

have compared the time of each pre-trained model with the time of deep feature extraction (in

S3 Table). It can be clearly seen from the table that the time of deep feature extraction is much

less than that of traditional transfer learning, and every machine learning method takes no

more than 30 seconds to predict. Therefore, the combination of deep features and machine

learning methods performs better in terms of results and has higher time efficiency than tradi-

tional transfer learning methods. In summary, these high-precision diagnostic effects are what

we want, and are also expected by clinical computer-aided diagnosis.

4.2. Classification results on another dataset

To further check generalization and robustness, we tested our best performing method on

another dataset prepared by Ozturk et al. [16]. The dataset contains around 500 normal and

Table 4. Evaluation results of VGG16 combined with different classifiers.

Method SEN% SPE% PRE% ACC% F1% AUC%

VGG16 + SVM 94.16 99.38 99.23 96.98 96.63 96.77

VGG16 + RF 96.35 97.52 97.06 96.98 96.70 96.93

VGG16 + DT 95.62 95.03 94.24 95.30 94.92 95.33

VGG16 + AdaBoost 97.08 96.89 96.38 96.98 96.73 96.99

VGG16 + Bagging 97.81 98.76 98.53 98.32 98.17 98.28

https://doi.org/10.1371/journal.pone.0242535.t004

Table 5. Evaluation results of InceptionV3 combined with different classifiers.

Method SEN% SPE% PRE% ACC% F1% AUC%

InceptionV3 + SVM 99.27 98.76 98.55 98.99 98.91 99.01

InceptionV3 + RF 96.35 98.14 97.78 97.32 97.06 97.24

InceptionV3 + DT 94.16 98.14 97.73 96.31 95.91 96.15

InceptionV3 + AdaBoost 93.43 96.89 96.24 95.30 94.81 95.16

InceptionV3 + Bagging 98.54 98.76 98.54 98.66 98.54 98.65

https://doi.org/10.1371/journal.pone.0242535.t005
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125 COVID-19 chest X-ray images. Among them, 125 COVID-19 images are from the same

source as our dataset. However, the normal X-ray images was collected from Chest X-ray data-

set provided by Wang et al. [9]. After training, our best method also achieved an accuracy of

over 95% on another dataset. The result is illustrated in Table 9.

Table 10 compares the method proposed in this study with the current classification

method of COVID-19 images and normal images. Each index in the table is taken from the

best method in their research. In general, the methods proposed by our study perform better.

4.3. Limitations and future work

There are still several limitations in the current study. First, the deep features combined with

machine learning are only validated on COVID-19 vs. Normal classification task. In the future,

we plan to perform our proposed method on other COVID-19 classification tasks (e.g.,

COVID-19 vs. normal vs. bacterial pneumonia vs. viral pneumonia, severe patients vs. non-

severe patients, etc.). Second, the study has a potential limitation of a relatively still small num-

ber of COVID-19 and Normal images, despite being the better results compared to previous

literature so far. More COVID-19 and Normal images are needed to improve the robustness of

the proposed in future research. As future work, we plan to expand the dataset and introduce

CT images and evaluate the proposed method on a wider set of pulmonary diseases.

5. Conclusions

In this study, we propose an efficient diagnostic method for identifying and distinguishing

COVID-19 cases in chest X-rays. In general, we have implemented two methods, namely the

conventional transfer learning method and the combination of a pre-trained deep learning

model and traditional machine learning classification. Although the Xception model shows an

accuracy (96.75%) in our traditional transfer learning method, it also shows high specificity

and sensitivity. However, conventional transfer learning methods do not have advantages over

other related research. To further improve the diagnostic accuracy, this study proposes an effi-

cient diagnosis method for COVID-19 cases based on the combination of deep feature extrac-

tion and machine learning classification. The bottleneck features are extracted for the five pre-

Table 6. Evaluation results of ResNet50 combined with different classifiers.

Method SEN% SPE% PRE% ACC% F1% AUC%

ResNet50 + SVM 87.59 90.06 88.24 88.98 87.91 88.83

ResNet50 + RF 97.08 95.03 94.33 95.97 95.69 96.06

ResNet50 + DT 90.51 93.79 92.54 92.28 91.51 92.15

ResNet50 + AdaBoost 88.32 91.93 90.30 90.27 89.30 90.12

ResNet50 + Bagging 96.35 96.27 95.65 96.31 95.99 96.31

https://doi.org/10.1371/journal.pone.0242535.t006

Table 7. Evaluation results of DenseNet121 combined with different classifiers.

Method SEN% SPE% PRE% ACC% F1% AUC%

DenseNet121 + SVM 96.35 99.38 99.25 97.99 97.78 97.87

DenseNet121 + RF 90.51 99.38 99.20 95.30 94.66 94.94

DenseNet121 + DT 95.62 97.52 97.04 96.64 96.32 96.57

DenseNet121 + AdaBoost 95.62 97.52 97.04 96.64 96.32 96.57

DenseNet121 + Bagging 94.89 99.38 99.24 97.32 97.02 97.13

https://doi.org/10.1371/journal.pone.0242535.t007
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trained models, and then five machine learning algorithms are used for classification. During

the experiment, the best combination of the extracted feature vector and machine learning

algorithm (Xception + SVM) was found. This best combination achieved an accuracy of

99.33%. Compared with the best model Xception in baseline work, not only the diagnostic

accuracy of this method has been improved by 2.58%, but several other evaluation indicators

have also been significantly improved. The sensitivity has increased by 5.11%, and the AUC

has risen by 2.78%. To make our method more convincing, we have compared the time of

each pre-trained model with the time of deep feature extraction. We found that the time of

deep feature extraction is much less than that of traditional transfer learning. Therefore, the

combination of deep features and machine learning methods performs better in terms of

results and has higher time efficiency than traditional transfer learning methods. At the same

time, to check the robustness, we tested our proposed method on another dataset prepared by

Ozturk et al. Our proposed method achieved an overall accuracy of 95%. Compared with pre-

vious studies, our method also has certain advantages. It can be seen that our research has spe-

cific reference significance for the diagnosis of COVID-19. In future work, we plan to expand

the data set and introduce CT images. At the same time, the traditional network method is

optimized, and other more efficient network structures are tried to improve the classification

Table 8. Evaluation results of Xception combined with different classifiers.

Method SEN% SPE% PRE% ACC% F1% AUC%

Xception + SVM 99.27 99.38 99.27 99.33 99.27 99.32

Xception + RF 97.81 98.14 97.81 97.99 97.81 97.97

Xception + DT 89.78 95.65 94.62 92.95 92.14 92.72

Xception + AdaBoost 89.05 94.14 93.13 91.95 91.04 91.73

Xception + Bagging 98.54 99.38 99.26 98.99 98.90 98.96

https://doi.org/10.1371/journal.pone.0242535.t008

Table 9. Performance of the best method on other dataset [16].

Method (best) SEN% SPE% PRE% ACC% F1% AUC%

InceptionV3 + SVM 78.38 99.33 96.67 95.19 86.57 94.38

InceptionV3 + Bagging 81.08 99.33 96.78 95.72 88.24 95.02

Xception + SVM 81.08 99.33 96.78 95.72 88.24 95.02

Xception + Bagging 81.08 99.33 96.78 95.27 88.24 95.02

https://doi.org/10.1371/journal.pone.0242535.t009

Table 10. Comparison of results between our proposed method and other methods.

Method Type of Images Database Size ACC%

Narin et al. [15] Chest X-ray 50 COVID-19 and 50 Normal 98.00

Zhang et al. [6] Chest X-ray 1431 COVID-19 and 100 Normal 96.00

El-Din Hemdan et al. [11] Chest X-ray 25 COVID-19 and 25 Normal 90.00

Apostolopoulos et al. [14] Chest X-ray 224 COVID-19 and 504 Normal 98.75

Wang et al. [32] Chest CT 195 COVID-19 and 258 Normal 82.90

Zheng et al. [33] Chest CT 313 COVID-19 and 229 Normal 90.80

Proposed Chest X-ray 537 COVID-19 and 565 Normal 99.33

125 COVID-19 and 500 Normal [16] 95.02

https://doi.org/10.1371/journal.pone.0242535.t010
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performance further. We will also try to apply this method to medical devices or extend it to

other medical tasks to help screen COVID-19 and diagnose other diseases.
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