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Abstract

We consider the problem of modeling gestational diabetes in a clinical study and develop a 

domain expert-guided probabilistic model that is both interpretable and explainable. Specifically, 

we construct a probabilistic model based on causal independence (Noisy-Or) from a carefully 

chosen set of features. We validate the efficacy of the model on the clinical study and demonstrate 

the importance of the features and the causal independence model.
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1. Introduction

We consider the problem of predicting the onset of gestational diabetes mellitus (GDM) 

from a combination of risk factors and a polygenic risk score. To this effect, we consider 

data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be 
(nuMoM2b1) study and develop a probabilistic model for modeling GDM. While the 

success of deep learning methods2 in medical tasks3 has significantly increased the interest 

in machine learning based methods, these models suffer from the twin problems of being 

data-hungry and uninterpretable. While quite powerful in their classification abilities, these 

models are not easy to be employed in decision-making systems that require human 

interaction.

Consequently, we propose a probabilistic learning method that can effectively and efficiently 

incorporate domain knowledge. Inspired by previous work in probabilistic learning with 

expert knowledge,4,5 we develop a framework for modeling GDM from a few risk factors 
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including Age, BMI, metabolism, family history, blood pressure, etc, and combine the 

results with a polygenic risk score.

Specifically, our work considers two types of knowledge - causal independencies and 

qualitative influences. Causal independencies6–9 specify sets of risk factors (called random 

variables in probabilistic learning terminology) that are independent of each other when 

affecting the target. The idea here is that each of these variables has an independent effect 

on the target – for instance, BMI and age affect GDM independently – and their effects can 

be combined by a probabilistic combination function. One such example is Noisy-Or. The 

advantage of such independencies lies in the fact that they lead to a drastic reduction in the 

number of parameters needed to learn the model.

While powerful, specifying only causal independencies could be insufficient. As an 

example, consider age and BMI as risk factors for GDM. While both these risk factors 

could be independent, when they both are higher, the risk of GDM could be increased. This 

information is not captured by simple causal independencies. To model such knowledge, 

earlier methods employ the use of qualitative constraints.4,10,11 A qualitative constraint 

could be a monotonic statement of the form as X increases Y increases. For instance, in our 

task, it is easy to specify that as age increases the risk of GDM increases.

Inspired by our prior work,5 we combine these two types of domain knowledge to learn a 

probabilistic model for predicting GDM from the nuMoM2b data and employ the use of 

polygenic risk score to provide a prior over the incidence of GDM. Specifically, we take the 

view of a temporal model due to Heckerman and Breese6 and combine the influence due 

to the different risk factors using Noisy-Or. For each of these risk factors, we also employ 

monotonicity constraints whenever applicable. Our empirical evaluations demonstrate that 

the proposed method with the knowledge from domain experts outperforms probabilistic 

learning only from data and is comparable with the best machine learning methods that are 

not interpretable or interactive.

To summarize, we make the following key contributions: (1) We view the problem of 

modeling GDM using a probabilistic lens and in the presence of domain expert knowledge 

in the form of qualitative constraints and causal independencies. (2) We take the temporal 

view and derive the gradients for learning the probabilistic model. (3) We evaluate the 

algorithm on a real GDM study and establish its effectiveness.

2. Data description

The Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b1) 

study was established to study individuals without previous pregnancy lasting 20 weeks or 

more (nulliparous) and to elucidate factors associated with adverse pregnancy outcomes. 

The study enrolled a racially/ethnically/geographically diverse population of 10, 038 

nulliparous women with singleton gestations. The enrolled participants were followed for 

the duration of their pregnancy and visits were scheduled four times during the pregnancy: 

6 weeks 0 days through 13 weeks 6 days estimated gestational age (EGA), 16 weeks 0 days 
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through 21 weeks 6 days EGA, 22 weeks 0 days through 29 weeks 6 days EGA, and at the 

time of delivery. Our subset has 7 variables - BMI, PRS, METs, Age, Hist, PCOS, HiBP.

For our work, we excluded 193 cases where women were diagnosed with pregestational 

diabetes. Additionally, 3, 368 cases with missing features in the dataset were excluded. In 

our experiments, we use two cohorts. Figure 1 illustrates the mechanism for choosing these 

cohorts. A sub-cohort of 3, 533 non-Hispanic white participants with European ancestry 

was used for experiments involving PRS and a cohort of 6, 164 participants was used for 

experiments not involving PRS. Of the 7 variables, Hist, PCOS, HiBP are binary, Age is 

discrete while BMI, PRS and METs are continuous. Age was categorized into 4 values 

based on quantiles to limit the number of possible values. The continuous variables BMI, 
PRS, and METs were discretized into 5 categories based on quantiles.

3. Background: Knowledge-guided learning

We now present the necessary background on the two types of expert knowledge that we 

consider in this work – qualitative influences and causal independencies.

3.1. Qualitative influence

A qualitative influence (QI) statement10 indicates the effect of change in one or 

more factor(s) on a target.5 We focus on one particular type of QI: monotonicty. 

Monotonicity represents a direct relationship between two variables: “As BMI increases, 

neck circumference increases” indicates that the probability of greater neck circumference 

increases with an increase in BMI. Note that while the QI statements do not directly 

specify the quantitative relationships (i.e., the precise probabilities), they specify how the 

conditional distribution (P(circumference | BMI) changes as the value of BMI changes. Such 

statements are quite natural to be specified in many domains, and more so, in medicine. 

Formally, a monotonic influence (MI) of variable X on variable Y, denoted X≺
M + Y  (or its 

inverse X≺
M − Y ), indicates that higher values of X stochastically result in higher (or lower) 

values of Y.

3.2. Causal Independence

Causal independence, in simple terms, states that (1) the effect is independent of the order 

in which causes are introduced, and (2) the impact of a single cause on the effect does 

not depend on what other causes have previously been applied. This definition facilitates 

a (probabilistic) belief network representation that is consistent with a set of causal 

independence statements.6,7 The Noisy-Or model, illustrated in Figure 3, belongs to a class 

of causal interactions which are characterized by the independence of causal inputs. The 

belief network in Figure 2 represents a general multiple-cause interaction wherein n causes 

influence a single effect (target variable) y. While this representation provides an intuitive 

way to capture the causal interaction between the risk factors xi and the target variable, it 

requires 2n parameter assessments for binary variables - one parameter for each instantiation 

of the causes. This leads to an exponentially large number of examples required to learn a 

robust conditional distribution.
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Akin to conditional independence assumptions in Bayesian networks, causal independence 

assumptions allow efficient parameter learning by causing an exponential reduction in 

the total number of model parameters as compared to the case of general multiple-cause 

interaction. Concretely, the presence of independence of causal influences allows us to 

represent the belief network in Figure 2 on the left as the temporal network on the right, 

for any ordering of causes σ = {σ1, …, σn}. Here, the unobserved effect variable at a 

timestep yσi′  is defined as a deterministic function of the cause xσi, the previous state of the 

effect yσi − 1′  and ϵσi, a dummy variable representing the uncertainty. Finally, x0 represents 

all causes not considered in the model and yσn′  is the observed effect variable. This relation 

can be expressed as

yσ1′ = ℎσ x0, xσ1, ϵσ1 (1)

yσi′ = ℎσ yσi − 1′ , xσi, ϵσi ,  ∀i ∈ 2, …, n (2)

For the case where hσ is the Noisy-Or function, the temporal belief network is equivalent to 

the Noisy-Or model shown in Figure 3. The number of parameters in the Noisy-Or model is 

linear in the number of causes, n, while it is exponential in the original model.

Causal independence statements, in conjunction with qualitative influence statements, allow 

the injection of rich domain knowledge into an interpretable model while ensuring feasible 

parameter learning from data. We build upon prior work5 in employing this knowledge in 

the context of GDM modeling.

4. Causal independencies with qualitative constraints for modeling GDM

Given: A set of causally independent risk factors X for the target GDM Y and a set of qualitative influences C

To Do: Learn an interpretable model m that models the conditional probability of a target variable given the risk factors.

As mentioned earlier, X is the set of risk factors ⟨BMI, PRS, METs, Age, Hist, PCOS, 

HiBP⟩ while Y denotes GDM. So the goal of our work is to learn P(GDM | X) given the 

constraints C. In the rest of this section, we use X and Y instead of specific risk factors and 

GDM to demonstrate the generality of the approach.

In the Noisy-Or model, the target variable is activated if any of the causes is active, unless 

the active causes are inhibited. Formally, the probability of a cause being active is called 

the link probability and we parameterize it using the sigmoid function σ, i.e., P(Yi = 1 | Xi 

= xi) = σ(wixi +bi), ∀i ∈ {1, …, n}. The key assumption of the Noisy-Or model is that 

the inhibitory effect for each cause is independent. Consequently, we parameterize these 

inhibition probabilities as P(Y = 0 | Yi = 1) = σ(qi), ∀i ∈ {1, …, n}. Finally, the target 

variable may still be activated even if none of the causes are active. This is called leakage 
and represents all other possible causes that are not included as risk factors. We parameterize 

the leak probability as P(Y = 1 | Y1 = 0, …, Yn = 0) = σ(ql). Thus, the target distribution 

under Noisy-Or is
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P(Y = 1 ∣ X = x) = 1 − 1 − ql ∏
i = 1

n
P Y i = 1 ∣ Xi = xi qi + P Y i = 0 ∣ Xi = xi (3)

Following previous work,4,5 we define positive (or negative) monotonic influence Xi ≺
 M + Y

(or Xi ≺
 M − Y ) as P(Yi = 0 | Xi = a) ≤ P(Yi = 0 | Xi = b) ∀a, b ∈ domain(Xi), a > b (or a < b). 

The Noisy-Or model with monotonic influences is shown in Figure 3.

4.1. Parameter Learning under monotonicity constraints

The log-likelihood under the Noisy-Or model can be written as:

ℒ w, b, q, ql; D = ∑
j = 1

N
log P Y = y(j) ∣ X = x(j)

= ∑
j = 1

N
y(j) log 1 − P Y = 0 ∣ X = x(j) + 1 − y(j)  log P Y = 0 ∣ X = x(j)

(4)

We encode the monotonic influences as the margin constraints δi
a, b ≤ 0 where:

δi
a, b =

P Yi = 0 ∣ Xi = a − P Yi = 0 ∣ Xi = b + ϵ Xi ≺
 M + Y ∈ C

−P Yi = 0 ∣ Xi = a + P Yi = 0 ∣ Xi = b + ϵ Xi ≺ M − Y ∈ C
0 otℎerwise

Intuitively, if the monotonicity constraint is satisfied, δ ≤ 0 while if the constraint is violated, 

δ > 0. ϵ is a small margin. Now using these constraints, we define the penalty function, 

ζi
a, b = Iδi

a, b > 0δi
a, b2

. Intuitively, the penalty is applied if the constraint is violated and is 

equal to the square of the magnitude of the violation. Essentially, the model will not penalize 

the cases where the constraints are satisfied (for instance, if the constraint on BMI is 

satisfied when the parameters are learned, the penalty for that parameter = 0).

Including the penalty function, the final objective that is to be maximized is

J w, b, q, ql; D = ℒ w, b, q, ql; D − λ ∑
i = 1

n
∑

a > b
ζi
a, b

where, λ is the penalty weight. The first term is the classic log-likelihood that is computed 

using the different conditional distributions and the second term is simply the sum of the 

non-zero penalties weighted by a constant λ. Recall that w and b are the link probability 

parameters, and q and ql are inhibition probability and the leak probability parameters 

respectively. Intuitively, the penalty function serves as a regularizer that forces the model to 

satisfy the constraints as much as possible given the data.

The advantage of this formalism is that since it is a weighted combination, the data could 
be noisy or the constraints could be incorrect. The model can simply trade-off between 
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the data and constraints accordingly. Exploring the case when both data and domain expert 

are noisy is outside the scope of this work. Thus, the model is robust to both data noise and 

expert advice noise. λ could be chosen by cross-validation, but, in our experiments and in 

prior work,5 the model is robust to the choice of λ as long as it is not close to 0 or 1.

4.2. Derivation of the gradients of the log-likelihood term

First, we define the following intermediate gradient terms:

Uj =
∂ log P Y = y(j) ∣ X = x(j)

∂P Y = 0 ∣ X = x(j) = −y(j)
P Y = 1 ∣ X = x(j) + 1 − y(j)

P Y = 0 ∣ X = x(j)

Qlj =
∂P Y = 0 ∣ X = x(j)

∂ql
= −

P Y = 0 ∣ X = x(j) σ′ ql
1 − ql

Qij =
∂P Y = 0 ∣ X = x(j)

∂qi
=

P Y = 0 ∣ X = x(j) P Yi = 1 ∣ Xi = xi
(j) σ′ qi

P Yi = 1 ∣ Xi = xi
(j) qi + P Yi = 0 ∣ Xi = xi

(j)

V ij =
∂P Y = 0 ∣ X = x(j)

∂P Yi = 1 ∣ Xi = xi
(j) =

P Y = 0 ∣ X = x(j) qj − 1

P Yi = 1 ∣ Xi = xi
(j) qi + P Yi = 0 ∣ Xi = xi

(j)

W ij =
∂P Yi = 1 ∣ Xi = xi

(j)

∂wi
= σ′ wixi + bi xi

Bij =
∂P Yi = 1 ∣ Xi = xi

(j)

∂bi
= σ′ wixi + bi

Here, Uj is the gradient of the log-likelihood of the jth data example with respect to 

the probability that the target Y is 0 (i.e., the case where GDM = false). Qlj and Qij, 
Vij are the gradients of the probability that the target is 0 (GDM = false) for the jth 

data example with respect to the leak parameter ql, the inhibition parameter qi, and the 

link probability P Y i = 1 ∣ Xi = xi
(j)  respectively. Wij and Bij are the gradients of the link 

probability P Y i = 1 ∣ Xi = xi
(j)  with respect to its parameters wi and bi respectively. Finally 

σ′ is the gradient of the sigmoid function σ′(x) = σ(x)(1 − σ(x)).

The gradients of the log-likelihood function with respect to the link parameters wi and bi can 

be computed in terms of Uj, Vij, Wij and Bij as
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∂ℒ w, b, q, ql; D
∂wi

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂wi

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂P Y = 0 ∣ X = x(j)
∂P Y = 0 ∣ X = x(j)

∂P Y = 1 ∣ Xi = xi
(j)

∂P Y i = 1 ∣ Xi = xi
(j)

∂wi

= ∑
j = 1

N
UjV ijW ij

(5)

∂ℒ w, b, q, ql; D
∂bi

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂bi

= ∑
j = 1

N log P Y = y(j) ∣ X = x(j)

∂P Y = 0 ∣ X = x(j)
∂P Y = 0 ∣ Xi = x(j)

∂P Y i = 1 ∣ Xi = xi
(j)

∂P Y i = 1 ∣ Xi = xi
(j)

∂bi

= ∑
j = 1

N
UjV ijBij

(6)

The gradients of the log-likelihood function with respect to the inhibition and leak 

parameters qi and ql can be computed in terms of Uj, Qij and Qlj as

∂ℒ w, b, q, ql; D
∂qi

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂qi

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂P Y = 0 ∣ X = x(j)
∂P Y = 0 ∣ X = x(j)

∂qi

= ∑
j = 1

N
UjQij

(7)

∂ℒ w, b, q, ql; D
∂ql

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂ql

= ∑
j = 1

N ∂ log P Y = y(j) ∣ X = x(j)

∂P Y = 0 ∣ X = x(j)
∂P Y = 0 ∣ X = x(j)

∂ql

= ∑
j = 1

N
UjQlj

(8)

4.3. Derivation of the gradients of the penalty term

The gradients of the penalty function are given by
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∂ζi
a, b

∂wi
=

∂ζi
a, b

δi
a, b

δi
a, b

∂wi

= Iδi
a, b > 02δi

a, bδi
a, b

∂wi

= Iδi
a, b > 0

P Y i = 0 ∣ Xi = a
∂wi

− P Y i = 0 ∣ Xi = b
∂wi

+ ϵ Xi ≺
 M + Y ∈ C

− P Y i = 0 ∣ Xi = a
∂wi

+ P Y i = 0 ∣ Xi = b
∂wi

+ ϵ Xi ≺
 M − Y ∈ C

0 otℎerwise

= Iδi
a, b > 0

σ′ wia + bi a − σ′ wib + bi b + ϵ Xi ≺
 M + Y ∈ C

−σ′ wia + bi a + σ′ wib + bi b + ϵ Xi ≺
 M − Y ∈ C

0 otℎerwise

(9)

∂ζi
a, b

∂bi
=

∂ζi
a, b

δi
a, b

δi
a, b

∂wi

= Iδi
a, b > 02δi

a, bδi
a, b

∂bi

= Iδi
a, b > 0

P Y i = 0 ∣ Xi = a
∂bi

− P Y i = 0 ∣ Xi = b
∂bi

+ ϵ Xi ≺
 M + Y ∈ C

− P Y i = 0 ∣ Xi = a
∂bi

+ P Y i = 0 ∣ Xi = b
∂bi

+ ϵ Xi ≺
 M − Y ∈ C

0 otℎerwise

= Iδi
a, b > 0

σ′ wia + bi − σ′ wib + bi + ϵ Xi ≺
 M + Y ∈ C

−σ′ wia + bi + σ′ wib + bi + ϵ Xi ≺
 M − Y ∈ C

0 otℎerwise

(10)

Using these gradients, we solve the maximization problem using the L-BFGS-B algorithm, 

increasing the value of λ until the solution satisfies all the constraintsa. The high-level 

flowchart of our model construction is presented in Figure 4. Given the entire GDM data set, 

after preprocessing and obtaining the causal independencies, we construct the smaller data 

set where we learn the model such that the qualitiative constraints are satisfied. The final 

model is then evaluated on the test set and the results are presented in the next section.

5. Experimental evaluation

Our experiments explicitly aim at answering the following questions,

Q1: Does inclusion of QIs improve model performance over a base model that does 

not have background knowledge in the form of QIs?

aThe code is available at https://github.com/saurabhmathur96/noisy_or
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Q2: Can our proposed model incorporate causal independencies to efficiently 

estimate model parameters without significantly losing performance?

We evaluate our proposed approach on two sub-cohorts in the nuMoM2b study - one 

sub-cohort with PRS as a risk factor and one without it - as described in section 2. The 

domain knowledge in the form of causal independencies and QIs were provided by our 

domain expert Dr. Haas. Figure 5 presents our proposed noisy-OR model that incorporates 

this domain knowledge for the task of GDM prediction given the 7 risk factors.

To answer the first question, we train noisy-OR models for the two cohorts with and without 

the inclusion of QIs. Figure 6 presents the AUC-ROC12 for our model trained on each of 

the sub-cohorts. In the case of the sub-cohort using the PRS (bottom in Figure 6), it can be 

clearly noted that incorporating QIs improves AUC-ROC from 0.6409 ± 0.0408 to 0.7371 

± 0.0149. In the sub-cohort not using the PRS, incorporating QIs improves the AUC-ROC 

from 0.6640 ± 0.0079 to 0.6863 ± 0.0091. It is evident from these charts that the inclusion of 

QIs as domain knowledge improves model performance. This analysis helps us answer Q1. 

Our proposed approach can effectively incorporate QIs to improve model performance.

To answer the second question, we compare our proposed approach to a strong 

discriminative baseline: gradient boosted trees (GBT). Figure 6 presents a comparison of our 

model with the baseline for the two sub-cohorts (left and center). GBT achieves AUC-ROC 

scores of 0.7261 ± 0.0174 and 0.6831 ± 0.0130 for the sub-cohort with and without PRS, 

respectively. This is comparable to the performance of our proposed approach when QIs 

are incorporated. However, unlike the noisy-OR model, GBT does not make any causal 

independence assumptions and hence has no causal meaning and is much more difficult to 

interpret. This analysis helps us answer Q2. Our proposed model can incorporate causal 

independencies to allow feasible parameter learning without losing model performance as 

compared to models that do not make causal independence assumptions.

To summarize, our experiments on two sub-cohorts of the GDM dataset suggest that 

our proposed approach can leverage domain knowledge in the form of QIs and causal 

independencies to effectively and efficiently learn an interpretable model without losing 

model performance as compared to a strong discriminative baseline that is uninterpretable.

6. Conclusion

We adapted the use of qualitative constraints and causal independencies to build an 

interpretable and explainable probabilistic model for modeling GDM given a small number 
of risk factors. We presented the learning method that learned the parameters of the model. 

Our empirical evaluations on nuMoM2b dataset clearly demonstrated that the use of the two 

types of constraints yielded better results than learning only from data and most importantly, 

exhibit similar performance as the state-of-the-art machine learning algorithm. Extending 

the model to include more risk factors is an immediate research direction. Learning a 

fully generative model such as Bayesian network would provide valuable insights in the 

interactions between risk factors. Finally, evaluating the learned models on larger and 

diverse data such as EHRs remains an interesting future direction.
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Fig. 1. 
Flowchart illustrating the process of selecting the cohorts for our experiments. The two 

sub-cohorts used in our experiments are indicated in green.
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Fig. 2. 
A belief network for multiple causes and a single effect (left) and Temporal interpretation of 

Independence of causal influence (right).
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Fig. 3. 
The Noisy-Or model
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Fig. 4. 
Flowchart for the Noisy-Or model construction process
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Fig. 5. 
Noisy-OR model used for the GDM dataset. Both QIs and causal independence knowledge 

are incorporated in this model. This representation shows that PRS, Hist, PCOS, HiBP, Age 
and BMI have a positive monotonic influence on GDM whereas METs have a negative 

monotonic influence. Additionally, all the risk factors are causally independent in this 

model.
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Fig. 6. 
The AUC-ROC scores for the Noisy OR model (NOR) as compared to the Gradient Boosted 

Trees model (GBT) with PRS (left) and without PRS (center). The AUC-ROC scores for 

the Noisy OR model (NOR) in the presence of PRS and Qualitative Influences (right). The 

bars show the mean score over 10 boostrap samples and the error bars show the standard 

deviation.
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