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Abstract 

Volatile anesthetic-induced preconditioning (APC) has shown to have cardiac and cerebral protective properties 
in both pre-clinical models and clinical trials. Interestingly, accumulating evidences demonstrate that, except from 
some specific characters, the underlying molecular mechanisms of APC-induced protective effects in myocytes and 
neurons are very similar; they share several major intracellular signaling pathways, including mediating mitochondrial 
function, release of inflammatory cytokines and cell apoptosis. Among all the experimental results, cortical spreading 
depolarization is a relative newly discovered cellular mechanism of APC, which, however, just exists in central nervous 
system. Applying volatile anesthetic preconditioning to clinical practice seems to be a promising cardio-and neuro‑
protective strategy. In this review, we also summarized and discussed the results of recent clinical research of APC. 
Despite all the positive experimental evidences, large-scale, long-term, more precisely controlled clinical trials focus‑
ing on the perioperative use of volatile anesthetics for organ protection are still needed.
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Background
Perioperative organ protection has always been a critical 
issue for both anesthesiologists and surgeons. Neurologi-
cal and cardiac outcome severely affects postoperative 
morbidity and mortality. With the development of the 
modern medicine, the population of aging patients with 
ischemic heart and brain diseases has significantly 
increased. A large number of patients, who have already 
suffered heart attack or cerebral stoke, have to risk the 
ischemia–reperfusion (I/R) damage again in surgical 
operations, the results could be devastating.
Cardiomyocytes and neurons are both highly hypoxia-
sensitive cells with, however, very different properties. 
Myocytes are muscle cells and responsible for the sys-
tolic and diastolic functions. They are regulated mainly 
by beta adrenergic system. Neurons, on the contrary, are 

electrically excitable cells. They connect to each other 
and transfer electrical and chemical signals via syn-
apse. The two systems are separated from each other by 
blood–brain-barrier, which has highly selective perme-
ability. Interestingly, the ischemic conditioning phenom-
enon has been demonstrated in both organs. Volatile 
anesthetic (VA)-induced preconditioning contributes 
to both cardiac and cerebral protection in the I/R injury 
[1, 2]. Sevoflurane-, isoflurane- and desflurane-induced 
preconditioning have been confirmed to be capable of 
reducing the infarct size, improving perioperative car-
diac function significantly [3, 4]. In neurological experi-
ments, these medical gases also exert their remarkable 
protective properties against cerebral ischemic injury [5]. 
How could APC achieve ‘multiorgan’ protection? A large 
number of studies have been applied to understand this 
essential phenomenon. The aim of this review is to pro-
vide an overview and compare the molecular actions and 
subsequent cellular signaling cascade mediated by APC 
in these two totally different systems.

Open Access

European Journal
of Medical Research

*Correspondence:  Chen_S@ukw.de 
Department of Anesthesiology and Critical Care, University of Wuerzburg, 
Oberduerrbacher Str.6, 97080 Wuerzburg, Germany

http://orcid.org/0000-0001-9314-2099
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40001-018-0308-y&domain=pdf


Page 2 of 10Chen et al. Eur J Med Res  (2018) 23:10 

Mitochondrial function
mKATP channels
In cardiomyocytes and neurons, mitochondria produce 
the majority of cellular adenosine triphosphate (ATP) 
and pathological reactive oxygen species (ROS) during 
I/R injury [6, 7]. They also play a key role in VA-induced 
preconditioning. Numerous studies have demonstrated 
that sevoflurane and other VAs protect the myocar-
dium and brain during I/R injury via the mitochondrial 
ATP-sensitive potassium (mKATP) channels, opening of 
mKATP channels results in potassium influx, slowing of 
calcium overload in the mitochondria, the production 
of reactive oxygen species and the activation of multiple 
downstream kinases and molecular cascades of cardiac 
protection, and this has been considered as a critical step 
in APC [8, 9]. It is verified that isoflurane can directly 
activate the human cardiac mKATP channels in  vitro. 
ATP-sensitive K+ currents were significantly increased 
after isoflurane exposure, and this effect was completely 
abolished by mKATP channels blocker 5-hydroxyde-
canoate (5-HD) [10]. Riess et  al. provided the first evi-
dence that sevoflurane is able to prevent mitochondrial 
matrix volume (MMV) contraction during ischemia, and 
this effect is mediated via mKATP channel opening [11]. 
Among all the signaling kinases which are involved in 
cardiovascular functions, protein kinase C (PKC) and its 
subgroup PKCε are believed to be key signaling pathway 
associated with mKATP channel-mediated cardiac protec-
tion [8, 12, 13]. Wang et  al. demonstrated that sevoflu-
rane preconditioning exhibits a delayed cardioprotection 
against I/R injury by increasing PKCε phosphorylation, 
and this effect is inhibited by mKATP channel blocker 
5-HD [14]. Similar effects were also reported by Kaneda 
et al. [15] and Weber et al. [16] confirming the key role 
of PKCε/mKATP signaling pathway in cardiac protective 
effect induced by APC.

Mitochondrial KATP channel proteins, which are par-
tially purified from rat brain mitochondria, exhibit 
ligand-binding properties similar to those of heart mKATP 
channels, and the amount of mKATP channels in brain 
seems to be much higher than in the heart, suggesting 
the crucial role of mKATP channel in central nervous sys-
tem [17]. Numerous studies have proved that VA precon-
ditioning provides neuroprotection via mKATP channel 
both in vivo and in vitro. Kehl et al. demonstrated that the 
preconditioning induced by sevoflurane was abolished by 
5HD, a mKATP channel blocker, in rat hippocampal slices 
[18]. Likewise, it was observed that the opening of mKATP 
channel mimicked delayed preconditioning induced by 
sevoflurane, whereas sevoflurane postconditioning was 
also blocked by 5-HD given at the end of ischemia [19]. 
Interestingly, it was also reported for the first time by 
the same research team [19] that neuroprotective effects 

mediated by sevoflurane were observed when sevoflu-
rane was given at the onset of reperfusion, and this effect 
was lost when it is given 5 min after the onset of reperfu-
sion, indicating the time, duration and other factors also 
associate and play potential relevance in APC. Moreover, 
it is found recently that the P38 phosphorylation was 
decreased after the administration of 5-HD, suggesting 
that mKATP channel opening and p38 phosphorylation 
are both involved sevoflurane-induced preconditioning 
and p38 MAPK activation may be a downstream of open-
ing mKATP channels [20]. Similar to cardioprotection, 
PKCε is also involved in APC-mediated neuroprotection. 
Ye et  al. demonstrated that application of 5-HD 30 min 
before sevoflurane exposure could not only attenuate its 
beneficial effects in reducing neurological deficit scores 
and brain infarct volume, but also inhibit the transloca-
tion of PKC ε to the membrane fraction at 24 h after rep-
erfusion [21]. This result also indicates the role of PKC ε 
as the upstream target of mKATP channels and thus the 
similar cell signal pathway in APC-mediated protective 
effects in both cardiac and neural system.

mPTP
The mitochondrial permeability transition with the for-
mation of mitochondrial permeability transition pore 
(mPTP) has been identified as a key mediator in the 
process of mitochondrial dysfunction. The formation 
of mPTP could be induced under the pathological con-
ditions, such as Ca2+ overload and oxidative stress due 
to ischemia or chronic heart failure, and the opening of 
mPTP causes mitochondrial dysfunction with lipid per-
oxidation, ATP hydrolysis, matrix swelling and ultimately 
cell death [22, 23]. Moreover, using pharmacological 
inhibitor of mPTP cyclosporine A (CsA) demonstrated 
protective effects against myocardial ischemic–reperfu-
sion injury through reducing the infarct size and apop-
totic cardiomyocyte death [24]. Accumulating data have 
shown that inhibition opening of mPTP is related to 
volatile anesthetic-induced preconditioning: Pravdic 
et  al. reported that isoflurane preconditioning delays 
mPTP opening under conditions of oxidative stress in 
rat cardiomyocytes [25]; similar effect of isoflurane pre-
conditioning was confirmed again in a recent study by 
Sepac et  al. with cardiomyocytes derived from human 
embryonic stem cells (hESC), mPTP opening time of 
cardiomyocytes was significantly delayed after 15-min 
pretreatment with 0.5  mM isoflurane [26]; Onishi et  al. 
demonstrated the direct evidence that sevoflurane pre-
conditioning, similar to CsA, inhibits calcium-induced 
mPTP opening by increasing the threshold, and this car-
dioprotective effect is mediated by inhibition of glycogen 
synthase kinase 3ß (GSK-3β) by phosphorylation through 
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phosphatidylinositide 3-kinases/protein kinase B (PI3K/
AKt) pathway [27].

Mitochondrial dysfunction contributes to neurologic 
disorders, including neurodegenerative diseases and 
stroke, where, similar to cardiac I/R injury, excessive 
Ca2+ uptake can activate the opening of mPTP, which 
causes uncoupled ATP synthesis, following with neuronal 
death [28, 29]. Recent studies confirmed that inhibition 
of mPTP opening is also one of the most important cel-
lular mechanisms of APC-induced neuroprotection. It is 
demonstrated by Ye’s group that sevoflurane precondi-
tioning protects mitochondria from cerebral I/R injury 
by hyperpolarizing mitochondrial membrane poten-
tial in ischemic brain issue and inhibiting Ca2+-induced 
mitochondrial permeability transition. Ischemic rats 
pretreated with sevoflurane exhibited a significantly 
diminished neurological deficit, and the infarct volume 
was reduced by 34% [30].

ROS
Reactive oxygen species were known to be released under 
the oxidative stress. Overproduction of ROS can result in 
cellular dysfunction and has a key role in various chronic 
diseases such as cardiac vascular diseases and neurode-
generative diseases. In I/R injury, large amounts of ROS 
are released during reperfusion, produce oxidative dam-
age to lipids, proteins, nucleic acids and finally severe 
tissue damage [7, 31, 32]. Recent evidence suggests that, 
in contrast, small amounts of ROS released from mito-
chondria could induce preconditioning and contribute to 
cardioprotection; this effect could be abolished with ROS 
scavengers [33, 34]. VAs trigger the production of a small 
amount of ROS, which appear to be critical events at the 
onset of cell signaling cascade of preconditioning against 
myocardial injury [6, 33, 35]. Pretreatment with sevoflu-
rane at 2% or desflurane at 7% before a 30-min hypoxic 
period enhanced the recovery of myocardial contraction 
of human atrial trabeculae; however, this function was 
inhibited by N-[2-mercaptopropionyl]-glycine (MPG), a 
ROS scavenger, indicating the role of ROS in sevoflurane- 
and desflurane-induced preconditioning against cardiac 
I/R injury [36]. Isoflurane was demonstrated to have 
the ability to enhance the production of ROS in hESC-
derived cardiomyocytes [26]. The in vitro study of Sedlic 
et  al. showed that the rate of ROS generation was sig-
nificantly increased during the application of desflurane 
or sevoflurane, and after anesthetic washout, the rate of 
ROS production was decreased [37]. The ROS produc-
tion elicited by VAs might mediate mitochondrial uncou-
pling in APC signaling cascade.

In central nervous system, ROS was also demonstrated 
to be involved in VA-preconditioning-induced neuropro-
tection. ROS generation and its role in triggering of APC 

was examined by Velly et al. on mixed cortical neuronal–
glial cell cultures subjected to transient oxygen–glucose 
deprivation (OGD) [38]. The result showed that sevoflu-
rane exposure during preconditioning induced a signifi-
cant increase in ROS levels, which was prevented by ROS 
scavengers. In a rabbit spinal cord ischemic injury model, 
isoflurane demonstrated a delayed neuroprotective 
effect via the release of free radicals [39]. It has also been 
proved in vivo with a rat middle cerebral artery occlusion 
(MCAO) model in a recent study,  that the initial oxida-
tive stress generated by sevoflurane preconditioning may 
trigger cascades that finally lead to ischemic tolerance 
[40]. However, although transient production of ROS is 
necessary for APC, chronic oxidative stress still appears 
to result in mitochondrial damage and cell death, thus 
decrease cardioprotection or neuroprotection after APC 
[41, 42].

Inflammatory cytokines
Oxidative stress and inflammatory reactions contrib-
ute to I/R injury. In the ischemic phase, the balance of 
endogenous oxidants and antioxidants is disrupted, and 
pro-inflammatory cytokines like TNF-α, IL-1, and reac-
tive oxygen species are largely produced in reperfusion 
phase. TNF-α and other pro-inflammatory cytokines 
cause further oxidative stress through inducing phospho-
rylation and the activation of nuclear factor κB (NF-κB). 
As a transcription factor, NF-κB is widely involved and 
regulates the expression of a large number of cytokines, 
chemokines and pro-inflammatory enzymes, such as 
TNF-α, IL1, IL8, iNOS, cyclooxygenase-2 and adhesion 
molecules, which are critical to generate inflammation 
and apoptosis [43, 44].

Volatile anesthetic-induced preconditioning has been 
reported to protect myocardium against I/R injury by 
attenuating the activation of NF-κB and thus subse-
quently suppress the expression of NF-κB-dependent 
inflammatory cytokines [45–47]. Wang et  al. demon-
strated in an in  vivo coronary artery occlusion experi-
ment that sevoflurane preconditioning attenuates the 
upregulation of NF-κB with its two subunits p50 and p65, 
and subsequently decreases the expression of inflam-
matory proteins TNF-α and intercellular adhesion mol-
ecule-1 (ICAM-1). Administration of the NF-κB inhibitor 
parthenolide (PTN) before or after exposure to sevoflu-
rane abolished the benefit effect as reducing the infarct 
sizes [48]. In another research study, using electropho-
retic mobility shift assay, NF-κB activity was determined. 
After preconditioning with sevoflurane, NF-κB binding 
activity and activation were significantly downregulated, 
with reduced expression of TNF-α, ICAM-1, IL-1 and 
iNOS during myocardial I/R injury [44].
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In central nervous system, pathological conditions 
cause the overactivation of microglia, and a large quan-
tity of pro-inflammatory cytokines can be subsequently 
released from activated microglia [49, 50]. Toll-like 
receptor 4 (TLR4) is expressed primarily in microglia 
and plays a key role in the activation of microglia and the 
production of inflammatory cytokines in central nervous 
system [51–53]. NF-κB has been confirmed as a down-
stream factor of TLR4 signaling pathway [54, 55], and 
similar to the research results in cardiovascular system, 
after activation, NF-ΚB moves to the nucleus, and trig-
gers the transcription of genes responsible for inflam-
matory reactions and eventually lead to neuron damage. 
Moreover, TLR4/NF-κB signaling pathway also medi-
ates the neuroprotective effect of APC. Sun et  al. dem-
onstrated in an in  vitro OGD experiment with primary 
neurons/astrocytes culture that 2% isoflurane precondi-
tioning has similar effects as the TLR4-specific inhibitor 
CLI-095: downregulated the expression of TLR4, IL-1ß, 
TNF-α, and up-regulated NF-κB inhibitor IκB-α [56]. 
In  vivo study of the same research group showed that 
isoflurane preconditioning attenuated neurological defi-
cits, infarct volume against ischemic stroke, and inhibited 
microglial activation. Molecular tests also showed the 
same results as the in vitro study. There are also research 
reports demonstrating that sevoflurane provides direct 
neuroprotective effects in suppressing the activation of 
NF-kappa B and expression of inflammatory cytokines 
against focal ischemic brain injury [57, 58].

Apoptosis
Ischemia causes the destruction of cardiomyocytes 
and leads to necrosis. However, the infarct size of myo-
cardium is determined not only by the necrosis after 
ischemia, but also the apoptotic cell death triggered and 
principally developed during the phase of reperfusion. 
Apoptosis is associated with the extension of infarction 
over the time of prolonged reperfusion, and has been 
considered as the predominant form of both myocardial 
and cerebral ischemia- and reperfusion-related cell death. 
The importance of apoptosis in cell death following rep-
erfusion has been demonstrated in vivo; the results show 
that the level of apoptosis is dependent on the duration of 
reperfusion. Apoptosis can be triggered by ischemia but 
reperfusion accelerates the process [59, 60].

Several protein families are involved in apoptosis, 
including B cell lymphoma-2 (Bcl-2), Bax, Bak and 
caspases. Bcl-2 family is one of the most important 
regulatory factors in cell apoptosis. Because of its anti-
apoptotic effect, the role of Bcl-2 family in APC-induced 
cardio- and neuroprotection has also been widely investi-
gated [61, 62]. In myocardial I/R injury model, VAs were 
found to have anti-apoptotic effects as well as reduce 

myocardial infarct size. Raphael et  al. demonstrated 
that isoflurane preconditioning attenuates infarct size 
and myocardial apoptosis after I/R, via PI3K/Akt signal-
ing and modulation of anti-apoptotic Bcl-2 family pro-
teins [63]. Interestingly, evidence shows that, unlikely 
to the role of triggering the production of inflammatory 
cytokines, the activation of NF-kappa B is involved in 
upregulating anti-apoptotic protein Bcl-2 resulting in sig-
nificant decrease in cell apoptosis and mediates cytopro-
tective effects [64, 65]. Furthermore, this mechanism was 
also consistent with the experimental results reported 
by Wang et al. in a study of APC with sevoflurane [48]. 
Sevoflurane-produced myocardial protection during 
preconditioning was through upregulation of anti-apop-
totic protein Bcl-2, and ultimately decreasing caspase-3 
expression and apoptosis. This benefit effect was abol-
ished by NF-kappa B inhibitor PTN.

Likewise, anti-apoptotic effect of APC was confirmed 
with neurons. Preconditioning with 2% sevoflurane or 
1.5% isoflurane for 60  min provided neuroprotection 
by upregulation of anti-apoptotic genes (Aven, Bcl-2, 
Bcl2l2, and Prok2) and downregulation of pro-apoptotic 
genes (Tnf, Tnfrsf10b and Tp53) [66]. A very recent 
in vivo study proved that APC with sevoflurane reduced 
apoptosis in rat brains, which was also associated with 
increased ratios of anti-apoptotic Bcl-2 family proteins, 
with decreased activation of JNK and p53 pathways, 
and finally decreased caspase-3 expression [67]. Zhao 
et al. reported that isoflurane preconditioning at a clini-
cally relevant concentration improved long-term neuro-
logical outcome in neonatal rats under hypoxic ischemic 
brain injury. This effect involved an increased expres-
sion of anti-apoptotic protein Bcl-2 [68]. Sevoflurane 
preconditioning has been proved to show neuroprotec-
tive effects in terms of improving neurofunctional out-
come and the attenuating infarct volume significantly. 
The anti-apoptotic effect was observed up to 7  days 
after cerebral I/R injury [69]. PI3K/Akt signaling path-
way and its downstream target GSK-3ß were implicated 
to be involved in caspase-dependent mechanisms of cell 
apoptosis [70]. Ischemia injury induces Akt phosphoryla-
tion at Ser473, sevoflurane preconditioning inhibited the 
hyperphosphorylation in a MCAO model, which thereby 
phosphorylated/inactivated GSK-3ß and represented a 
neuroprotective effect [71] (Fig. 1).

Cortical spreading depolarization
Cortical spreading depolarization (CSD) is a relative 
newly discovered mechanism for secondary ischemic 
neurological damage. It appears that spreading depolari-
zation does not have a physiological role in normal tissue 
but can be instigated under the pathological conditions, 
such as mechanical damages, noxious chemical agents, 
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ischemia and propagates slowly across the cerebral cor-
tex [72, 73]. In the last decade, more and more clinical 
studies showed that CSDs are correlated to a subsequent 
brain tissue injury, neurological deficits and worse 
patient outcome [74–76]. Takagaki et  al. examined and 
compared the effects of isoflurane and propofol on CSDs 
in a rodent MCAO model and found out that isoflurane 
reduced the occurrence of CSDs significantly in compari-
son to propofol. Furthermore, cerebral blood flow and 
plasma glucose are significantly lower under the propofol 
suggesting a worse oxygen and glucose supply in propofol 
group [77]. The hypothesis that VAs contribute to neuro-
protection is further validated by the research group of 
Kudo et al. [78]. Isoflurane achieved significant suppres-
sion of CSD frequency and CSD propagation speed.

Clinical aspects
Accumulating clinical studies have confirmed the ben-
efits of intraoperative administration of VAs in patients 
undergoing coronary artery bypass surgery [79–81]. A 
meta-analysis of randomized clinical trials involving 
1922 patients undergoing cardiac surgery showed that, 
in comparison with total intravenous anesthesia (TIVA), 
desflurane and sevoflurane achieved significant reduc-
tions of myocardial infarctions [2.4% in the VA group vs 
5.1% in the TIVA group, odds ratio (OR) 0.51] and all-
cause mortality (0.4% vs 1.6%, OR 0.31). Besides these 
benefit effects, the use of VAs was also associated with 
a shorter duration of intensive care unit stay and need 

for mechanical ventilation [82]. Isoflurane was reported 
to reduce troponin release in a randomized clinical trial 
involving forty-five patients undergoing elective off-
pump coronary artery bypass surgery [83]. Guerrero 
Orriach and colleagues found out that the use of sevoflu-
rane attenuated significantly the postoperative levels of 
troponin I at 24  h and N-terminal pro-brain natriuretic 
peptide (NT–proBNP) at 24 and 48 h in coronary surgery 
patients. Furthermore, the use of inotropic drugs was also 
significantly reduced at 24 and 48 h postoperatively [84]. 
Amr et al. demonstrated in a recent clinical trial with 45 
patients undergoing coronary artery bypass graft sur-
gery that preconditioning with isoflurane 2.5% improved 
significantly perioperative hemodynamic function, and 
reduced postoperative level of cardiac troponin I and cre-
atine kinase isoenzyme MB (CK-MB) release [85].

Based on experimental studies, VAs have shown prom-
ising results against cerebral ischemic injury. However, 
similar results in human trials are much less certain, 
clinic evidence is still very limited [86, 87]. Because of 
their vasodilative effect, VAs could lead to higher intrac-
ranial pressure; therefore, propofol still remains as the 
first choice of anesthetic for severe head trauma (SHT) 
or patients with elevated intracranial pressure (ICP) [88]. 
But there are also studies demonstrating that sevoflurane 
has nearly no impact on cerebrovascular autoregulation 
and the ICP below 1.0 minimum alveolar concentration 
(MAC). These results make sevoflurane a possible choice 
for neurological surgeries [89, 90]. Schoen et al. reported 

Fig. 1  Similar molecular signaling pathways of anti-apoptotic effect in cardiomyocytes and neurons induced by APC
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that sevoflurane improved short-term postoperative cog-
nitive function in patients undergoing on-pump cardiac 
surgery compared with propofol [91]. Dabrowski et  al. 
confirmed that [92] sevoflurane and isoflurane attenu-
ated plasma matrix metalloproteinase-9 (MMP-9), glial 
fibrillary acidic protein (GFAP) concentrations, which 
are considered to be the specific biochemical markers 
of brain injury [93, 94], and brain magnesium disorders 
in patients undergoing coronary artery bypass graft sur-
gery. In addition, isoflurane was also reported capable 
of providing beneficial effects on regional cerebral blood 
flow in patients with subarachnoid hemorrhage, without 
any relevant elevation of ICP [95]. Another very recent 
clinical study from neonatal intensive care unit (NICU) 
showed that, in patients with low ICP or only moder-
ately elevated values, isoflurane was capable of reduc-
ing the in cerebral oxygen extraction without significant 

intracranial hypertension [96], indicating a promising 
strategy of neuroprotection for patents in ICU or NICU. 
All these clinical research results suggest a promising 
prospect of VAs in cerebral protection for patients under-
going neurosurgical or non-neurosurgical procedures. 
However, there are also clinical studies with confusing 
results on VAs vs propofol in neurological surgeries. In 
a recent systemic clinic review and meta-analysis of Chui 
et al., VAs and propofol were compared for maintenance 
of anesthesia during craniotomy operations. Propofol 
and VAs did not show any significant differences in brain 
relaxation scores, but propofol-anesthesia maintained 
lower ICP and higher cerebral perfusion pressure (CPP) 
values. Postoperative complications were similar between 
two groups; however, postoperative nausea and vomit-
ing were more associated with VA anesthesia [97]. The 

Table 1  Clinical studies of the protective effects of VAs

CPB cardiopulmonary bypass, MAC minimal alveolar concentration
a  Elderly high-risk: older than 70 years with three-vessel disease and an ejection fraction less than 50% with impaired length-dependent regulation of myocardial 
function
b  N-terminal pro-brain natriuretic peptide
c  Preconditioning with a 10-min exposure to isoflurane 2.5% followed by 5-min washout
d  Sensitive marker of brain injury: matrix metalloproteinase-9 (MMP-9), glial fibrillary acidic protein (GFAP)

Surgery Patients and number 
(n)

Volatile anesthetics 
and dose

Outcome Refs.

Cardioprotection Cardiopulmonary 
bypass

n = 200 Sevoflurane
0.5–2%

Increase of troponin I ↓
Cardiac output ↑
Inotropic support ↓
Duration of stay in the 

ICU and hospital ↓

De Hert et al. [79]

Cardiopulmonary 
bypass

Elderly high-riska 
patients, n = 45

Sevoflurane
0.5–2%
Desflurane
1–4%

Decrease in cardiac 
index (CI) post-CPB ↓

Inotropic support ↓

De Hert et al. [80]

Off-pump coronary 
artery bypass grafting

n = 48 Sevoflurane
1.0 MAC and 1.5 MAC

Post-surgical cardiac 
Troponin I ↓

Wang et al. [81]

Off-pump coronary 
artery bypass

n = 45 Isoflurane
1.0–2.5%

Post-surgical cardiac 
index ↑

Increase of troponin T ↓

Tempe et al. [83]

Off-pump coronary 
artery bypass

n = 60 Sevoflurane
0.7 and 1 MAC

Increase of troponin I ↓
Postoperative NT-

proBNPb ↓
Inotropic support ↓

Guerrero Orriach et al. 
[84]

On-pump coronary 
artery bypass

n = 45 Isoflurane 2.5%
10 minc

Hemodynamic recovery 
↑

Cardiac troponin T ↓
CK-MB release ↓
Inotropic support ↓

Amr et al. [85]

Cerebral protection Cardiopulmonary 
bypass

n = 128 Sevoflurane
0.6–1 MAC

Cognitive function ↑ Schoen et al. [91]

Cardiopulmonary 
bypass

n = 92 Sevoflurane
0.5 MAC
Isoflurane
0.5 MAC

Postoperative Mg disor‑
ders ↓

Increase in plasma 
MMP-9 and GFAPd 
concentration ↓

Dabrowski et al. [92]
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similar conflicting evidences have also been reported in 
other clinical studies [5, 98] (Table 1).

Not only in cerebral- and cardiac systems, anti-apop-
totic effects of volatile anesthetic were also reported in 
hepatic ischemia–reperfusion injury [99, 100]. Treatment 
with sevoflurane significantly improved the pulmonary 
function of lung grafts by reducing levels of pro-inflam-
matory cytokines [101]. Desflurane preconditioning 
demonstrated significant renal protective effects in a rab-
bit model of acute I/R injury [102]. In a recent study with 
human volunteers, Lucchinetti et al. reported the protec-
tive effect of sevoflurane in human endothelium though 
the inhibition of leukocyte adhesion [103]. In another 
randomized clinical trial with seventy-two patients 
undergoing coronary artery bypass graft surgery, precon-
ditioning by sevoflurane reduced the transcript levels for 
platelet–endothelial cell adhesion molecule-1 (PECAM-
1), indicating the protective effect on endothelial system, 
as well as attenuated significantly the incidence of late 
cardiac events during the first year after surgery compar-
ing with the placebo group [104]. It is well known that 
vascular endothelial function is critically involved in a 
broad range of diseases as well as ischemic–reperfusion 
injury [105–107]. Endothelial stability plays a key role 
in maintaining physical vascular function and coagula-
tion status. Hence, VA preconditioning could be served 
as a ubiquitous ‘multiorgan’ protection through reducing 
endothelial dysfunction in I/R injury.

Conclusions
Extensive evidences from animal experimental studies 
have proved that VAs have beneficial effect to protect the 
myocytes and neurons from ischemia/reperfusion injury. 
The protective cellular signaling pathways are extremely 
similar in both cardiovascular and central nervous sys-
tems. There are also promising results from clinical trials 
with beneficial effects of APC for the patients undergoing 
cardiac and neurological surgeries. Some research results 
still remain confusing and conflicting, which could be, 
however, the results of different timing and patterns of 
administration, or inappropriate doses. Further work 
including more randomized and qualitative clinical trials 
is still required. Determining the time effect, the concen-
tration of VAs during operations, and long-term clinic 
outcome should be focused to clarify and guarantee the 
best protective effects of VAs in clinical practice.
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