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The Lattice Kinetic Monte Carlo 
Simulation of Atomic Diffusion and 
Structural Transition for Gold
Xiang He1, Feng Cheng2 & Zhao-Xu Chen2

For the kinetic simulation of metal nanoparticles, we developed a self-consistent coordination-
averaged energies for Au atoms based on energy properties of gold bulk phases. The energy barrier of 
the atom pairing change is proposed and holds for the microscopic reversibility principle. By applying 
the lattice kinetic Monte Carlo simulation on gold films, we found that the atomic diffusion of Au on the 
Au(111) surface undergoes a late transition state with an energy barrier of about 0.2 eV and a prefactor 
between 40~50 Å2/ps. This study also investigates the structural transition from spherical to faceted 
gold nanoparticles upon heating. The temperatures of structural transition are in agreement with the 
experimental melting temperatures of gold nanoparticles with diameters ranging from 2 nm to 8 nm.

Recently much attention has been paid to metal nanoparticles, owing to their unique thermodynamic, electrical, 
magnetic, optical, chemical and catalytic properties, which strongly depend on the particle size and geometries1,2. 
Gold nanoparticles have been extensively studied with a focus on their newly uncovered catalytic properties3. For 
example, gold nanoparticles play an important role in chemical engineering and materials science for their supe-
rior features, which can be used in the fields of industrial catalysts, clean energy and environment4–7. Researchers 
have found that the morphology and the size of particles are crucial to the physical and chemical properties of 
nanoparticles6,8,9. Because of the sensitive relationship between the properties, size and morphology of the nano-
particle, and the tendency for particles to aggregate due to their high surface energies, various methods have been 
developed to control gold nanoparticle morphology and size2. Naturally, the investigations of the dynamics of 
the nanoparticles are very important for the proper preparation and stabilization of nano-materials with specific 
properties by tuning their shape and size. However, it is still a challenge to directly observe the formation and 
transformation of the metal nanoparticles even with advanced physical microscopic imaging techniques, such 
as STM and AFM7,8,10,11. Therefore, electronic structure calculations and atomistic simulations have been widely 
used in the study of gold nanoparticles in addition to the experimental observations at a nanoscopic scale.

First-principles density functional theory has been successfully applied to the metal system, but the typical 
studies are on the small clusters due to the limitation of computation resources12,13. The kinetic Monte Carlo 
(kMC) method can simulate a larger temporal step than the fine temporal step produced by the molecular dynam-
ics method, which makes it suitable to study the long-time evolution of large nano-metal systems containing 
numerous atoms14–16. The reliability and accuracy of the kMC simulation are determined by the calculation of all 
transition rates, which can be computed from the interatomic interaction and the energy barriers of transitions.

Chen and Wang developed a simple interatomic interaction model for solid solution where the pair interac-
tion between nearest lattice sites was considered17. The utilized pair interaction was derived from physical param-
eters of the metals without semi-empirical parameters and was successfully applied to study the micro alloys17,18. 
However, the utilized pair interactions considered only the type of pairing atoms and ignored of the coordination 
number. This simplification leads to problems when the study turns from a uniform solid solution to the nan-
oparticles, where the studied atoms on surfaces are much different from the inner ones. Therefore, a developed 
pair interaction model that can handle atoms in different coordination environment such as at corners and edges 
is necessitated by the simulation of faceted metal nanoparticles. In addition, a reasonable analytical approach to 
calculate the energy barrier is extremely crucial to the kinetic simulation of nanoparticles.
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Recently we proposed an equation to calculate the energy barriers based on atomic interaction19. In this 
work, an interatomic interaction model distinguishing the atomic coordination number is developed and the 
calculation method of energy barriers depending on the location of the transition state is introduced. The 
coordination-averaged energies of Au atoms were derived and applied to study the diffusion of Au adatom on 
Au(111) and structural transition of gold nanoparticles.

Model and Theoretical Methods
Model and kMC algorithm. The initial Au nanoparticle is modeled in a rigid three-dimensional hexagonal 
cell of lattice sites. Each lattice site is either unoccupied or occupied by one Au atom. The nearest distance between 
two Au atoms is 2.8 Å. One Au atom only interacts with the other atoms at the nearest distance and belongs to the 
same cluster. The gyration radius of Au nanoparticle, Rg, is defined as

∑= −
=

R
n

r r1 ( ) ,
(1)g

i

n

i c
2

1

2

where n is the number of atoms in the cluster, ri is the coordinates of the ith atom in the cluster and rc is the center 
of mass of the cluster. The diameter of nanoparticle D is defined as = × ×D R2 5/3 g .

In each kinetic Monte Carlo step, one gold atom of the cluster either tries to move spontaneously to an empty 
neighbor site or is pushed to the neighbor empty sites by other neighbor gold atoms.

The attempting movement has the time of occurrence Δ t =  − log u/r, where u is a random number between 
0 and 1 and r is the rate constant for the movement. The rate constant r at temperature T is determined by the 
Arrhenius equation

= −r k T
h

e , (2)
B E k T/a B

where Ea is the the energy barrier of the attempting movement of the atom and kB is the Boltzmann constant.
In this study, we adopted the algorithm of the first reaction method which accepts the movement with the 

smallest time of occurrence Δ t among all possible movements20,21.

Atomic coordination-averaged energy. With the lattice model, each atom of the nanoparticles is paired 
with coordinated atoms. We define the atomic coordination-averaged energy of Au atom, Iz, in the z-fold coor-
dinated Au bulk as
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where EAu is the energy of an isolated Au atom and Ecoh
z  is the cohesive energy of Au bulk. The cohesive energy is 

defined by
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where Ebulk
z  is the total energy of the bulk and N is the number of atoms in the bulk. Since each atom in the bulk is 

z-fold coordinated,
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where (i, j) are the pairs of neighboring atoms in the bulk. Clearly, the bulk energy is also the sum of the intera-
tomic interactions over all pairs in the bulk and the pair interaction is the sum of coordination-averaged energies 
of the two pairing atoms.

We extend Eq. (5) to any independent metal cluster and assign the pair interaction to the two pairing atoms 
according to the coordination number:
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where the atom i (n-fold coordinated) and the atom j (m-fold coordinated) are paired in the cluster. Thus, the total 
energy of the cluster can be calculated by the coordination-averaged energies sum of all atoms.

It should be mentioned that when the pair (i, j) is broken, the energy change is not +I Ii
n

j
m. The energy to 

break the pair is

= − − + − − − + .− −E n I I m I I I I( 1)( ) ( 1)( ) ( ) (7)b
ij

i
n

i
n

j
m

j
m

i
n

j
m1 1

The first two items in the rhs. of Eq. (7) are the energy change due to the decrease of the coordination number of 
the atoms. If only one atom, such as i, is coordinated after the pair is broken, the Eq. (7) can be cast into
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If various pairs are broken simultaneously, Eqs (7) and (7′ ) can be applied continuously once for one broken 
pair to calculate the total energy change. Similarly, the energy to form one or various pairs can be calculated by 
applying Eq. (8).
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According to Eqs (7) and (8), both Eb
ij and Ef

ij are positive. We define Ef
ij to be positive only for the sake of 

convenience, though conventionally it is negative. Once knowing the coordination-averaged energies of Au atoms 
with different coordination numbers, one could calculate the energy of Au nanoparticles for kMC simulation. The 
determination of Izs is presented in the discussion section. Before that, the calculation of the energy barrier, which 
is crucial to the kMC simulation, is discussed in the following section.

Energy barrier of pairing change. In our simulation, the movement of one Au atom in the nanoparticle 
is attempted for each kMC step. The movement involves the breaking and formation of various Au-Au pairs. For 
large nanoparticles, it is hard to compute the energy barrier of the movement using the first-principles density 
functional theory. An reliable approach holding for the microscopic reversibility principle is highly desired to 
calculate the barriers Ea.

Generally, the energy barrier Ea should be between Δ E and Eb for endothermic reactions or between 0 and Eb  
for exothermic reactions, where Δ E is the total energy change and Eb is the total energy to break Au-Au pairs 
in the movement, respectively. The total energy change Δ E =  Eb −  Ef, where Ef is the absolute value of the total 
energy to form Au-Au pairs. Thus a possible expression satisfying the microscopic reversibility principle is

α= ∆ +E E E , (9)a f

where the co-efficient α (0 ≤  α ≤  1) characterizes the location of the transition state along the reaction coordinate. 
As a coarse approach, we take unitary α in Eq. (9) and obtain = ∆ + = .E E E Ea f b

(0)  Clearly Ea
(0) represents the 

energy needed to break Au-Au pairs in the attempting movement.
The energy barrier in our previous study19 was calculated as
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Compared with Ea
(0), the fractional α makes the transition state move towards the final state. The energy barrier 

with even small α that fits the principle of microscopic reversibility are also made available by

= ∆ +
+ +

E E
E

E E
E

E E
E ,

(11)
a

f

b f

f

b f
f

(2)
2

2 2

= ∆ +
+ + +

.E E
E

E E
E

E E

E

E E
E

(12)
a

f

b f

f

b f

f

b f
f

(3)
2

2 2

4

4 4

Obviously, these energy barriers with small α correspond to the late transition states.
The choice of Eqs (10) to (12) depends only on the position of the transition state along the reaction coordi-

nate. Once Eb and Ef are known, the calculation of the energy barriers does not require any empirical parameter, 
which is usually present when applying the Brönsted-Evans-Polanyi principles22,23. Furthermore, the movement 
of Au atoms in different coordination environments, such as the corner, edge and surface of the nanoparticle, 
involves different Au-Au pairs; thus, the calculated Ea and rate constants of the Au movements are distinguished 
as a consequence in our model.

Results and Discussion
The coordination-averaged energies of Au atoms. The bulk gold is the hexagonal close packing struc-
ture. The Au atom in the bulk has the coordination number of 12 and a cohesive energy of − 3.81 eV24. To calcu-
late Iz(z <  12) by Eq. (3), one should know Ecoh

z  for other gold bulk phases. Järvi et al. calculated the cohesive 
energies of Au bulk for diamond, simple cubic and body centered cubic phases based on the ReaxFF framework25. 
Meanwhile, the cohesive energy of one-fold coordinated Au can be derived from the dissociation energy of an Au 
dimer26. Thus, the cohesive energies of Ecoh

12 , Ecoh
8 , Ecoh

6 , Ecoh
4  and Ecoh

1  are obtained from the literatures. But a lack of 
cohesive energies remains a problem for other coordination numbers.

Guevara et al. found that the cohesive energy depends on coordination with the power of 2/327. Ibach pointed 
out that the binding energy of atoms can be fitted with a fractional exponent of the coordination number of 
0.3 according to the effective medium theory at the lowest level of approximation28. Taking these findings into 
account and by the definition of Eq. (3), we proposed that the coordination-averaged energies of Au can be 
expressed as a function of coordination number z by

= ⋅ + ⋅ .− −I A z B z (13)z 1/3 2/3

Now all Iz can be obtained by fitting known =E z( 1, 4, 6, 8, 12)coh
z  using Eq. (13). It worth noting that EAu is 

unknown in our model and needs to be worked out.
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Since the sum of the cohesive energy and the formation energy of vacancy Evac
f , which is 0.89 eV for the Au 

bulk29, is equal to the energy change of the removal of one atom from the bulk, the following equation holds in 
our model from Eqs (7) and (8):

+ = + × − ×E E E I I11 12 12 13 (14)coh vac
f

Au
12 11 12

Such that Iz and EAu are iterative solutions to Eqs (3), (13) and (14). By initializing EAu to some value, Iz(z =  1, 
4, 6, 8, 12) are determined by Eq. (3) and I11 is fitted by Eq. (13). From Eq. (14), EAu is calculated and used to deter-
mine Iz again until EAu is converged. The converged solutions of EAu and the coordination-averaged energies of IJ

z 
are listed in Table 1.

Recently, Backman et al. developed a bond order potential for gold and also calculated the cohesive energies 
of the diamond, simple cubic and body centered cubic Au bulk phases30. The atomic coordination-averaged ener-
gies derived from their results, IB

z, is also listed in Table 1. The two series of Iz as a function of coordination num-
ber are drawn in Fig. 1. It is clear that the calculated Iz(z =  1, 4, 6, 8, 12) with solved EAu by the definition Eq. (3) 
are very close to the fitting curves, which means that the calculation results, without extra empirical or 
semi-empirical parameters, are self-consistent in our model.

The two series of EAu and Iz of low-coordinated Au in Table 1 are somewhat different from each other. The 
difference of EAu is 0.54 eV. To compare the influence on results with the two series of Iz, we calculated the deso-
rption energy Ed of the single Au adatom, which desorbs from the Au(111) surface and involves EAu as well as the 
low-coordinated I3. From Eqs (7) and (7′ ), we have

= + × − − × + .E E I I I I3 9( ) 3 ( ) (15)d Au
9 10 3 10

Using Eq. (15), the estimated Ed are 2.86 and 2.53 eV respectively. We performed further DFT calculation and 
found the desorption energy of the single Au atom was 2.54 eV, which is between the two estimated Ed. 
Interestingly, although the estimation of the desorption energy by our method is much simpler than the extensive 
DFT calculation, the results are numerically comparable. Since the estimated Ed using IB

z is much close to the DFT 
result, IB

z is used throughout the following studies.

Atomic diffusion of Au on Au(111) surface. Compared with the Monte Carlo method, the kinetic Monte 
Carlo method can simulate the evolution of processes, which makes the study on the physic properties related to 
time possible. In this section, the dynamic simulations of the Au atom on the Au(111) surface were performed 
from 200 K to 700 K using the energy barriers in Eqs (10)~(12) and two series of coordination-averaged energies 

z IJ
z(eV) IB

z(eV) z IJ
z(eV) IB

z(eV)

EAu − 3.53 − 2.99

1 − 4.68 − 4.13 7 − 1.01 − 0.91

2 − 2.71 − 2.46 8 − 0.90 − 0.81

3 − 2.02 − 1.80 9 − 0.81 − 0.74

4 − 1.61 − 1.44 10 − 0.74 − 0.67

5 − 1.34 − 1.20 11 − 0.68 − 0.62

6 − 1.15 − 1.03 12 − 0.63 − 0.57

Table 1.  The coordination-averaged energies of Au atoms with different coordination number (z). IJ
z and IB

z 
are derived with cohesive energies reported in refs 25 and 30 respectively.

Figure 1. The dash lines are the fitting curves of the coordination energies by Eq. (13). The black dash line is 
with EAu of − 3.53 eV and the red one is with EAu of − 2.99 eV. Iz(z =  1, 4, 6, 8, 12) calculated by Eq. (3) with two 
different EAus are presented by the black and red open circles respectively.
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in Table 1. The rational position of the transition state along the reaction coordinate of the gold atom movement 
is examined by the behavior of atomic diffusion of Au.

The mean-square displacement (MSD) is defined as |R(t) −  R(0)|2, where R(0) is the initial position of the 
diffusing Au atom and R(t) is the position at time t. Typical behaviors of MSD in our simulation results are illus-
trated in Fig. 2, which is simulated using IB

z in Table 1.
In our study, one diffusion simulation is repeated 100 times at a constant temperature. Thus, each point in 

Fig. 2 is the average of 100 simulations. The MSD increases linearly with the time, and the diffusion coefficient D 
can be extracted from the slope of MSD to time according to Einstein relation:

=
− |

.D
R t R

t
( ) (0)

4 (16)

2

The relations between the diffusion coefficient, simulated with different barriers, and the temperature are pre-
sented in Fig. 3. As can be seen, D follows the well known Arrhenius relationship

= −D D e (17)E k T
0

/A B

in the temperature range of simulations, where D0 is the pre-exponential factor and EA is the activation energy of 
the diffusion.

The calculated D0 and EA with different barriers and coordination-averaged energies are listed in Table 2.
The experimental measurement of the diffusion of Au adatoms on the Au(111) surface is quite rare. Jaklevic 

and Elie have reported the scanning tunneling microscope (STM) observation of surface diffusion of Au on a 
clean and annealed Au(111) surface31. Lin and Chung have measured the gold surface diffusion activation energy 
of ~0.22 eV using STM in a narrow range of temperatures32. From Table 2, one can find that the simulation with 
Ea

(2) produces reasonable activation energies (0.212 and 0.177 eV) coinciding with the experimental measure-
ment. Clearly, the atomic diffusion simulated by Ea

(2) is easier (harder) than by Ea
(1) (Ea

(3)), which indicates a late 
transition state along the reaction coordinate. To our knowledge, no further experiment results have been 

Figure 2. The mean-square displacement of Au vs time at different temperatures with IB
z and using the 

barrier Ea
1( ) at 600 K, Ea

2( ) at 400 K and Ea
3( ) at 200 K.

Figure 3. The logarithmic diffusion coefficient vs reciprocal temperature. The solid circles and open circles 
represent the diffusion coefficient simulated using the Iz

J and Iz
B respectively. The circles in black, red and green 

are simulated with the barriers of Eqs (10)~(12), respectively, and fitted by dash lines.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:33128 | DOI: 10.1038/srep33128

reported and only theoretical results of the pre-exponential factor are available due to the surface reconstruction 
of Au(111)33.

Generally, theoretical studies estimate that the barrier to hopping of the Au adatom on Au(111) surfaces is 
not larger than 0.2 eV and even smaller in some literatures33. Using the embedded atom method (EAM), Boisvert 
and Lewis studied the homodiffusion of single adatoms on a flat Au(111) surface and found D0 of 0.6 Å2/ps and 
Ea of 0.014 eV34. However, their first-principles calculation found that the energy barrier for adatom homodiffu-
sion on Au(111) surface is 0.22 ±  0.03 eV, which is much larger than the results of EAM35. Within a large range 
of temperatures, Fernando and Treglia reported Ea of 0.12 eV and D0 of 3.4 Å2/ps by the molecular dynamic 
simulations of diffusion of Au on Au(111) with many-body tight-binding potentials36. Agrawal et al. investigated 
the hopping self diffusion on Au(111) surfaces using the Monte Carlo variational transition state theory and the 
Lennard-Jones interactions and found an EA of 0.12 eV and D0 of 0.85 Å2/ps37.

The prefactors in our simulations are one order of magnitude larger than the existing calculation results36. It 
is worth noting that those large prefactors (which means the long-distance diffusion) are accompanied by small 
diffusion barriers (which means the easy diffusion). Since our simulation determines a larger diffusion barrier 
than those simulations, the corresponding perfactors should also be larger to produce the similar diffusion behav-
ior34,36,37. In fact, Liu et al. have pointed out that prefactors of single adatoms of FCC metals are in the range of 
1~100 Å2/ps by EAM study38. Furthermore, Ibach considered that the prefactor of surface diffusion on metals 
should be about 10 Å2/ps according to the transition state theory28. Thus, our results of D0 (42.3 and 49.9 Å2/ps) 
are reasonable.

Through our simulations, we found that the diffusion of an Au adatom on Au(111) undergoes a late transition 
state and the Eq. (11) can produce feasible diffusion barriers to simulate Au-Au pairs.

Nanoparticle structural transition. The transformation of gold nanoparticles involves more types of 
formed and broken Au-Au pairs than the atomic diffusion on the surface. Thus we simulated the transformation 
of nanoparticles under heating to inspect the developed coordination-averaged energies and the energy barrier. 
The spherical FCC nanoparticles with diameters between 22 and 80 Å were built on the rigid lattice and heated 
from 200 to 1400 K. The temperature was increased by 10−3 K per Monte Carlo step. The simulation was pre-
formed with the coordination-averaged energies IB

z in Table 1 and the barrier Ea
(2). The root of mean-square dis-

placement (RMSD) was used to observe the transformation of the heated gold nanoparticles.
Some instantaneous RMSDs with respect to the temperature during the heating of gold nanoparticles are 

shown in Fig. 4. It worth noting that the elapsed time of each Monte Carlo step at low temperatures is longer than 
at high temperatures which makes the heating at low temperatures far slower than at high temperatures. During 
the heating, the RMSD oscillated around small values under 300 K for long periods of time, then rose linearly with 
the increasing temperatures in short periods of time. At high temperatures, the RMSD should approach a con-
stant value since the atoms cannot depart from the finite volume of the nanoparticles before the evaporation takes 
place. The RMSD as a function of temperatures can be well shaped by the sigmoid function as shown by the blue 
dotted lines in Fig. 4. The observed behavior of RMSD in Fig. 4 is similar to the characteristic of the transition 

Barrier

With IJ
z With IB

z

D0(Å2/ps) EA(eV) D0(Å2/ps) EA(eV)

Ea
(1) 41.9 0.394 42.9 0.318

Ea
(2) 42.3 0.212 49.9 0.177

Ea
(3) 106.4 0.139 100.3 0.118

Table 2.  The pre-exponential factor (D0) and activation energy (EA) of Au on Au(111).

Figure 4. The RMSD of the heated 34 Å, 43 Å and 53 Å nanoparticles as a function of temperatures are 
shown in black, red and green lines, respectively, which are fitted in blue dotted lines. The corresponding 
derivatives of RMSD with respect to the temperature are shown in black, red and green dash lines.
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from a solid phase to a liquid-like phase in MD simulations39. Lewis et al. have found that small gold clusters can 
undergo several structural transitions as a function of temperature40. However, it is hard to define the melting of 
nanoparticles in the rigid lattice model since the interaction and the distance of two neighbor atoms are fixed, 
which are flexible in off-lattice MD simulations. Nevertheless, we can locate the temperature of structural transi-
tion of the nanoparticle by finding the extreme point of the derivative of RMSD with respect to the temperature 
which are shown by the dash lines in Fig. 4.

In this way, the transition temperatures T * of nanoparticles with diameters between 22 and 80 Å are deter-
mined in the range of a liquid-like phase. Compared with initial sphere structures, the gyration radius of sim-
ulated nanoparticles at T * increased by ~0.1 Å, which indicates that the morphology of nanoparticles becomes 
less spherical. The structures of the gold nanoparticles with diameters of 34 Å, 53 Å and 80 Å at the transition 
temperatures are presented in Fig. 5 together with their initial spherical structures at 200 K. Notably, the initial 
structure undergoes surface reconstruction upon heating and the nanoparticles turn into faceted structures at 
the transition temperatures. The structural transition is expected since the spherical structure is far from the 
equilibrium structure and the nanoparticle will change towards the faceted structures upon heating41,42. Thus, T *  
corresponds to the transition from the spherical structure to the faceted structure. It has been observed in the 
MD simulations using the modified embedded atom method that the initial FCC spherical gold nanoclusters 
transformed to the faceted structure, followed by a transition near the melting point43. Backman et al. also found 
that the small gold clusters transformed from spherical to faceted clusters at elevated temperatures at the onset 
of melting30. We, therefore, expect the structural transition from spherical to faceted structures found here to be 
strongly related to the melting of nanoparticles.

Both experimental and theoretical literature have found the well-known melting-point depression phe-
nomenon of small nanoparticles, which melt at lower temperatures than bulk. The ratio of nanoparticle phase  
transition temperature, T *, to gold bulk melting temperature is shown in Fig. 6. The experimental results and MD 
simulation results of melting temperatures are shown for comparison. Figure 6 exhibits a familiar behavior of 
melting-point depression of nanoclusters and approaches to unitary at large scale30,40,42,44. Backman et al. found 
that the simulated melting points of gold nanoclusters ranging from 2 to 18 nm are higher than experiments, which 
was attributed to the superheating30. Lewis et al. also reported notably higher melting points than experiments  
for gold nanoclusters smaller than 2.5 nm40. Compared with these results, the transition temperatures in our 
simulation are comparable to the experimental results of melting temperatures by Buffat and Borel44. The above 
results show that the adopted coordination-averaged energies and energy barrier are feasible and reasonable to 
simulate the structural transition of gold nanoparticles upon heating.

Figure 5. The initial spherical structures at 200 K of gold nanoparticles with diameters of (a) 34 Å, (b) 53 Å 
and (c) 80 Å. The respective structures at transition temperatures of (d) 691 K, (e) 988 K and (f) 1077 K after 
heating.
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Conclusions
The self-consistent coordination-averaged pairing energies of Au atoms are developed and applied in our kMC 
simulations on gold films and nanoparticles. Applying our proposed energy barriers based on the pairing change, 
we found that the atomic diffusion of Au on the Au(111) surface undergoes a late transition state along the reac-
tion coordinate. A reasonable energy barrier of about 0.2 eV and a reliable prefactor between 40 and 50 Å2/ps are 
determined for the diffusion. Upon heating, the structural transition from spherical to faceted gold nanoparticles 
is investigated by kMC simulations as well. The simulated temperatures of structural transition are in agreement 
with the experimental results on the size dependence of gold melting temperatures. We expect that our proposed 
coordination-averaged energy model and the scheme to calculate the barriers are applicable and universal making 
it appropriate for studying other metal nanoparticles due to the simplicity of the method.
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